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The static energy of the baryon number B = 2 SO(3) soliton calculated
within the framework of the Chiral Quark Model is interpreted as a mass
of a dibaryon six quark state. The calculated mass is of the order of 3
GeV and therefore dilambda lies above the physical threshold for two A
decay. It is however argued that if the threshold itself is calculated within
the same model dilambda mass is slightly below the mass of two A. This
is due to the fact that the chiral models overestimate total masses usually
by a few hundred MeV.

PACS numbers: 14.20. Pt

1. Introduction

In 1977 Jaffe [1] argued that within a framework of the MIT bag model a
six-quark state uuddss (called H or dilambda) has a mass as low as 2.15 GeV
and therefore is just below the two lambda threshold (2.23 GeV). If it was
true H would have been stable against strong decays and could have been
relatively easy seen in experiments [2-6]. Since that time there have been
many calculations of H mass in various models (bag model [7-11], lattice
QCD [12, 13], quark cluster model [14-17], Skyrme model [18-21] and non-
relativistic quark model [22])with predictions ranging from 1.56 GeV to
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more than 3 GeV. In Ref. [23] dilamba mass was calculated in Chiral Quark
Model (xQM) and it was found that Egjjumbda = 2.11 GeV in the chiral
limit. In the present paper we extend the calculations of Ref. [23] without
the approximations employed in that work. We find that Egjjambda =
2.5 GeV in the chiral limit. Moreover we investigate in detail the dependence
of this result on model parameters and discuss thoroughly the departure
from the massless limit. The inclusion of the strange quark mass shifts
Egilambda by approximately 0.5 GeV for the strange quark mass m, =
150 MeV. Therefore the total mass of H is of the order of 3 GeV.

Although this result indicates that dilambda is unstable we can’t have
our beer and drink it. One has still to keep in mind that QM overestimates
baryon masses by a few hundred MeV. As we will argue later the model
prediction for the two lambda threshold is always above the H mass. We
are therefore confronted with a major problem, which is beyond the scope
of this paper, namely the problem of understanding the predictions of the
model as far as total masses are concerned.

It is widely believed that the low energy properties of QCD are repro-
duced by xQM in which constituent quarks are coupled in a chirally invari-
ant way to pseudoscalar meson fields [24-31]. In our version of the model
[27, 29, 30] pseudoscalars have no kinetic term and are treated as compos-
ite objects; one can view this model as a bosonized version of the quark
Nambu-Jona-Lasinio (NJL) model [32]. Theoretically the model should be
derivable from QCD. Indeed the instanton model of the QCD vacuum is
believed to result in an effective theory of this kind [33, 34].

xQM being only an effective theory requires a cut-off. Throughout this
paper we use proper time Schwinger regularization (35]. Regulator function
is chosen in such a way that meson observables such as pion decay constant
(Fx = 93 MeV) and pseudoscalar masses (or equivalently quark condensate
(¥¥) = —(239 MeV)? ) are reproduced. The details can be found in
Refs [27-30], [36-38]. It is important to note that the model reproduces very
‘well pion scattering amplitudes [39], or, in other words, Gasser-Leutweyler
coefficients [40].

While mesonic properties are calculated by integrating out the quark
fields and by expanding the effective action in terms of the derivatives of
the pseudoscalars, the baryonic properties are evaluated by assuming that
the pseudoscalar fields are topologically non-trivial. It is convenient to
parametrize the mesonic fields in terms of an SU(3) matrix:

Ulgi] = exp (i Aﬁlf) ’ (1.1)

where ); are Gell-Mann SU(3) matrices and ¢; correspond to the pseu-
doscalar fields (¢ = 1,...,8). For the nucleon, or in general for ordinary
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baryons, the topologically non-trivial configuration means that [41, 42]:

¢i=n;Fx P(r) for 1=1,2,3,
$:i=0 for i=4,...,8, (1.2)

where n; denotes a unit vector, and P(r) is a function of a radial distance
only. P obeys certain boundary conditions at » = 0 and » — o0, but
otherwise is free, and one finds its precise shape by minimizing the energy
of a valence level and continuum levels regularized in an appropriate way.
In recent papers Blotz et al. [43, 44] showed that the mass splittings of
the ordinary baryons are reproduced with an accuracy of a few MeV. This
encouraging result is however spoiled by the fact that absolute masses are
overestimated by about 400 MeV — this is a common feature of all chiral
models [45]. We will come back to this point in Sections 4 and 5.

Balachandran et al. proposed, in the context of the Skyrme model,
another classical Ansatz for U [18, 19]:

Ulf,g)=exp (i Af(r) +i [(7- D - | o), (13)

where A = (As, —A2, A7) and 1 is a unit vector. Matrices A; generate an
SO(3) subgroup of the SU(3) flavor group. To make U well-defined at the
origin one has to impose the following boundary conditions on functions f
and g:

f(0)=nx and g(0)= tmm~, mn=1,2.... (1.4)

The topological number of Ansatz (1.3), which in the Skyrme model is
identified with the baryon number, is equal to B = 2 f(0)/x; therefore the
lowest possible baryon number generated by (1.3) is 2.

In Ref. [23] the energy of Ansatz (1.3) was calculated for constituent
quark mass M = 345 MeV. In order to evaluate the continuum part an
approximation based on so called interpolation formula was employed. In
this paper we calculate the energy of the sea exactly, we also calculate H
mass for various constituent quark masses and for different bare strange
quark mass m,.

