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A microscopic model based on a molecular dynamics concept is pre-
sented. The model simulates some quantum effects and thus enables stud-
ies of large fermionic systems. It was devised to investigate the dynamics
of heavy ion collisions at intermediate energies. The model was applied
to study an early phase of the 84Kr+4!5°Tb reaction at 45 MeV /nucleon.

PACS numbers: 24.10. Cn, 25.70. -z

1. Introduction

The study of nuclear matter in equilibrium has progressed a lot. For
instance, the equation of state (EQS) is not completely unknown to us if one
stays near saturation point p = pp (normal nuclear density p = 0.17 fm’a)
and temperature T = 0. Other regions in the p and T plane are more
uncertain, and the past decade has seen a vigorous growth of activity (both
in experiment and theory) to obtain information about the nuclear EOS and
strong interaction vertices at high nuclear densities. Theoretical calculations
predict that (p, T') plane is full of structure [1]. However, this is very difficult
to investigate in a laboratory where only normal stable nuclei are available
and energetic heavy ion collisions encounter a lot of problems. First of all,
in a laboratory the maximum size of nuclear system around 500 nucleons
can be formed from colliding two of the largest nuclei. Moreover, collision
between nuclei usually produces a lot of excess heat and this prevents us
from reaching certain parts of the phase space.

* The work was supported by the Scientific Research Committee under Grant
No. 2 2392 91 02.
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Another problem is that the life time of the colliding system is very
short and we deal with a non-equilibrium states. How can we conclude
anything from the above concerning a microscopic equilibrium property like
the EOS? The best we can do is to observe the non-equilibrium phenomena
and infer its consequences for equilibrium situation. Therefore, we need a
realistic description of heavy ion collisions through a dynamical approach
and compare its results with experimental data. The main trend in experi-
ments is to go from inclusive to more exclusive measurements. This allows
to discriminate between phenomenologxcal models based on very different
approximations. The progress is made also in the theory where advanced
microscopic models are proposed.

Nucleus—nucleus collisions at a few MeV per nucleon above the interac-
tion barrier are governed by mean field potential. At these energies the Pauli
principle forbids nucleon-nucleon collisions into already occupied states and
due to long mean-free-path of the nucleons they can be viewed as moving in
self consistent potential. The time dependent Hartree-Fock model success-
fully describes dynamics of collision between heavy ions in this low energy
domain [2].

If the beam energy is about 200 MeV/nucleon or more, the nuclear
binding energy can be neglected and only the two body nucleon - nucleon
dynamics is represented in the intra nuclear cascade model developed for
high energy heavy ion collision [3].

The important feature which emerged from the study of heavy ion col-
lision is that the equilibrium states can be found in both very low and very
high energy regions. In between these two extremes is intermediate en-
ergy heavy ion physics which concerns projectile with incident energy from
20 to 200 MeV/nucleon. Here, the mean field (one body) and nucleon—
nucleon (two body) dynamics are of comparable importance and equilibra-
tion of the system is questionable. Moreover, two novel phenomena were
observed, namely, multifragmentation [4] and collective flow of nuclear mat-
ter [5]. The observation that two colliding ions do not equilibrate in course
of the reaction implies a tremendous complication of the problem. Here
we have to trace the details of the dynamics from the initial state of col-
liding ions up to the final distribution of reaction products in phase space.
The time evolution of two colliding nuclei in phase space has been first
calculated successfully in hydrodynamical approach [6]. Currently, the the-
oretical framework which contains both the mean field and hard collisions
is based on Boltzmann-Uehling-Uhlenbeck equation [7]. The predictions
of this model are limited to one-body observables (the equation describes
the evolution of one body distributions). Here we present a semiclassical
model developed for simulation of nuclear reactions between heavy ions at
intermediate energy. Our approach is based on the quantum molecular
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dynamics model [8-10, 21] and the quasi-particle model (11, 12]. The sim-
ulations performed allow one to follow the time evolution of positions and
momenta of the individual nucleons. The model Hamiltonian apart from the
Coulomb and isospin-dependent terms incorporates the antisymmetrization
effects through a momentum dependent potential. The colliding nuclei have
a well-defined ground state with non-vanishing expectation value of the ki-
netic energy operator. The layout of the report is as follows. In Section
2 we present the description of the model. Section 3 contains some of the
model predictions.

