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The influence of an electron bound to a fast light ion on the impact
parameter dependent electronic energy transferred in a single collision to
a neutral atom was calculated within the perturbation formalism, using
sum rules. The random stopping power, calculated analytically from this
theory was shown to have the Bethe form. Analytical results were ob-
tained for the dipole approximation. The present results were compared
with other theoretical results.

PACS numbers: 29.90. +r

1. Introduction

The impact parameter dependent electronic energy losses and the stop-
ping power have been of interest and of theoretical and practical impor-
tance since the early works [1-2]. Theoretical results for random stopping
for partially stripped ions [3-5] show good agreement with experimental
data. Much work was devoted to the impact parameter dependent energy
transfer for bare ions [6-17], employing the first order Born approximation,
many electron ground state and sum rules [6-9], wave packet theory [10],
the harmonic oscillator model [11-12], the dipole approximation [13-14],
the electron density treatment [10, 15-17), classical electrodynamics [18]
and higher order perturbation treatment [19]. Numerical calculations based
on semiclassical approximation were published [20]. In Refs [9, 21] some
approximate formulae used in computer simulations [22-23] were presented.
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In this report we show results for the impact parameter dependent elec-
tronic energy transfer AE(b) in a single collision of a fast, light ion carrying
bound electrons frozen in a ground state with an atom. The random stop-
ping power $,(v), for such ion, calculated analytically from AE(b) through
integration over impact parameter b, was shown to have the Bethe form.
The dipole region contribution to the S,(v) was incorporated in a fitting
parameter wy , replacing in the Bethe formula the mean excitation energy I.
The properties of the ground state of target atom were taken into account
shell by shell, by means of the Thomas Reiche Kuhn sum rule.

The results of the present calculations were compared with other the-
oretical results for binary collision of helium and hydrogen ions, carrying
electrons in their ground state, with carbon and aluminum atoms. This
comparison showed that the present model, which does not take into ac-
count ion-inelastic processes, can provide approximate information on the
AE(b).

We use atomic units throughout this work.

2. Calculation procedure

We start from considering of a light ion of atomic number Z; moving
along a straight line with velocity v and with impact parameter b in respect
to a target atom placed in the origin. The ion is supposed to carry N;
electrons bound in the ground state and described by the spatial density
pi(r). The target atom of atomic number Z,, is described by the Hartree
Fock Hamiltonian Hy , and the atomic ground state |0,), and the atoms
are treated to be free in the lattice site. The reaction of the free electrons
of the medium to the disturbance is described in terms of a scalar dielectric
response function e(k,w) [24-25]. The excitation and exchange of the elec-
trons of the ion are not taken into account in this treatment. This electrons
are called to be frozen in the ground state.

The total potential V(r,b,v,t) produced by an ion, accompanied by
electrons frozen in the ground state on the ion, is given by:

V(r,bv,1) = (ZIRI™ - N,-/d3r'p,-(r')|1;+ #11), 1)

where, R = b+ vt — r, and r is the position of a target atom electron. The
total potential at the position of atomic electron, screened dynamically by
reaction of the medium, represented by a dielectric response function £(k, w),
is obtained from Eq. (1) after making an appropriate Fourier transform [24-
25],

V(r,bv,w) = Z;(xv)~? / d*gexp (ig(r — b)) di(qz - %) ?%, (2)



Electronic Stopping Power for Fast Ions Carrying Electrons 2035

where Z(g), the ionic form factor, is here given by,

N;
Z(¢)=1-2;"1 <0,' }:exp(iqri) 0;> . (3)

1

Within the first order time dependent theory the average energy
AE(b,v) transferred from the ion to the target atom in a binary collision is
given by:

AE(byv) = anoifnolz ’ (4)
where wpo = wp, —wp, Holn,) = wpn,),

fro = <na|V(r, b, v,wno)l0a> . (5)

We start from calculation of the random stopping power defined as the
integral from AE(b,v), Eq.(4), over impact parameter b, S, =[d2bAE(b,v),
to yield the S,(v) in the following form:

Sq(v) = 2Zi2v—2 Z / d3q6 (q: _ wno) ZZ(Q) (6)

n v qzie(%wnonz )
g<2v

In the Bethe treatment for bare ions [1-5], and for high velocity dressed ions
[4], we can divide the integration over ¢ at a momentum ¢ = wg /v, into
two regions: the region where the dipole approximation can be applied and
the sum rule region. This parameter go is finally cancelled out by adding
the two components. The dipole term, when set to zero, can be used for
the definition of the lower limit of integration g¢ in the sum rule term. It
was also shown [8], that for high velocity the contribution coming from the
dipole term is incorporated in wg, if we take wyp > 2w,, where w, is the
binding energy. This choice allows us to reproduce the Bethe form for the
Sr(v) at high velocity. From this moment on we divide all Z, electrons
of the atom into groups of n; electrons nearly of the same binding energy
wj and with ¢; = w;j/v. We can fit 5.(v), given by the sum rule term of
Eq.(6) to Ziegler’s empirical stopping power [28-29] through an appropriate
selection of {w;} parameters. In the following, for short notation, we will
use index 0 instead of j. The upper limit Q of integration over ¢, in Eq. (6)
for 5, comes from kinematical considerations.

After replacement of {wno} in the §-function of Eq.(2) and subsequently
in Eq.(5) by wp the interaction potential is given by a function of coordinates
only and we can perform summation in Eq. (4) over all excited and ionized
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states for the group of ng electrons by using the familiar sum rule [26] with
the result:

AE(b) =Y wnol(0a]V(r, b,v,w0)|0a)[* = 3(0a||V V(r, b, v,ws)[?|0a) ,
(7)

where the gradient VV is taken in the space coordinates of all ng electrons.
The integration over impact parameter b yields the random stopping S ,

of Eq.(6) in the form,

Se(v) =2Z%v"2ng / d*qs (q, - ‘1’9-) I ) (8)

v ¢?|e(g, wo)|?
g<2v

The S, of Eq. (8) can be calculated analytically provided we use
e(k,w) = 1, and the hydrogen like ionic form factor defined as, Z(q) =
1- Zi_lNi [(1 + (qa;/2)2] _2, a; = 1/Z;. With the lower limit of integration
for the sum rule term given by gy = wg /v, and the upper limit Q@ = 2v, the
random stopping power S.(v) can be obtained after elementary integration
as,

x 2
5:0) = 2 no (10 22 40 (3 -1) [(405) - AG) + °[B(0) - B2
A= (1) -1+, By) = LT LT
y = va; z=wpot a=—1!"~ a-=—1- (9)
8 ] 2v b Zi b 1 Z.i b

ng is the number of atomic electrons on the energy shell wy.
The potential of Eq. (2), with the restrictions imposed on the limits of
integration over ¢, can be written as

V(ryb,vsw) = —23': exp (tzw) f0 )

Z(k)

m+1

fm—/dqq Im(28) ey (kw)’

2 _ 2 2 W z

k=g +v—2, Q+ =0, s=|r-b, (10)

where J,,(z) is the Bessel function of the first kind and m-th order.
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After substitution of the potential, Eq. (10), to Eq. (7) the impact
parameter dependent energy transfer can then be obtained in the form
amenable for numerical calculations:

AB(b) = 2220~ no(0a] (2) 150 + 12 7100). (11)

The analytical results for the potential V' of Eq. (10) can be obtained
provided we use small-q form for the dielectric response function e(g,w) =
1+¢%45/4® (grF is the Thomas—Fermi screening wave vector), the hydrogen-

like ionic form factor, and provided we extend the integration over ¢ to
infinity. The result is

2Z wz
}

V(r,bv,w)= —{Ko(Cs)(l ~ &)+ £[Ko(As) + nsK1(As)]

B krrai\21-2 . [4a7? — k]
"a[l_( 2 )] »on= 24
N;
12
7 @
In this case the impact parameter dependent energy transfer AE(b) is ob-

tained by taking a squared modulus of the potential gradient, Eq. (12), and
taking the average over the atomic ground state. The result is

AE(b) = 2(%)%(‘%)2 {93 + 93},

g1 = (1 - a)Ko (b—:’ﬂ) + a[Ko(Ab) + ﬂbK](Ab)] ’

2 ‘”3 -2 2 _ Wi 2
A =v—2+4ai H C =-v—2-+kTF; a =

g2 = (1 - a)K] (-bi::—o) + aJ[Ko(Ab) + ﬂbKo(Ab)] s

2 _ (W02 22 N 2 3 2v \270.5

A_(v) +(ai)’ a~Zg’ n_Aa?’ 6_[1+(woai)] )

(13)

K ,(z) is the Bessel function of the second kind and n-th order. For a bare

ion N; = 0, and for ¢(k,w) = 1, the Eq. (13) is reduced to the familiar
dipole approximation result.