Here an important remark concerning the parity of the H particle is in
order. Ansatz (1.3) has no definite behavior under the parity transforma-

tion:
U(F) - UN-7) # £U(7). (1.5)

The parity transformation corresponds to a replacement ¢ — —g. Therefore,
classically, the parity P=+1 and P = —1 states are degenerate. However,
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since two Ansitze U(1:2) (corresponding to g3 = g and g; = —g respec-
tively) have the same topological number B, there should exist a family of
interpolating Ansitze U'™(7), where 7 € (—00, ), such that [23]:

Uint(__oo) — U(l) and Uint(oo) — U(2) . (1.6)

One could in principle calculate the action corresponding to the tran-
sition from U(1) — U(2) and, in this way, estimate the splitting of P=+1
and P = —1 states. In any case this splitting will be parametrically small,
i.e. of the order exp(—N¢).

Assuming that U is of the form (1.3), we study the spectrum of the
quark Dirac hamiltonian in the presence of such configuration and develop
techniques to sum up the contribution of the continuum energies — vacuum
polarization. We observe that the continuum energy increases almost lin-
early with suitably defined size of the soliton field. In the same time two
degenerate valence levels, with 3 (or N.) quarks each emerge from upper
continuum. Their energy decreases with the soliton size. The sum of the
two contributions: valence + continuum develops a stable minimum which
we interpret as a dilambda mass.

In Section 2 we briefly describe the formalism. Since in the literature
there exist detailed descriptions of the model and numerical method {27, 29,
30, 37, 38], here we only recapitulate main points and set our notation. In
Section 3 we present our results for my = 0. We find that for constituent
masses smaller that 325 MeV there is no stable solitonic solution; in this
respect the situation is analogous to the nucleon case, where no solutions
were found for this range of constituent masses as well. Eg;jambda decreases
with increasing M. In Section 4 we discuss the departure from the chiral
limit. First we calculate the analog of the nucleon sigma commutator and
calculate the energy shift due to the non-zero strange quark mass in a linear
approximation. This shift, as already observed in Ref. [23] is as large as
1 Gev (600 MeV) for the constituent mass of 350 MeV (600 MeV) and
ms = 156 MeV. Therefore the linear approximation is not reliable. Next
we calculate the energy shift in an approximation where the singlet part of
the mass matrix is treated exactly and find that it varies from 600 to 500
MeV for constituent masses M = 350 to 600 MeV. Our final conclusions are
presented in Section 5, where we also compare our results with the results
of Refs [43, 44] where masses of hyperons were calculated.

2. Dilambda in chiral quark model

In xQM model the problem of calculating the energy of a classical field
configuration given in terms of an Ny x N; matrix U[¢;(7)] parametrized
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by n functions ¢;, ({ = 1,...,n) consists in finding a minimum with respect
to ¢; of a functional:

E = n;m (Brevell$i] + Econt.[#:]) - (2.1)

Quantities Ej.ye} and Econe. are constructed in terms of eigenenergies of the
one-particle Dirac hamiltonian:

1+7s

. 0
w0 (—imge + M (VIG5 + 089252 ) 4 m) = Malsidin,
(2.2)
where M stands for constituent quark mass and m denotes bare quark mass

matrix. In this notation we have:

Elevel ¢t NM Z (2.3)
lEvalence

Econt.[¢i] =NM Z (R(el[¢i]) - R(fl[ 0])) . (2'4)
lEcontinuum

Here subscripts “valence” and “continuum” refer to valence levels with en-
ergies 0 < ¢ < 1 and to all levels respectively, ¢; = 0 correspond to the
vacuum configuration. Throughout this paper we use the proper time reg-
ularization:

R(e) = \/_ / (e, (2.5)

where a step-like function ¢(7) is a subject to two conditions:

N.M? [d .

il / T p(r)e = 2, (26)
0

NM® Td L~

o | Tl e = (), (2.7)

0

with Fr = 93 MeV and the quark condensate {¢) = —(239 MeV)3. With
this value of the quark condensate the strange quark mass which reproduces
the kaon mass (in gradient expansion) is:

mg = 156 MeV . (2.8)

Let us remark that in contrast to Eg;jambda the value of the sigma term (in
ordinary baryon case and in our case as well) depends drastically on the fact
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whether condition (2.7) is satisfied or not. The hyperon splittings, which
depend on the sigma commutator, have been successfully reproduced with
the two step cut-off function saturating conditions (2.6) and (2.7) simulta-
neously [43, 44].

The above formulae can be applied to any classical field configuration
U. Following Refs [18, 19] and Ref. [23] we choose U in a form given by
Eq. (1.3) which can be conveniently rewritten as:

Uki[f, 9] = exp (ig) (6kz cos f + neny (e — cos f) + Ektmnm sin f) )
(2.9)
where k,1 = 1,2,3.
Functions f and g depend only on the radial distance » and are chosen
to obey boundary conditions [18-20]:

F(0)==n and j’(r-—»oo)ml

g(0)=+r and g(r— o)~ 1% . (2.10)

As seen from the form of Ansatz (2.9) hamiltonian (2.2) has a general-
ized rotational symmetry corresponding to the grand-spin operator K:

K=A+L+S, (2.11)

where A denotes the SO(3) symmetry operator (4 = 1), J is the ordinary
angular momentum operator (J = 0,1,...) and S stands for spin (§ = 1/).
Therefore K = 1, 34,.... We can diagona.lize the angular part of the
hamiltonian (2.2) by writing a general solution to the Dirac equation (2.2)
with Ansatz (2.9) as:

= FEat r) B ()
Y, (P =| °* ; , 2.12
x () - T Gl r) () (212)

where the flavor-spinors S;é’lj{) can be found in Appendix A. For each K
Eq. (2.2) reduces to 12 first- order differential equations for 12 radial func-
tions F; .(r) and G(‘ jy(r) (=%, 0 and j = ). In fact, for K = 1/, the

system reduces to 8 equations (z = — does not contribute).