2. Model
2.1. General assumptions

The model, or rather its numerical implementation dubbed CHIMERA
(Code for Heavy Ion Medium Energy ReActions), presented in this paper
is a compilation of two recently devised models which utilize the molecu-
lar dynamics! concept to describe the bulk properties of the intermediate
(20-200 MeV /nucleon) energy nuclear reactions. These are the Quantum
Molecular Dynamics (QMD) model of Aichelin and StScker [8-10, 21] and
the Quasi-Particle Dynamics (QPD) model of Boal and Glosli {11, 12]. In
principle these two models are very similar. The main difference between
them is the way of preparing the initial configurations and the N-N poten-
tials used.

In order to investigate the time evolution of the heavy ion collisions
one has to find reasonable approximations to the time dependent N-body
Schrodinger equation. One of the ways of such an approximate solution
present the above mentioned models. A thorough theoretical background of
the QMD model including the derivation of the QMD equation and the nec-
essary approximations are presented in a review article of Jorg Aichelin [10].
Here we list only the main assumptions that apply also to the CHIMERA
code:

o the scattering of the nucleons can be treated as if they were free (stochas-
tic scattering with the measured nucleon-nucleon cross section);

o the collisions are statistically independent and the interference between
two different collisions can be neglected;

o the real part of the transition matrix can be replaced by an effective

potential; .

¢ the fermionic nature of the nucleons can be mimicked without an explicit
use of the antisymmetrized wave functions.

The molecular dynamics models use the equation of motion approach to solving
the many body problems. They have their roots in chemistry.
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For discussion of validity of these assumptions the reader is referred to
the Ref. [10].

The approximate solution of the quantal N-body problem in the QMD
approach requires the initial N-body wave function (or equivalently the
Wigner representation of the respective density matrix) as input. In the
model described in this paper, each nucleon (or quasi-particle) is assumed
to be a constant width minimal wave packet (coherent state):
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where 7y; and py; are the mean position and momentum of the nucleon i
and the width of the wave packet is characterized by the parameter L. The
Gaussian form was adopted for the single particle wave function for at least
three reasons. First of all, the minimal wave packet (m.w.p.) fulfills the
minimal requirement of the uncertainty principle:

Ar Ap, =

hoj S

Secondly, the one body density distribution constructed from this packets
coincides with the observed density profiles. And last but not least, the
Gaussian wave packets make the calculations feasible. The width of the
wave packet is kept constant contrary to the solution of a free Shrodinger
equation which spreads in time. Keeping L constant is in agreement with
the observation that the radius of a cold nucleus is stationary and thus
imitates in a crude way the influence of the potential on the wave function.

The N-body “wave function”, ¥y, describing the entire nucleus is taken
to be a direct product of N single particle states ;. This, of course, is a
violation of the antisymmetry rules. Here it is assumed that the fermionic
effects, which are believed to be essential for the reasonable treatment of
the dynamics, can be simulated with the use of an effective potential term
(Pauli potential) and with Pauli blocking of final states of individual N-N
collisions. The Pauli potential plays an important role during initialization
of a cold nucleus. It prevents the nucleons of the same kind from being too
close in phase space.

The quantum mechanical analogue of a classical N-body phase space
density distribution function is a Wigner transform of the density matrix
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[13]. In the case of m.w.p. (Eq. (1)) this reads:
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In the present approach we restrict ourselves to the single particle re-
duced distribution function [14]:
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which describes the single particle density of phase space in the point (7, 5).
The one-body densities in coordinate and momentum space are now:
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The time evolution of the N-body “wave function” describing the entire
system is assumed to be governed by the Ritz variational principle [10,
15]. In fact it reduces to the classical Hamilton equations of motion for
the centroids of the Gaussian wave packets. Thus the mean positions and
momenta of N nucleons are assumed to evolve due to mutual two and three
body effective N-N interactions along classical trajectory in phase space.
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The influence of the scattering term on the time evolution of the system
is simulated by a Monte Carlo procedure. Whenever two nucleons come
closer than the distance determined by a free N-N cross section, they are
assumed to scatter isotropically, provided the final states are not blocked.
Only the elastic channel of the N-N scattering is assumed — no gamma
or particle production is implemented. This, together with the fact that
the nonrelativistic kinematics is used, sets the upper limit of the incident
energies for CHIMERA to about 150 MeV /nucleon.