The result of Eq. (11) and Eq. (13) can be compared with other ap-
proximate analytical result [6]

a80)= 150G ) (14
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where b, = (2wg) ™%, which has the same form as obtained for bare ions
in Ref. [10] within the local electron density formalism. This result can be
related also to the Oen and Robinson (OR) formula [21], not valid in the
high velocity region, but widely applied for its simplicity:

AE(b) = 0.045[5—;] exp (;Zjb) (-a—:;)2 , (15)

where app = 0.88534(2’1-2 /34 Z:/ 3)“0'5, is the Thomas— Fermi screening
radius. §, is the random stopping power given by Eq. (8), or determined
experimentally.

3. Discussion

In order to find the effect caused by bound electrons on the energy loss
we have determined and drawn results of S.(v) based on Eqs (8)-(9), and
of AE(b) based on the Eqs (4), (13)-(15). Since $.(v), Eqs (8)—(9), differs
from the Ziegler’s empirical random stopping power S,(v) [28-29], we fitted
Sr to S, in the case of bare ions by a proper selection of {wg} set. The wy’s
separate the dipole and sum rule regions for given groups of electrons ng
’s. As an input data for the fitting procedure we used the binding energies
{wp} taken from Ref. [27].

In the random case in this velocity region the function defined as Z2; =
S+(He%)/S.(pt), is nearly a constant. This behaviour is in contradiction
to that of the effective charge, which tends to saturation due to the electron
exchange. At present ZZ; is determined by the velocity independent ion
form factor.

In the estimation of AE(b) we carried out summation over all energy
shells of the atom. The contribution of the outermost valence electrons is
dominant for distant collisions and contribution of inner shell electrons is
larger for close collisions.

In Fig. 1 the AE(b), calculated on the basis of Eqs (11)-(15), are drawn
for proton and hydrogen atoms colliding with Al atoms. The SCA calcula-
tion for the inner-shell energy transfer (denoted by s) for 1.0 MeV protons,
presented in Ref. [20], are overestimated by Eq. (11), with ¢rg = 0, nearly
by a factor of 2 in the available b region. For large b, however, results of
Eq. (11) follow the dipole approximation, Eq. (13). The Oen and Robinson
formula, Eq. (15), approaches rather the total energy transfer (denoted by
t) taken from Ref. [20] for large b, and underestimates close collisions.

The AE(b) given by Eq. (11)-(15), for He and He ions in a collision
with C atoms are presented in Fig. 2, for ion velocity v=20.7. In this case,
the approximation of Eq. (14), underestimates the AE(b) of Eq. (11) for
large impact parameters. For small b the tendency is opposite.
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Fig. 1. The AE(b) for 1.0 MeV (v=6.3 au) hydrogen ions in collision with Al atom.
Results for p* and H® ions are shown by pairs of curves (1, 2), respectively. (z,y)
— Eq. (11), (a,b) — Eq. (14), (o,7) — Eq. (15), (h,k) — Eq. (13). SCA for 1.0
MeV pt in Al, Ref. [20): symbols s and t indicate inner-shell and total energy
transfers, respectively.
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Fig. 2. The AE(b) for helium ions, v=20.7 colliding with C atom. As in Fig. 1
results for Hett and He' ions are shown by pairs of curves (1, 2), respectively.

(2,9) — Eq. (11), (a,5) — Eq. (14), (o,7) — Eq. (15), (h, k) — Eq. (13).

We can conclude that the decrease of AE(b) for ions carrying electrons
is much faster than for bare ion. Due to the present shell-wise treatment,
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the effective charge is no longer a constant. We can define impact parameter
b dependent square of the effective charge as, Zezﬂ-(b) = AE;on(d) /AEp+(b).
In the Oen and Robinson case, where the electron distribution is described
within the statistical model ZZ;(b) is a constant quantity. In the present

model the Z2(3), which is a decreasing function of impact parameter b,
reflects efficiency of inner-shell excitations for small b, and outermost-shells
excitations for large b.

4. Conclusions

In conclusion, it seems that Eqs (11)—(15) provide a basis for rapid de-
termination of the AE(b) for swift light ions carrying electrons in a frozen
charge state. They can be used in simulation codes applied for high velocity
transmission and surface scattering. Due to shell-wise treatment the influ-
ence of bound electrons appears to be impact parameter dependent. The
projectile inelastic contribution however demands further study.
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