Let us remark here, that since U[f,g] does not transform into itself
under the parity transformation, parity is not a good quantum number here,
and — unlike in the nucleon case — the 12 (or 8 for K = !/;) equations do
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not split into two subsets of 6 (or 4) differential equations, one for parity
+1 and one for parity —1.

It is convenient to define a 12 component vector ¥x ,(z) and rewrite
Eq. (2.2) in the following form:

(NEd?: + %C" + Helf, 9]) Pr,n(z) = €x,nlf, 9] ¥k n(z),  (2.13)

where 12 X 12 matrices N, Cx and Hg as well as ¥k ,, are explicitly given
in Appendix B; # = Mr and n enumerates subsequent energy levels. In
what follows we will suppress index n.

Instead of performing a full-scale selfconsistent minimization of the en-
ergy functional (2.1) we use a variational approach and minimize (2.1) with
respect to two variational parameters: r¢ and ry defined as in Ref. [23]:

f = 2 arctan (rTf)2 R g = 2 arctan (%)3 . (2.14)

The variation method proved to be very accurate in the nucleon case [36].

The numerical method used to calculate single particle energy levels
€k is analogous to the one described in Refs {25, 29, 30] in the context
of the nucleon solution. The idea is to construct a convenient, finite (but
large enough) n dimensional basis in which 12 x 12 matrices of Eq. (2.13)
are transformed into n X n component matrices, which are subsequently
numerically diagonalized. The size of the basis should be chosen in such a
way that numerical stability with respect to the change of n is achieved.

In order to construct the basis let us first observe that in the absence of
the soliton (i.e. f = g = 0), or for large z, the solution of Eq. (2.13) reduces
to certain combination of the spherical Bessel functions. It is therefore
natural to choose the 12 basis vectors in the following form:

S
sP(I? = |iukp(k2) | — i, (2.15)
o

where index v is equal to the index of the Bessel function in the i-th entry
(1 =1,...,12) of the free solution. The details can be found in Appendix
C. Here

k=4l -1]. (2.16)
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In the dilambda case the free equation (2.13) splits into three inde-
pendent sets of 4 equations since matrices N, Cx and Hy become block
diagonal, for instance:

He=| o HY o . (2.17)
0 o HSO)

The basis (2.15) corresponds to the continuous spectrum of Eq. (2.13).
In order to discretize the energy levels, we close the system in a large box
of radius D and impose three separate boundary condition for each 4 x 4
subsystem independently:

jK_Hj(szD) =0, j=4+1,0 (2.18)

and index i enumerates subsequent solutions to Eq. (2.18). Here comes the
difference with the nucleon case, where one usually imposes one boundary
condition for the whole system.

Equation (2.18) has an infinite number of solutions for k: i =1,2,....
For practical purposes we have to work with a finite basis, which we define
by choosing a cut-off:

+
k? < kmax- (2.19)

Equation (2.19) generates 3 sets of solutions. There are n solutions in the
first set, and ny and n_ solutions in the remaining two. Therefore the size
of the basis is equal:

n=4(ny +no+n_).

With k satisfying Eqs (2.18), (2.19) each one of 12 vectors (2.15) transforms
into n4, ng or n_ vectors which span our basis.

Next we calculate matrix elements of operators N d/dz, Cx/z and Hy
in this basis and then diagonalize the hamiltonian (2.13). In this way we
obtain the eigenvalues needed to calculate the energy of the soliton (see
Eqgs (2.3), (2.4)). One has of course to make sure that numerical stability
with respect to kmax and D is achieved.

3. Dilambda mass in chiral limit

Firstly we have to specify the cut-off function ¢(7) in order to satisfy
conditions (2.6) and (2.7) — we call this a physical cut-off. We will show
that our results do not depend on the specific choice of ¢(7) once the re-
quirements (2.6) and (2.7) are fulfilled. Next we have to specify unphysical
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cut-off parameters, namely D and kpax. They have to be chosen big enough
so that the numerical stability against changes of D and kmax is achieved.
In practice we choose:

D:II‘—;, bmax = 9 M. (3.1)

Let us illustrate the independence of our results on different ways of

choosing the cut-off parameters on the example of the constituent mass

M = 400 MeV. The results for other masses are similar. In order to satisfy

conditions (2.6) and (2.7) we choose, as in Refs [43, 44] the cut-off function
¢(7) in a form of a two-step function:

P(r)=(1-¢)0(r—71) +cO(T - 12) (3.2)

with R
= (%) . (3.3)
TABLE I

Dependence of energy and sigma-term on the physical cut-off.

4, / M Ay / M < Eqatence Econt. E Tyalence | Tcont. -4
[GeV] | [GeV] | [GeV]

0.65 3.2 0.376 1.03 1.41 2.45 1.03 5.02 6.04
0.78 3.3 0.346 1.03 1.43 2.46 1.03 4.96 5.98
0.87 3.4 0.319 1.03 1.43 2.47 1.03 4.92 5.95
0.98 3.6 0.272 1.03 1.43 2.47 1.03 4.88 5.81
1.06 3.8 0.234 1.03 1.43 2.47 1.03 4.85 5.87
1.12 4.0 0.203 1.03 1.43 2.47 1.03 4.82 5.85
1.23 4.5 0.147 1.03 1.43 2.47 1.03 4.76 5.79
1.30 5.0 0.111 1.03 1.44 2.47 1.03 4.69 5.72

In Table I we display the value of the minimum of Egjjambda for D =
10/M and kpmax = 9 M for various choices of A1, A; and ¢. For 42 < 3.2 M
no solution to the conditions (2.6) and (2.7) was found. The contributions
of the valence level and continuum are separately displayed, the last three
columns refer to the sigma term which we discuss in the next section. We see
from Table I that the minimum energy E, which we interpret as a dilambda
mass, is fairly independent upon the choice of the cut-off parameters. In
Fig. 1 we plot the dependence of the total energy E on Az; A; and c are
fixed by conditions (2.6) and (2.7) and can be read out from Table I. On
the same plot, for comparison, we display the value of E for ¢ = 0, i.e. for
one-step cut-off function which reproduces Fr but not the condensate. One
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Fig. 1. Dependence of E on cut-off parameter A, with 4, and c fixed by conditions
(2.6) and (2.7). Dashed line corresponds to energy E calculated with ¢ = 1.

can see that even for this simplified cut-off the energy is lower only by 0.1
GeV (i.e. 4 %) with respect to the two-step cut-off.