Such rough approximations seem to be the only reasonable way to han-
dle the dynamics of N-body nuclear systems (N up to 500), with the use of
the present day computers.

2.2. Effective nucleon—nucleon potential

Combining the local density approximation (see e.g. [16]) with the as-
sumption that the real part of the transition matrix can be replaced by an
effective potential, one can adopt the nuclear matter effective interactions
to finite nuclear objects. Following Boal [11] we use the nuclear effective
potential derived from the Skyrme parametrization of the nuclear potential
energy density Vy:

=2 B wlep—pn)
2p0 7+1 p0 2 po
where the term with the gradient of the density accounts for the surface
effects, pp and p,, are the proton and neutron densities, and py is the normal
nuclear matter density (pg = 0.17 fm—s). Introduction of 4 instead of
a constant exponent equal to 3 allows for generalization of the EOS for
various compressibilities.
For m.w.p. the nuclear potential energy approximately reads:
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The nuclear potential is supplemented by the momentum dependent
Pauli potential and the Coulomb potential.

The Pauli potential was devised in order to simulate the antisym-
metrization effects. There were several phenomenological approaches to de-
rive the form of this potential (see e.g. Wilets [17], Dorso and Randrup [18],
Horiuchi [19]), but the most reliable seems to be the derivation proposed by
Boal and Glosli [11]. They considered the influence of antisymmetrization
on the total kinetic energy of a nucleon pair. The expectation value of the
kinetic energy of two like nucleons is:
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where %(?) is an antxsymmetrized two body wave function in the m.w.p.
representation and Q is a measure of the distance in phase space:
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The third term in expression (6) follows from the finite width of the wave
packet and has no dynamical consequences. The last term is a result of the
antisymmetrization and is identified as a Pauli potential. Thus the total
energy arising from the “Pauli interaction” reads:
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Where the Kronecker deltas ensure that the potential acts between like
quasi-particles only. The scale factor V¥ > 1 was introduced in order to
reproduce the energetics of three- and higher-body systems. Its value was
found to be between 1.7 and 1.9 [11].

The Coulomb potential for Gaussian charge distribution can be ex-
pressed in terms of the error functions:
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It is very convenient to introduce the approximation of sharp charged spheres
instead of Gaussian distributions. V/ then simplifies to:
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where: rg. = 32v*L and rij = |Foi — Tojl.
The total Coulomb energy of the system now reads:

N N
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where the last two factors exclude neutrons from the summation.
Now the total N-body Hamiltonian has the form:

N 2
Py
H:E —2-97-7;+UN+UP+UC. (12)
i=1

2.3. Parameter values

There are seven parameters in the potential formula. These are the
width of the wave packet L, the Pauli potential scale factor VOP and five
nuclear potential parameters: a, 8, v, w and G.

The first approximation for the parameters a, 8 and ¥ can be made
using the parameters of the infinite nuclear matter potential, U°¢, in the
Skyrme parametrization:

we=a(i)ro(3)

For the hard EOS (nuclear matter compressibility K = 380 MeV) these
parameters have the following values [9]:

a=-124 MeV, fB=70.5MeV, 7=2.

For the calculational purposes we adopt all the values found by Boal [11]
(with a slight modification of the a parameter). These values were found to
give the best possible values of binding energies and rms radii of the beta
stable nuclei with 4 from 2 to 200. The procedure of finding the ground
state configurations as well as the ground state properties of the model
nuclei will be presented in the next section.

