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The properties of the base functions resulting from the solutions of
fermionic Hamiltonian possessing unitary symmetry are analyzed. The
attention is focused on the solutions of nuclear cranking model Hamil-
tonian in a single j-shell space. It appears that, in this case, the group
theoretical treatment offers a lot of simplifications as compared to any
other method. In particular, we analyze the properties of the base func-
tions under the signature symmetry transformation proving that signature
is sharply defined inside each irreducible representation.

PACS numbers: 21.60. Fw

1. Introduction

Recently, a method has been developed [1] for finding an exact solution
to the cranking Hamiltonian H*. The first version of the calculation was
applied to axially symmetric nuclear mean field with the two-body nucleon-
nucleon pairing force. The method of solution follows from the observation
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that in a case of single j-shell, the monopole pairing force and an external
rotation about a fixed axis the total cranking Hamiltonian H* can be build
out of the generators forming [2] the Lie algebra of the unitary group in
(2n)-dimensions (where n = j + J denotes half the number of single-particle
levels). It turns out that [2] the highest weight for each irreducible represen-
tation of the group is fully characterized by a single integer number p. This
is due to the Pauli principle and to the many-fermion structure of all the ba-
sic states forming each irreducible representation. Another unitary group in
(2n)-dimension labelled by the particle-number as the highest weight can be
also employed [3] for finding the solution to the cranking Hamiltonian HY.
As still another possibility the symmetry of the orthogonal group SO(4n)
can be applied [4]. The present paper, however, is based on the method
discussed in Ref. [1].

Let us now turn to the signature symmetry of the model. We shall as-
sume that our Hamiltonian H* is left invariant with respect to the rotation
R through an angle 180° about an axis (say, z-axis) perpendicular to the
symmetry axis of the single particle potential (say, z-axis). In other words
the Hamiltonian H% is left invariant with respect to the transformation

R, = exp("iwjz) ’ (1)

and the eigenstates of H“ could, in principle, be also labelled by the signa-
ture quantum number r,, the eigenvalue of R..

Our paper aims at proving that all the states belonging to a given p-
irrep (i.e., the irreducible representation characterized by the integer num-
ber p, its highest weight) have the same signature r,, and, furthermore, the
signature 7, can be simply expressed as

r, ="

, (2)
where p and n were already defined.

2. Description of the model

The cranking Hamiltonian H“ defining our model contains three terms,
namely the single-particle axially deformed Hamiltonian, Hp, in a single-
j shell model space, the two-body monopole pairing force Hp,;; and the
cranking term equal —wj,:

ﬂ.w = .ﬁsp + ﬂpair - w}c . (3)

All three parts appearing in the Hamiltonian can be expressed in terms of
the creation and annihilation operators c;fc and ¢; (cf. Refs [2] and [1]).
Alternatively, the set of operators

Ny = clcz, B,Z, = ch}‘ and By = cick, (4)
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where k, 1 = 1, 2,...,2n, may be employed. The Lie algebra defined by
the above set of operators is actually broader than that of SU(2n). In fact,
it is the algebra of special orthogonal group SO(4n) DSU(2n) [2, 4]. The
generators of the SU(2n) can be expressed as certain linear combinations

Api(k,1=1,2,...,2n) of the Ny, BL and By, operators (see Ref. [2] or
[1]):
Apg =3 (Map—1,20-1 + (5)*H N 20) + (-)F
X (Nak—1,21 + (=) Naie 21-1)
Alfnkin = “%(Nzk—l,zz—-l + (—)k“Nzk,zl) + (")H]%
X (Nzk—1,20+ (=) ' Nag2101) + biy
Aplyn = %(B;k—l,ﬂ-—l + (")HIHB;k,zl) + (")l%
X (B;k—l,ﬂ + (=) 1By 21-1)
Atgnk = (Argn,)t, (5)

with k, I =1, 2,..., n. Generators Ay ; obey the commutation relations
(A1, Amn] = i, mAk,n — Ok,nAm,i; and AL, = Ak, (6)

which are the standard relations characteristic to the Lie algebra of U(2n).

The cranking Hamiltonian H* given by Eq. (3) can be expressed in
terms of the generators A ;. The corresponding expressions are given in
Ref. [1] as well as the results of the diagonalization. Thus, they will not be
repeated here. Instead, we shall concentrate on the p-irrep basis and its
relation with the signature quantum number r,.

The basic vectors in the representation space can be conveniently ex-
pressed in terms of the Gelfand and Tsetlin (GT) patterns [5], (see also
Refs [1] and [2]):

mi,2n m2,2n oo m2n—2,2n min—1,2n m2n,2n
mizn—-1 M22n-1 +.« M2n-22n-1 M2n-1.2n-1
- (7)
mi,2 ma,.2
mi1

It can be shown [2] that for the many-fermion states the numbers m; ;
entering the pattern may be equal to either 0 or 1. Furthermore, numbers
my,; have to obey certain inequalities:

Mk > M k_1 > Miy1k, Where k =2,3,...,2n; i=12,...,k—1, (8)
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(k = 2,3,...,2n; i = 1,2,...,(k — 1)). Thus, each row of the pattern
contains several unities followed by several zeros. In this situation the whole
GT pattern may be generally replaced by a single column vector [1]:

V2n
V2an-1
: (9)
V2
n

The integers v, (k = 1,2,...,2n) are the sums:

k—1
Vi Y Mk, (10)

i=1

or in other words each v; is equal to the number of unities in the k-th
row of the pattern. It also follows from inequalities (8) that for any two
neighbouring numbers

Vi = Vg_3; O
k>v, and {Wg:"k—l-‘f'l . (11)

Quantity vz, defines the highest weight of the p-irrep, thus
Vin=p. (12)

The generators Ay ; of the algebra act on vectors (9) leading to other
vectors within the same representation. The corresponding formulae are
given in Ref. [1]. Here, we give only the formula for the “diagonal” operators
(t.e., Agg for k=1)

V2n V2n
Van-1 Van-1
Ay : = (v — vi—1) : , (13)
v V2
" 4!

l=1,2,...,n (for | = 1 quantity vy equals 0). In particular the operator

2n
0= Ay (14)
=1
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has eigenvalue v, = p when acting on the arbitrary state (9). Conse-
quently:

Van =P V2n=p Van =p
Van-1 n V2n—1 V2n-1
0 : = > (Akk + Aktn ktn) : =p :
Vo k=1 V2 V2
n " 51
(15)

3. Relation between signature r, and highest weight p

The enumeration of the single-particle states used here follows the con-
vention adopted in Ref. [1]. Thus all the |j,m) states are ordered ac-
cording to the scheme: the states |1) and |2) correspond to |j,m = 1/2)
and |j,m = 1/2), the states |3) and |4) correspond to |j,m = 3/2) and
j,m = 3/2) and so on. The state |j,m) denotes the time reversed state
T'|j, m), where T is time-reversal operator. The above pairs correspond to
states which are degenerate in the absence of rotation (w = 0).

It can be shown that

Rzlia"") = "i(”)m+l/2|js m) (16)
Indeed, using the angular momentum algebra (cf. Eq. (1) and Ref. {6])
Roljym) = RyRs|j,m) = ~i(=)™ 1/ 2[,m) = —i(-1)*j,m),  (17)

where m = k —1/2.
Now let us concentrate on a pair of states

lim)=|2k—1) and [jm)=(~1)"*™|j —m)=|2k),  (18)

(k = 1,2,...,n). Instead of the above two sets we can take two linear
combinations, the symmetric and antisymmetric one:

lsk) = %(tzk 1) + [2K))
1
lag) = E(|2k - 1) — |2k)). (19)

Formulas given above imply that:

R.|sk) = —i(—1)*|s;)
R.|ag) = +i(~1)*|as) . (20)
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If all the|jm), |jm) pairs (m = 1/2, 3/2,...,j) are transformed in this way
we obtain representation which diagonalizes the operator R,.

Now one can consider four possibilities concerning the occupation of the
above states |s;) and |ag):

(1) Both states |s;) and |ai) are empty.

(2) Both states |s;) and |a) are occupied.
(3) State |s;) is occupied while |a;) is empty.
(4) State |s;) is empty while |a;) is occupied.

This is easy to see that the contribution r(¥) to the total signature r, coming
from the pair |s;) and |a;) equals:

p(]) = 1,1, —-i(-1)F or 4i(-1)* (21)

in the four cases (1), (2), (3) and (4), respectively. Let us now to introduce
the operator

N = Nok_1,2k + Nog2k—1- (22)
Since this operator leads to the exchange of the state |s;) into |a)) and vice
versa its eigenvalues are 0, 0, 1, or —1 in the four cases (1), (2), (3) and
(4), respectively. Using transformation (5) we can see that eigenvalues w
of the operator

Ap i+ Apynpyn — 1 = (1IN (23)

are equal 0, 0, (—=1)**1 and (—1)* in case (1), (2), (3) and (4), respectively.
Here £ = 1,2,...,n. The above numbers determine the eigenvalues of the
operator A i + Aitn k+n — 1 in the four cases (1)-(4).

Comparing these four values of w(¥) with the corresponding expressions
(21) for the partial signatures r(¥) we obtain one equation

o™ = k) (24)

valid for all four cases. Now, the total signature r, of the arbitrary basic
states of the p-irrep

n

b k > w(®)
re =[] L = (25)
k=1

n
since Y, w(®) js an eigenstate of the operator
k=1

D (Arp+ Akgnpin—1) =p—n. (26)
k=1
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Generally speaking if the cranking Hamiltonian H* commutes with the
symmetry operator R, then either (i) the energy matrix within any irrep
becomes block diagonal with respect to the eigenvalues of R, or (i) all
the states within a given irrep are eigenstates of the symmetry operator
R, with the same eigenvalue r, defined by the properties of the irrep. Our
argument in the above derivation indicates that the alternative (i) takes
place.

The (2n)-dimensional Hilbert space defined by a single j-shell (j =
n — 1/2) can be decomposed into the set of p-irrep’s with p = 1,2,...,2n
with signatures equal to r, = i~™, i”"*1 ... i™ according to formula
(25) and dimensions: (2(;1 ) , (21n ) yeeos (32), respectively. In our case
(cf. Table 1 of Ref. [1]) the basic states of the arbitrary p — irrep do not
correspond to a given particle number N. In fact, the particle number
operator N is not defined sharply within the irrep [1, 2]. However, formula
(25) in N-idependent.
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