In the remainder of this paper, following Refs [43, 44], we restrict our-
selves to the choice:

Ay =087TM, A;=34M, c=0.319. (3.4)

With cut-off parameters fixed by Eq. (3.4) we now investigate the de-
pendence of our results upon the choice of D and kmax. In Table II we
present the results for energies and sigma terms for 3 various choices of D
and kmax. Again we found almost no dependence on D and kmax. With
our parameters fixed by equations (3.4) and (3.1) we can now study the
dependence of H mass on the constituent mass M with ms = 0. Our results
are summarized in Table III.

TABLE II
Dependence of energy and sigma-term on D and kmax.
DM kma.x/ M Evalence Econt. E Oyalence Ocont. o
[GeV] [GeV] | [GeV]
10.0 9.0 1.03 1.43 2.47 1.03 4.92 5.95
10.0 12.0 1.03 1.43 2.46 1.03 4.92 5.85
13.0 9.0 1.03 1.43 2.47 1.03 5.05 6.07
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Similarly to the nucleon case H consists of a valence level and continuum
levels which contribute via Eq. (2.1) to its mass. For zero-size soliton (i.e.
r¢ = rg = 0) the spectrum of the hamiltonian (2.13) is symmetric and there
are no levels in a mass gap —1 < € < 1. As soon as we slowly increase ry
and ry the energy levels move and the spectrum is no longer symmetric.
Moreover, due to the index theorem, a doubly degenerate K = 1/; level
starting from some critical values of r¢ and ry crosses the ¢ = 1 line and
dives fast towards the lower continuum. In our model this level is filled with
N, (i.e. 3) quarks, but due to K3 degeneracy we have altogether 2N, (i.e.
6) valence quarks, whose energy decreases rapidly with an increase of the
soliton size. At the same time the energy of the continuum increases, but
not as fast as the valence quarks energy, and for some value of the soliton
size the minimum is achieved. For higher values of 7y and r, the growth of
the continuum energy wins over the decrease of the valence levels and the
total energy increases with the soliton size.

TABLE III
Dilambda energy and o-term for various constituent masses M and strange quark
masses m,.

M my M rg M o E [GeV]
[MeV] [MeV] linear nonlinear
325 0 0.8 0.9 4.90 2.56 2.56

50 - - 2.81 -
100 - - 3.05 -
156 - - 3.32 -
200 - - 3.54 -
350 0 1.0 1.1 6.93 2.48 2.48
50 0.9 1.0 2.83 2.72
100 0.9 0.9 3.18 2.89
156 0.8 0.8 3.56 3.03
200 0.8 0.8 3.86 3.13
400 0 1.1 1.2 5.95 2.47 2.47
50 1.0 1.2 2.76 2.68
100 1.1 1.2 3.06 2.84
156 11 1.2 3.40 2.99
200 1.1 1.2 3.66 3.10
500 0 1.3 1.5 4.95 2.39 2.39
50 13 1.5 2.64 2.59
100 1.3 1.5 2.89 2.73
156 1.3 1.5 3.16 2.86
- 200 14 1.5 3.38 2.96
600 0 1.4 1.7 3.67 2.32 2.32
50 1.5 1.7 2.51 2.49
100 71 1.5 1.8 2.69 2.61
156 1.5 1.8 2.90 2.74
200 1.6 1.8 3.06 2.82
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For M < 325 MeV we find no minimum of the energy (2.1) with respect
to parameters vy and ry. For M > 325 MeV the minimum exists and
the energy in the minimum decreases with an increasing M. The minima
are rather shallow and the energy splits in almost equal portions between
valence and the continuum part. In Fig. 2 we display the dependence of E
on r¢ (rg) for ry (r) fixed to the position of the minimum (see Table III).
The dashed line E/M = 6 corresponds to the free quark threshold. For
M > 400 MeV the minima are below the free quark threshold.

Let us remark here that YQM does not incorporate confinement, there-
fore the free quark asymptotic states are in principle possible. Hence it is
clear that we cannot trust the model at small distances, i.e. the model
certainly breaks down for soliton sizes too small. Fortunately the minima
are achieved for reasonably large r¢ and r,. If the energy of the minimum
is above the 6 quark threshold the system could in principle tunnel to a
free quark quantum state, this however requires the soliton to squeeze to
zero-size where confinement effects become important and QM is not ap-
plicable. But even within the framework of the model this amplitude is
parametrically small as it behaves like exp(—Nc). Let us finish by a remark
that in order to reproduce the hyperon splittings the constituent mass has
to be slightly larger than 400 MeV [43, 44]. For this range of M the energy
of dilambda is just below the free quark threshold.

4. Finite strange quark mass

So far we have been working in the chiral limit. Now we will discuss
the inclusion of the finite mass of the strange quark. We will however, for
simplicity, keep the up and down quark massless. The bare quark matrix
m=diag(0,0,m,) takes a form:

m = ims(1 - V3 ). (4.1)

Since H is a flavor singlet only a piece proportional to 1 contributes to the
H mass.