The values of the potential parameters for the hard EOS used in the
CHIMERA code are listed in the Table I. The soft EOS will be the subject
of the separate paper.
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TABLE I
Parameters of the potential
L a B v w G |74
[fm?] | [MeV] |[MeV] [MeV] | [MeV fm®]

2.0 -124.69 | 74.24 |} 2.0 } 30.54 291.0 1.9

2.4. Ground state configurations

The ground state configuration (g.s.c.) is the configuration in phase
space that minimizes the Hamiltonian H of the system. Mathematically
the problem of finding the g.s.c. reduces to solving a set of 6N nonlinear

equations:
8H _ 0
O

(13)

This numerically complicated task may be solved with the help of physics.
Namely one can utilize the fact that the physical system, when allowed to
dissipate its energy, reaches its g.s.c. after sufficiently long time. This may
be expressed in the form of the dumped equations of motion {11, 17]:

1—,'01, . BH u 8H
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(14)
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We found that the values of u = 180 MeV/fm ¢ and v = 1000 (MeV/fm c)?
ensure fast convergent cooling process along the smoothest cooling curve
(binding energy vs temperature). After 200 fm/c the initially hot nuclei are
cooled down to T ~ 0 almost independently of the starting configuration of
the nucleons.

There are also other methods of cooling the excited nuclei reported in
the literature. These are the methods based on the Metropolis sampling
technique [20, 18, 21] and the collisional cooling method of Refs [19, 22].

The ground state binding energies and rms radii of the model nuclei are
presented in Fig. 1. The binding energies are compared to the experimental
values taken from the Wapstra tables. The line labelled “Fermi” in the
lower part of Fig. 1 presents the best fit to the experimental root mean
square radii, assuming the Fermi distribution of the nuclear density. As can
be seen the model reproduces very well the bulk static properties of heavy
nuclei for which the local density approximation is the best.
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Fig. 1. Binding energies and rms radii of the model nuclei.

2.5. Initial conditions of nuclear collision

The cooled nuclei are now used in the investigation of the dynamics
of nuclear collisions. Two colliding ions are assumed to move along classi-
cal Coulomb trajectories until the distance between their surfaces is 3 fm
(see Fig. 2). This distance was found to be the best compromise between the

Fig. 2. Initial positions and momenta of colliding ions.

consequence of neglecting of the nuclear force at such a separation, and
the requirement to save as much computer time as possible. The positions
and momenta presented in Fig. 2 are treated as a starting point for further
Ap + Ar body dynamics. These initial positions of centers of mass (7p, 1)
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and linear momenta (Pp,pr) of the colliding ions in their CM reference
frame are uniquely determined by the initial projectile LAB energy Ey and
the impact parameter b:

-, -—..L-‘ -
{TP - mpr Pp = mpTp
— - —
rT-—_..Lr PT-"PI""T

where:
7 = r(sin,0,cos8), r=Rp+ Rr + 3 fm,

P
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[ 4 £
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p - mP( 3 £ = 62 + 11

(= ZPZTCZ’ ©® M,
mp + mr
the indices P and T refer to projectile and target, and m, u, R, Z and e stand
for the mass of the ion, the reduced mass of the system, the radius and the
atomic number of the ion and the elementary electric charge, respectively.
The centers of projectile and target ions are now placed in the #p and 7r
positions and a respective collective component of the linear momentum per
nucleon pp/Ap or pr/Ar is added to the linear momentum of each nucleon.
The cooling procedure is rather time consuming, so in order to increase
the efficiency of calculations once cooled nucleus is used in several subse-
quent collisions after rotation about random Euler angles.
Having defined the initial conditions for the set of 6(Ap+ Ar) equations
of motion of nucleons, one can proceed to solving this set.

2.6. Time evolution of the system

The time evolution of the centroids of the Gaussian wave packets is
described by two processes: the propagation due to classical equation of
motion and the stochastic short range two body scattering. The equations

of motion: . L,
{ Foi = B8 + V.U

}')" _ V U =1,...,AP+AT, (15)
0i — — Vroq

are solved numerically with the use of the two step Euler method with a
constant time step. In the first step (Eq. (16)) the positions and momenta
are determined with the use of the ordinary Euler method in the middle
of the time step. In the second step (Eq. (17)) the previously determined
positions and momenta are used to calculate the gradients of the potential,
and these values are used to calculate the new positions and momenta at
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the end of the time step. This procedure ensures the accuracy of the second
order method. Thus for the n-th time step we have:

Fai(n + 1) = Foi(n) + 4t (Bold 4 VposU(n))

() ) (16)
ﬁOi(n + %‘) = ﬁﬂi(n) - %Vro.'U(n) ’
To;:(n = 7g:{n M v/ \ n 1
(I1) 0i(n+1) 0i(n) + At (p m + VPOcU( + 2)) (17)

Poi(n + 1) = foi(n) - AtV,,U(n + 1).