For mg not too small the energy shift due to the strange quark mass
can be expressed in terms of a Taylor expansion:

E = E(my = 0) +m, ( aﬁ)m’:o. (4.2)

Let us define the energy shift due to the non-zero ms as:

AE = omg, (4.3)
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Fig. 2. Dependence of E (in units of M) on variational parameters r; (a) and 7y
(b) (in units 1/M) for different constituent masses M. Dashed line corresponds to
a six-quark threshold.
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where o is just the derivative explicitly displayed in Eq. (4.2).

We have calculated o in three different ways. Firstly, we have inserted
(4.1) in the hamiltonian (2.2) and calculated the derivative ¢ numerically.
Secondly we have used the formula, which expresses o in terms of the quark
wave functions:

0 = Oyalence 1+ Ocont. (4.4)
where
N, [ 1 (dR
Ocont. = ~5— Z ('/’l l Yo ' "l’l)( ) - —_(—) ]
3 l{€continuum de e=€r[¢;] 61[0} de e=¢[0]
N,
Oyalence = "52 2 ('l’l I Yo | ¢l> . (4‘5)
{Evalence

Here 1; are solutions of Eq. (2.2). Thirdly, we have used gradient expansion
[45]:

Ocont. = — ¢¢> /d (3 -2 cosfcos-‘g- -~ cos 232) . (4.6)

All three methods give the same result. In the fifth column of Table III we
display the values of ¢ for different constituent masses.

Before we discuss the physical consequences of expansion (4.2) let us
note that results for o are basically insensitive to the choice of cut-off param-
eters. In Tables I and II the values of ovalences Tcont. and o are displayed for
different physical and unphysical cut-off parameters. The slight variation of
o with respect to Az is illustrated in Figure 3.

In Figure 4 we plot AE as a function of m, in the linear approx-
imation (straight lines) for two extreme choices of the constituent mass
M = 350 MeV and M = 600 MeV. The smaller the constituent mass the
bigger AE. Certainly the shift of 1 GeV in comparison to the chiral limit re-
sult of the order of 2.5 GeV cannot be considered as small. We are therefore
led to the conclusion that m, should be, at least in the case of dilambda,
treated non-linearly.

It is obvious that for finite m, some nonlinearities which will invalidate
the linear approximation used so far must occur. In order to estimate these
nonlinearities we will not expand E in a power series in m,. Instead, we will
keep the singlet part of (4.1) in the hamiltonian (2.2) and minimize E with
respect to r¢ and rg. However, one cannot forget that asymptotics (2.10)
is no longer correct. For finite m, the profile functions are exponentially
dumped for r — oo. Therefore instead of Ansétze (2.14) we take our profile
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6.2

Fig. 3. o dependence on cut-off parameter A; with A; and ¢ fixed by conditions
(2.6) and (2.7).

functions in the following form:
2
f = 2 arctan (TTf) [e*"(1 +pr)],
- o\ [ -ur 1 2
g—2arctan(r) [e (1+ur+3(pr) )] , (4.7)

where p is related to my:

2__2  ($¥)

W= (4.8)
We have performed minimization of E with m, included in the Hamiltonian
(2.2) for both Ansétze: “non-exponential” (2.14) and “exponential” (4.7).
The results, for M = 400 MeV are given in Table IV.

We also illustrate the difference between “non-exponential” (2.14) and
“exponential” (4.7) parametrizations of trial functions f and g in Fig. 5,
where the mass of dilambda is plotted against m, for constituent quark
mass M = 400 MeV. In Fig. 5 we also plot the linear approximation given
by Eq. (4.2). It can be seen that a degree of nonlinearity is much higher
for “exponential” Ansétze (4.7). For physical strange quark mass m, =
156 MeV the linear and “non-exponential” parametrizations overestimate

_ E by about 400 to 300 MeV.
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Fig. 4. AE dependence on m, for two constituent masses M = 350 MeV (dashed
line) and M = 600 MeV (solid line). Upper straight lines correspond in both cases
to linear approximation (4.3), while lower convex lines correspond to exact m,
dependence, evaluated with “exponential” parametrization (4.7).

TABLE IV
Energy of H calculated with two different profiles for M = 400 MeV.

Profile Eq. (4.7) Profile Eq. (2.14)
(exponential) (non-exponential)
m, | Evalence | Eocont. E Evatence | Econt. E

[MeV] [GeV] | [GeV] | [GeV] | [GeV] [GeV] | [GeV]
50 1.31 1.37 2.68 1.09 1.67 2.76

100 1.51 1.32 2.84 1.14 1.91 3.05
156 1.711 1.28 2.99 1.20 2.16 3.36
200 1.86 1.24 3.10 1.25 2.35 3.60

It is interesting to observe that the dependence of AE on constituent
mass M is very weak for the “exponential” parametrization. This is illus-
trated in Fig. 4 where the “exponential” parametrization (represented by
convex lines) is plotted for two extreme constituent masses M = 350 and
M = 600 MeV. The difference is no more as 150 MeV for realistic m;,.
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Fig. 5. E dependence on m, for M = 400 MeV in linear approximation (4.3)
(short dash), full dependence with “non-exponential” parametrization (2.14) and
“exponential” parametrization (4.7).

5. Summary and conclusions

The purpose of this paper was to calculate the energy of the soliton
[23] based on the specific SO(3) embedding in the SU(3) flavor group [18,
19]. We interpreted this energy Egijlambda 8s a mass of the dilambda state
(or H), which consists of 6 quarks: uuddss [1]. Similarly to the solutions
studied in the Skyrme model, H being a singlet state is not further split
when the system is adiabatically rotated and then semiclassically quantized
[18, 19]. Therefore, unlike in the case of hyperons [43, 44], the soliton mass
Egilambda 18 equal to the dilambda mass itself.