A search is made in each time step if there are any candidates for the
collision in the system. Any two nucleons become candidates for scattering
if their spatial distance is less than the distance determined by the free N-N
cross section (see e.g. Bertch and Das Gupta [23]):

ONN
rij < x

Now the possible new momenta are determined assuming isotropic scatter-
ing. The collision is allowed if the new states are not already occupied by
the like nucleons. Otherwise the collision is blocked and the two nucle-
ons continue their movement in the effective potential. Thus the scattering
probability is proportional to the effective (i.e. Pauli corrected) N-N cross
section. Following Aichelin [8] we use the value of 41 mb for the free onn.
The assumption of the isotropic (i.e. S wave) scattering causes some inaccu-
racy in the angular momentum conservation. Thus the angular momentum
is conserved only “statistically”. This is the price for the assumption of
the stochastic character of the scattering (¢.e. the assumption of no relation
between the impact parameter and the scattering angle) following from the
probabilistic interpretation of the cross section.

The total energy and linear momentum of the system can not be al-
tered by the elastic stochastic scattering. This leads to the following condi-
tions for any two nucleons changing their linear momenta from (o1, Po2) to

(ﬁ01” ﬁoz'):
Po1 + Doz = Doyt + Poy!

2 2 2 2
1_’.0.5_,%’_01 + UP(POl’poh .o -7P0N) = _Qlﬁii -+ UP(Pol”Poz” .. 'aPON)(’ )
18
where the “primed” indices refer to the post scattering state. The presence
of the momentum dependent Pauli potential complicates the solution of the
set (18). It has to be done numerically.
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Every time the two nucleons become candidates for the stochastic scat-
tering, the phase space around their final states is checked. The occupancy
of phase space x,,s around the 1'-st scattered nucleon is assumed to be the
overlap of the phase space distribution of the 1'-st nucleon with the phase
space distributions of all the remaining nucleons ¢ but the 1-st one:

Xoy! = Zerfc (:??/—‘2'_—2—) , (19)

1#1

where the Q j; is a measure of the distance in phase space defined in equation
(7). Now the occupancy is compared to a random number §. If £ < X,
then the collision is blocked, otherwise the whole procedure is repeated for
the second scattered nucleon 2’. If the phase space around the 2' nucleon
turns out to be essentially free then the new positions and momenta 1’ and
2' are accepted, otherwise the collision is blocked.

2.7. Characteristics of the reaction products

After a specified time the dynamical evolution is stopped. Now a cluster
search routine is called. All nucleons which are separated in the configura-
tion space by less then 3 fm are said to form a cluster. Each cluster has then
assigned a mass number, atomic number, CM position, linear momentum,
binding energy, temperature and spin. The binding energy allows for later
determination of the excitation energy. The temperature of the cluster v is
defined as (see e.g. Huang [24]):

1 ., OH
T, = ZP'—-:T, (20)

where A, is the mass number of the cluster ».

3. Model predictions

In this section we present a systematic survey of the calculated charac-
teristics currently used to describe the time evolution of the reaction between
heavy ions. We applied the model to simulate the reaction 45 MeV /nucleon
84Kr+159Th, which has been investigated experimentally [25].

In order to develop an intuitive picture for the reaction scenario, we
show in Fig. 3 the coordinate space positions of the nucleons in a single
collision at seven time intervals and for four impact parameters. The time,
t = 0 fm/c, corresponds to the configuration when the surfaces of the pro-
jectile and target nuclei are separated by 3 fm. In the central collision a



1972 J. LUKASIK AND Z. MAJKA

_ b=1.0 fm b=3.5 fm b=6.0 fm b=8.5 fm
&
<
»”
'Y ) L ) LY .. 0 fm/c
< ® ‘ ‘ 30 fm/c
. . ¢ " I L

..‘r.. :* " w 120 e

[} & %
®on O ° e
14 L Y . o
W e o | ete jwwme
% M .$ ° e

B8 o8 88 8 o 8 858 o N AR o8 88 o8 AE B o B2

©
z (fm)

Fig. 3. The time evolution of the system for various impact parameters.

fused system is formed and for larger impact parameters the binary char-
acter of the reaction is observed. The number of the emitted nucleons and
fragments decreases for less violent collisions.

To determine the time evolution of the reaction in a more quantitative
way, the following procedure was applied. During each event of the simu-
lation, the positions and momenta of each nucleon were stored at selected
time steps. By tracing back through the stored values and averaging over
many events, one could determine the time evolution of several quantities.

In Fig. 4(a) we show the time evolution of the mean density of the whole
system, defined as a mean value of the density p from Eq. (2):

_ [ PA(F)dr
[o(F)dr

Fig. 4(b) displays the total emission rates of the neutrons, light charged
particles (Z < 2), LCP, and intermediate mass fragments (3 < Z < 20),
IMF. Both quantities were calculated at various impact parameters between
0 and 10 fm. First, it can be seen that the time evolution of the average

{p) (21)
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Fig. 4. The time evolution of mean densities (a) and emission rates (b) for various
impact parameters. The impact parameter ranges in fm are specified in the legend
in the lower part of the figure.

densities and the emission rates are strongly correlated. The fused system
is formed in the very early phase of the reaction (¢ < 50 fm/c) and the
maximum compression of this system depends on the impact parameter. A
dramatic growth of the emission rate is observed after 50 fm/c. The strong
variation of average densities and emission rates settle down at a time period
shorter than 150 fm/c.

In Fig. 5 we show the temporal evolution of the charge distribution of
the 84Kr+159Tb system. Here we observe also fast evolution of the system
in the early phase of the reaction, and after 150 fm/c, the shape of the
charge distribution changes very slowly.

One of the most interesting questions in this intermediate energy do-
main of the collision is whether the system reaches global equilibrium. The
quantity which allows to investigate this question is the z-th component of
the quadrupole moment tensor of the one-body density (Eq. (22)) in the
momentum space:

_ J(3p2 - p?)9(P)d’p
Qzz = Te@dp , (22)

where the one-body density in momentum space was defined in Eq. (3).
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Fig. 5. The time evolution of Z distribution.

The time evolution of the quadrupole moment is shown in Fig. 6. Here, we
can clearly see that the system needs about 150 fm/c to equilibrate. We
observe also a considerable transverse momentum transfer for more vioclent
collisions.
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Fig. 6. Time evolution of the relative quadrupole moment in momentum space.
The lines correspond to the same impact parameter ranges as in Fig. 4.

The above implies that the time evolution of the reaction at the inter-
mediate energy can be split into two phases. During the first phase within
the time interval of the order of 150 fm/c the evolution of the system is dra-
matic. At the end of this short-time-scale phase the variation of the investi-
gated quantities considerably slows down and becomes smooth. However, a
long-time-scale evolution of the reaction may extend up to 10716 s (3107
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fm/c). Such a long lasting process cannot be studied in the framework of
this model due to extremely long computer time required and the possible
error propagation. We will come back to this question later in this section.

Now, we shall focus on the characteristics of the reaction at the end of
the short time scale phase. Thus, we shall stop the dynamical evolution at
300 fm/c.
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Fig. 7. Temperature vs fragment atomic number.

In Figure 7 we present a scatter plot of the number of events versus
fragment charge and temperature (see Eq. (20)) The calculations were per-
formed for three impact parameter regions. We note, that the highest tem-
perature was attained in the fused system and projectile like fragments for
the violent collisions. The binary reaction products emerge with different
temperatures and the target like fragments are colder than the projectile
like fragments. The above calculations show that the fragments are hot at
the beginning of the long time scale evolution of the reaction. We already
mentioned that highly excited fragments may decay in the time scale of the
order 3.107 fm/c which is out of scope of this model. In order to study the
asymptotic characteristics of the reaction products, we will apply a statisti-
cal dynamical code COOLER [26]. These investigations are the subject of
another paper [27]. One of the observables which stays unchanged during
the long time phase of the evolution of the system is the amount of lin-
ear momentum transferred from the projectile to the fused system. This
quantity can be obtained either from the fission measurement by looking at
the folding angle between two fragments [28], or from the velocity spectrum
of the evaporation residues [29]. Systematics of the energy dependence of
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the most probable linear momentum transfer in reactions induced by various
projectiles was presented by several research groups (see e.g. [30]). Fig. 8(a)
displays the temporal evolution of the fraction of projectile momentum car-
ried by the fused system (Z > 71) and calculated for the central collision
(6 < 3 fm).