We have studied the behavior of Egjjambda With respect to model pa-
rameter M, i.e. the constituent quark mass and with respect to the current
strange quark mass m,. We have found that in the chiral limit Egjjambda ~
2.5 GeV with only slight dependence on M. The influence of m, has been
studied first in a linear approximation. In a linear approximation the shift
due to my is calculated by assuming that the strange quark mass is small
enough to apply Taylor expansion in the vicinity of m,; = 0. The increase
of the H mass for my = 156 MeV is as big as 1 GeV for M = 350 MeV
and decreases to 570 MeV for M = 600 MeV. For realistic M the dilambda
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mass is therefore shifted by about 40% — this is a signal that m,, at least
as far as total shift is concerned, cannot be treated as a small parameter.
We have therefore decided to calculate the soliton mass with the non-zero
strange quark mass in a nonlinear approximation where the singlet part of
the mass matrix is treated exactly. In this nonlinear approach the chiral
result is shifted by approximately 500 MeV for m; = 156 MeV with only
slight dependence on the constituent mass M. In short, our prediction for
Egilambda reads:

Egilambda = 2.5 GeV+ 0.5 GeV =3 GeV. (5.1)
chiral ms=156 MeV

The above result was obtained in a variational approach. A full-scale self-
consistent minimization of the energy functional (2.1) should in principle
give predictions lower than Eq. (5.1), however from the experience with the
hedgehog Ansatz we expect that our results are accurate to within a few
percent.

In Ref. [23] the H mass was calculated for M = 345 MeV, a value
dictated by the instanton model of the QCD vacuum. However, unlike in
the present work, the energy of the continuum was calculated by means
of the approximate interpolation formula and in the chiral limit the result
read: Egijlambda = 2.11 GeV at 7 = 1.1 M and ry = 1.3 M. It has been
already observed in the case of the hedgehog Ansatz that the interpolation
formula is usually below the exact result. Also here for the SO(3) Ansatz
the interpolation formula underestimates the exact result as well.

Before we come to the discussion of result (5.1), let us first motivate
the nonlinear approach to the strange quark mass. The current quark mass
matrix m can be put into the following form:

m, 0 0
[0 mgq 0]:[:0Ao—ysz\s—p3/\3, (5.2)
0 0 m,

where ); are Gell-Mann SU(3) matrices (A9 = 4/2/3 1) and
1
Mo = %(mu+ma+ms),
1
Hs = 5‘73—'(2"% ~ my —my),

H3 = %(m“ - mg). (5.3)

The three parameters pug,s,3 are related to the strength of the chiral sym-
metry breaking, SU(3) breaking and isospin breaking respectively. In what
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we call linear approach all quantities are expanded around the point u; = 0.
On the other hand the nonlinear treatment of ¢ corresponds to a picture in
which the chiral symmetry breaking is diagonalized ezactly, while the SU(3)
breaking and the isospin breaking are still accounted for perturbatively (de-
spite the fact that yuo and ug are of the same order, i.e. O(m,), numerically
Mo > pg). Let us remind that the perturbative expansion in ug has been
successfully applied to calculate the hyperon splittings in the SU(3) xQM.

The two lambda threshold E;;, = 2.23 GeV is certainly below our
result, both in the chiral limit and for the non-zero m,. Should one therefore
abandon the idea of producing a six quark state which would be stable with
respect to strong interactions ? xQM, as well as other chiral models like the
Skyrme model for instance, overestimates the absolute masses of hyperons
[45]. Similarly to the case of the ordinary baryons we may therefore expect
that our result for Egjlambda Overshoots the would-be experimental result
as well.

The energy of a given baryon belonging to representation R of the SU(3)
flavor group (R=8 or 10) of spin J (J = 1/2 or 3/, respectively) is given by
(43, 44, 46-48]:

Mp = M. + AMq + Hgy(z) + Hsu(s) + Hor (5-4)
where
J(J+1
Hgy(2) = ——-——-(HA ) ) (5.5)

2
Cy(SUB)) - J(J +1) - Ne
Hsy@a) = 2(50(3) 21; ) 12 (5.6)

Here I 4 p are certain moments of inertia calculable in the model, C2(SU(3))
is a quadratic Casimir operator, which should be evaluated for representa-
tion R, and H,, is a breaking piece responsible for splittings. Hj, corre-
sponds to uglg in Eq. (5.2), whereas AM, corresponds to pgAe. M, is
a classical soliton mass. As one can easily see from Eq. (5.4) Epeagehog =
M + AM,; binds the hyperon masses from below. Hgy(;) and Hgygs) are
always positive; for the octet they are approximately equal to 60 MeV)a.nd
245 MeV respectively [43, 44]. H}, can be either positive or negative: for A
Hy, ~ —40 MeV. Therefore the A mass is bigger than Epedgenog by about
265 MeV. In Table V we display twice the energy Ep.dqgehog Of the soli-
ton calculated for the hedgehog Ansatz (1.2) for various constituent quark
masses and various m, in the linear and nonlinear treatment. The results
presented in Table V have been obtained by the selfconsistent minimization
of the energy functional (2.1). For M < 350 MeV and m,=0 and also for
M = 350 MeV and m,; > 100 MeV no selfconsistent solution was found.
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TABLE V

Twice soliton energy Ehedgenog 8nd o for hedgehog Ansatz of Eq. (1.2) for different
constituent quark masses M and bare strange quark masses m;.

M me 20 ZEhedgehog
[MeV] [MeV] [GeV]
linear nonlinear
350 0 6.54 2.53 2.53
50 2.86 2.78
100 3.18 -
156 3.55 -
200 3.84 -
400 0 6.03 2.51 2.51
50 2.81 2.74
100 3.11 2.91
156 3.45 3.07
. 200 3.71 3.18
500 0 4.92 2.43 . 2.43
50 2.68 2.64
100 2.92 2.79
156 3.20 2.94
200 3.42 3.04
600 0 4.23 2.35 2.35
50 2.56 2.54
100 2.77 2.67
156 3.01 2.79
200 3.19 2.89

The quantity o (defined in analogy with Eqs (4.2), (4.3)) displayed in the
third column of Table V is related to the nucleon sigma-term X:

3
= Z(m“ + mgq) 20. (5.7)

For my+mq =12MeV I = 9x20 MeV and varies with the constituent
mass from 59 MeV to 38 MeV for M = 350 MeV and M = 600 MeV
respectively. This dependence of T points towards constituent quark masses
of the order of 400 MeV, where the agreement with experimental value of
51 Mev is achieved.

Let us observe that twice the hedgehog mass, 2 Epedgehog is always bigger
than the dilambda mass by a few tens MeV, both in chiral limit and off-chiral
limit in both linear and nonlinear treatment. Within a percent accuracy the
model predicts that

Egilambda = 2 Epedgehog -

The two lambda threshold is about 530 MeV higher than 2E}ggehog itself,
therefore within the Chiral Quark Model dilambda is stable against strong
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decays. The above result should be contrasted with the Skyrme model
result, where Eg;jjambda is comparable with Ep.ggehog-

The whole discussion of the m, influence on the soliton mass was ment
to show that actually both B = 1 and B = 2 solitons are affected by
a nonzero strange quark mass in the same way, rather than to advocate
the result obtained by the linear or nonlinear approach. That means that
the conclusions concerning the stability of H in the chiral limit remain un-
changed if we turn on the strange quark mass, irrespectively of the method
(linear or nonlinear).

Let us finish by a remark concerning the cut-off function ¢(7). which
is fixed by gradient expansion. Gradient expansion is a common procedure
since it is technically not feasible to treat the fermion determinant up to all
orders in m. However, in principle, even in the gradient expansion the effect
of the singlet part of the current quark mass can be treated nonlinearly in
close analogy to the soliton case discussed above. Indeed, such an approach
consists in shifting a constituent quark mass by m4/3 for all quarks. This
effect has a negligible influence on our results. It amounts to a change of
the cut-off parameters through Eqs (2.6), (2.7) and, as we have checked
numerically, it diminishes the mass of the soliton by at most 10% both in
B = 2 and B = 1 sector. The conclusions concerning the stability of H
remain therefore unchanged.

While the overestimation of the absolute masses seems to be a common
disease of chiral models there are some corrections, which we did not take
into account, which lower the soliton mass. In Ref. [49] one gluon correction
was calculated and shown to be negative, but too large to trust the pertur-
bative expansion in Qstrong. Subtraction of the rotational bands might be
also another way out {44]. Let us finally mention the Casimir energy dis-
cussed recently in Ref. [50]. It is certainly beyond the scope of this paper to
discuss this problem in detail, we only mention those possibilities in order to
emphasize that we are not at the end of our way towards the understanding
of the predictions for the absolute values of the hadronic masses in chiral
models.

This work was partly sponsored by Studienstiftung des deutschen Volkes
(P.S.). We would like to thank D.I. Diakonov, K. Goeke, Th. Meissner,
V.Yu. Petrov and P.V. Pobylitsa for useful discussions at various stages of
this work. Z.D. thanks the Bochum Theory Group for hospitality during
his stay in Germany.
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Appendix A

Z. DULINSKI, M. PRASZALOWICZ AND P. SIEBER

Spherical isospinors for SO(3) symmetry group

In this appendix we collect formulae for spinors which diagonalize Dirac
equation (2.2). In order to get a state with a given grand-spin K we first
construct two two-component spinors .flf‘;: Jg? where J = S+ L . The upper

superscript refers to the eigenvalue L which for given J and spin 1/, can be
1/2 OI‘L=J+1/2

either L = J ~

-) _ 1
J,Jg /_2J i
+ . _ 1

I T 2T 12

vJ+J3 YJ_%’JS_%
\/J—j3 YJ_%,J3+%

~J+1-J3 YJ+%,JS_%
\/J+1+J3YJ+§J3+§ ’

(A.1)

Next we construct six 6-component spinors ._.(io;t) Here the second
superscript, as in the case of f2, corresponds to two ways spin and angular
momentum can be coupled to form given J, and the first superscript refers
to three ways J and SO(3) “momentum” A = 1 can be coupled to form
given (half-integer) grand—spin K:

'-'( V) =
HK, 3

(J)

'-'(+1.7)
HK: 3

NG

= N(9)

[ V(K + Ks - 1)(K+K3)nx 1,K3—1
V2(K + K3)(K - K3) ”K..l Ks |
_\/(K K3 -1)(K - K3)0K—1,K3+1

V(B +K)KE-K; +1)

@)
K,Kg—-1

\/§K 3 n%,}{a ’

| V(K - K3)(K + K3 +1) n%,)l{3+1

[ VE-K+1)(K - K3+2)0%-|)-1K3 1

= N(+)

-v2(K - K3 +1)(K + K3+ 1) ”Kl: Ks

where normalization factors are given by:

NG =
N©) —

N =

1

V2KQ2K -1)’

1

V2K(K +1)’

1

V2(K + 1)(2K + 3)

| V(K + K3 +1)(K + K3 +2) ”KJ)A,K3+1

(A2)
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and j = —, +.