time [fm/c]

Fig. 8. Linear momentum transfer to the heavy residue (a) and the velocity of
this residue in the Voum units (b). The respective lines correspond to the impact
parameter ranges in fim, specified in the legends.

During the early phase of the collision (t < 150 fm/c) we note a quick
decrease of the longitudinal momentum of the composite system. This be-
haviour is correlated with the high emission rate at the same time interval
observed in Fig. 4(b). Since the residue continues to decay aftert = 150 fm/c
its longitudinal momentum decreases slowly. In order to estimate at which
moment the preequilibrium emission becomes negligible and the system de-
excites statistically we calculated the temporal evolution of the longitudi-
nal velocity of the heavy residue in the laboratory frame. Fig. 8(b) shows
that after £ = 150 fm/c the longitudinal velocity of the residue remains
constant. Therefore, we conclude that the composite system produced in
the central collision between the Kr projectile and Tbh target nucleus at 45
MeV /nucleon attains equilibration in a time shorter than 150 fim/c. After
this time interval the longitudinal momentum carried by the heavy residue
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is about 75 percent of the projectile momentum. This value agrees with the
experimental systematics of the most probable momentum transfer [30].
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Fig. 9. Neutron and LCP multiplicities at 150 fin/c for the central collisions (a)
and the time evolution of the mass of light fragments emitted (b). The lines in
part (b) of the figure correspond to the impact parameter ranges in fm, specified
in the legend.

Model calculations allow also to distinguish different modes of preequi-
librium emission. Fig. 9(a) displays the multiplicity distributions for the
neutrons and light charged particles emitted in the early phase of the reac-
tion (¢ = 150 fm/c) calculated for the central collision (b < 4 fm). Fig. 9(b)
shows that the total emitted mass in the preequilibrium stage is about a
half of the projectile.

Combining this result with the earlier estimated value of the linear mo-
mentum transfer we conclude that the most common assumption describing
nonequilibrium nucleons as emitted with a beam velocity leads to the over-
estimation of the composite system mass.
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4. Conclusions

We have presented a microscopic dynamical model of heavy ion collision
at intermediate energies which is particularly useful to study the early phase
of the reaction. This approach makes possible to follow the time evolution
of the N-body system from the initial configuration to the final distribution
of nucleons on an event-by-event basis. We have applied the model to
simulate the reaction 84Kr+!°9Tb reaction at 45 MeV /nucleon which has
been studied experimentally.

The investigation of the temporal evolution of the z-th component of
the quadrupole moment tensor of the one body density in the momentum
space leads to the conclusion that the system needs about 150 fm/c to
equilibrate. This observation and the calculations of the time evolution of
the mean density and emission rate imply that the reaction between heavy
ions can be split into two phases. The first phase of the order of 150 fm/c
characterized by dramatic changes of the system. During the second phase
which may extend up to 3-107 fm/c the evolution of the system slows down.

We calculated also the amount of linear momentum transferred from
the projectile to the fused system which is produced for the central collision
(b < 3 fm). This quantity fits to the experimental systematics of the most
probable momentum transfer.

Further studies concerning fragment production and the nuclear equa-
tion of state are in progress.

We wish to thank Dr. J. Aichelin for providing us three routines which
we found useful during the code preparation. We are also obliged to Dr.
R.P. Schmitt for reading the manuscript and valuable comments.

The calculations were performed on SUN 670 MP at Jagellonian Uni-
versity Computer Centre and on CONVEX C3200 at Academic Computer
Centre CYFRONET.
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