In order to derive spherical Dirac equation we need the following rela-
tions:

. =(%,3) =..._1__ ":’(iv—j)
n-AZ 2K,+1+e(’“

1 . . — .
-ﬁxf(ﬂﬂ 1-9)(2K +1 +2,);(0,J)) ’

AZ0) oL =(0,-j)
n-AS 2K(K +1)
_ VEQK+3) 45 VE+1)CK-1) ;)
2(K +1) 2K = ’

i . 1 . .\ =G
L.ag(z,J)z_J(K+.2_+,+]);( 13,
n.ds(i’j) . S(i’-j), (A_3)

where we have suppressed subscripts K, K3. Here ¢, j = £1, & matrices are
related to the spin operator.

Appendix B
Radial Dirac equation

The Dirac equation (2.2) can be written in a matrix form:

€] i0-8 _
[ia-a € ]¢l—

[ 2bi(n- A)+4by(n-A)2 +b3  —i(2a3(n- A) — daz(n- A)? + a;;)} "
i(2a;(n - A) — 4az(n- A)? +a3) —2bi(n- A)—4bz(n-A)* — b3 b

(B.1)
where 8 = 8/(M0dr), and
alz%cosg-sinf, by = —3sin {sin f,
(12:.':—% (sing-cosf+sin%i) ’ bz=%(003§'003f—¢°32§") )
a3=—sin39-,‘ b3=coszﬂ. B.2
3 3

In Sec. 4 we discuss non-linearities caused by finite ms. Then one should
replace b3 by )

2
bz = cos —32 + gm, . (B.3)
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Equation (B.1) becomes block-diagonal in basis (2.12), each block being
a 12 x 12 dimensional matrix, so that the different values of K do not mix.
As mentioned already in section 2 in the vacuum sector equation (B.1)
splits further into three 4 x 4 subequations. Accordingly we d:compose

12-dimensional vector ¥ (z) into three 4-component vectors ¥ :

+
!pK n
Wx,n = !p?(,n s (B.4)
¥k \n
From now on the subscript n enumerating eigenenergies as well as z-depen-
dence will be suppressed.
Elements of ¥} (with ¢ = X, 0) are related to functions G and F defined
in Eq. (2.12): «
Fi

gio=| G, (B.5)

In the same way matrices N, Cx and Hyg can be split into 9 blocks of
4 X 4 matrices, e.g.:

H+H) g g+-)
H= H(0,+) H(O,o) H(°’") s (B.G)
H(-’+) H(_)o) H(_$_)

where we have suppressed subscript K.
For N and C only diagonal submatrices are non-zero:

0 1
N&H o yeo - |7t 0 (B.7)
1 0
and
0 -K+1i7F1
C(i’i)—’ -K—%:Fl 0
B 0 K-1z+1|’
K+3+1 0

(B.8)
and C(00) = 1 (C(++) 4 ¢(=7))y,
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Now we will specify matrix H. Matrix H is real and symmetric, there-
fore
(,3) _ g(d)
Ha,b =H ba °
Also submatrices H(9) are symmetric:
(i,3) _ g(i.d)
Ha,b =H ba
They are also symmetric with respect to the second diagonal, namely:

(7)) _ glid)
Ha’,SJ—b - Hb,SJ—-a. ’

where a,b = 1,...,4. Moreover:
(4,5) _ (4,5)
Hz:zj - -Hl,lj ’
B = (Y, (B.9)

It is therefore enough to specify the following elements of H:

HED) = by 4 5, 3K, B = —ay 5y,
H§;,+) = —a3 + a2 4, H&’H = b g

0,0 K2i4K— 0,0
H§,1 )= by + bz“'f” K K4+1'71’ H§,2 )= —3 K(I§+15’
2 - V'
Hf?s'o) = —a3 + “2'7-“1({ Ktﬁ'f‘irl’ H§?40) = b 'K(Ié+1)’

GO =bentE, G e,

T Tt

B = o YEEE) B = -0 D,

H§?f—) = —51@, Hg’é—) = az )E’%?%l—’;“_l),
= by JCEEIEEED - gt =y,

+,—
H;
)

[ K K- '
HGD = apJOEREE=N - gl o, (B.10)
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Appendix C
Discrete basis

In Section 2 we introduced finite basis which was subsequently used to
diagonalize Eq. (2.13). Let us split t;ltle 12-dimensional component vector

&y into three 4-component vectors &5

ét

K

Sy = [Qg{] . (C.1)
Py

In order to construct the basis vectors (2.15) it is enough to specify the

form of, say, #}; with $; = 0 and #} = 0, then #} with &}, = 0 and

$ = 0, and finally #, with QI'*; = 0 and $% = 0. These 4-dimensional
vectors for given K are given in terms of radial Bessel functions:

[k +3+5(k2)] [ 0 ]
" %0: s ix—y45(k2)
QK,I = 0 4 QK,2 = OJ ?
b 0 - e 0 -
- 0 - - 0 -
| o | o :
K3 = 5K+§+j(kz) » FKa= |0 (C.2)
|0 | Ik-y+5(k2) |
where j = 1, —1, 0 for superscript 4+, — and 0 respectively.
In this notation the boundary conditions (2.18) read:
ixc_y45HD) = 0. (c3)

Our basis is orthogonal due to the relation:

D D
/ i (kn)iv(km) 23 dz = / ivir (kn)ivis(km) 22 dz

0 0
. D3 )
= 6n'm°2—]:,(knD) ) (C.4)

but only if k, is a solution of the equation:

ju(knD) = 0. (C.5)



H Dibaryon in Chiral Quark Model 1957

As seen from Eq. (C.2) Bessel functions present in our basis have in-
dices » ranging from K —3/; to K +3/, and therefore, since there is no orthog-
onality condition similar to (C.5) for j, 42, we are not able to construct an
orthogonal basis with the single boundary condition (C.5). Instead, in order
to satisfy orthogonality of basis states, we impose three different boundary
conditions (C.3).
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