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1 Introduction

I will discuss certain results concerning one-body dissipation in dynamic nu-
clear processes. First, the problem of one-body dissipation will be reviewed
within the context of the Independent Particle Model of nuclear dynamics;
this will include a brief discussion of the Wall Formula for one-body dissipa-
tion, derived in the 1970’s by Jan Blocki, Wladek gwig.tecki, and others.[1]
Next, an alternate approach to this problem, within the same, purely clas-
sical model, will be discussed, along with some applications. Finally, I will
briefly present some preliminary results on the quantal version of one-body
dissipation.

2 One-Body Dissipation, the Independent
Particle Model, and the Wall Formula

The results referred to in the title of this talk have been obtained over the
past year within the framework of the Independent Particle Model of nu-
clear dynamics. We therefore begin with a very brief review of this model.
The Independent Particle Model is based on an explicit separation between
the collective degrees of freedom of the nucleus and the individual nucleons
which compose it: one treats the nucleus as a gas of non-interacting particles
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bouncing around inside of a box whose shape is allowed to change with time.
(Fig. 1) The independent particles represent the nucleons, and the shape
of the box represents the shape of the nucleus, i.e. its collective degrees of
freedom. Since this shape may change with time — in heavy-ion collisions,
for instance, or during the process of fission — the walls of the box are not
stationary; we will use the variable 5 to denote the normal outward velocity
of the wall, at a given point on the surface of the box. Thus, by specifying n
over the entire surface of the box, one specifies exactly how the shape of the
box is changing at a given instant in time. In all of the results which I will
present, it is assumed that while the shape of the box changes with time, its
volume stays constant.

The Independent Particle Model provides a framework within which we
may approach the problem of one-body dissipation in nuclear dynamics: as
the particles bounce off of the moving walls, they gain or lose energy; as
discussed below, there is a net increase in the kinetic energy of the gas of
particles, which represents a flow of energy from the collective to the individ-
ual degrees of freedom, i.e. dissipation. Since the mechanism for this tranfer
of energy is the interaction between an individual nucleon and the collective
degrees of freedom — rather than, say, two-body interactions between nucle-
ons — we call it one-body dissipation. Thus, one approaches the problem of
one-body dissipation by posing the following question: What is the effect of
the time-dependence of the shape of the box, on the total kinetic energy of
the particles bouncing around inside? In the case when the walls of the box
move slowly in comparison with the particles, the answer to this question
is given by the Wall Formula for one-body dissipation, which provides an
expression for the rate of change of Er, the total energy of the particles:

dEr .,
T—pvfn do (1)

Here, p is the total mass density. of the particles inside of the box, ¥ is the
average speed of these particles, and 1 — the normal outward velocity of
the walls of the box — is squared and integrated over the entire surface
of the box. This simple formula was originally derived [1] by treating each
infinitesimal surface element of the box as a tiny piston, moving either into
or away from the gas of particles, according to the value of n; by summing
the contributions from the individual pistons to the total rate at which the
energy of the gas changes, one obtains the Wall Formula.
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In this derivation of the Wall Formula, one makes the crucial assumption
that the distribution of particles inside of the box is always uniform, and
the distribution of velocities isotropic. It turns out that this is equivalent to
assuming that the motion of the particles inside of the box is chaotic. (This is
determined by the shape of the box: some shapes give rise to predominantly
chaotic motion, others to regular motion.) I will not dwell upon this point
other than to mention that this is precisely where the concept of chaos enters
into this approach to one-body dissipation.

3 An Alternate Approach: a Diffusion Equa-
tion for the Distribution of Energies

The Wall Formula has been studied and applied for a number of years. What
I would like to discuss now is an alternate approach to one-body dissipation.
In this approach, one uses the same model of nuclear dynamics as before,
namely, a gas of non-interacting particles bouncing around inside of a box
whose shape changes with time. However, instead of working with the total
energy of the particles, one works with the distribution of energies, n(E,t).
This is defined in the usual way: n(E,t) dE gives the total number of particles
whose energy falls between £ and E+dE, at time t. The centerpiece of this
approach is an equation of motion for the distribution of energies, . This
equation of motion, presented below (eq. 2), is a diffusion equation. Without
bothering with the details of its derivation, I would like to motivate for you
its form, that is, to present a heuristic explanation of why the distribution
of energies evolves by a process of diffusion.

As the point of departure, consider a single particle inside of this box.
Since the volume of the box is kept constant as the shape changes, some
portions of the wall will be moving toward the interior of the box, others
away from the interior. Now, the energy of this particle will change only
when it collides with the walls of the box: if the wall is moving toward
the particle at the point of collision, then the particle gains energy during
the collision; if the motion of the wall is away from the particle, then the
particle loses energy. Thus, the energy of the particle changes in small,
discrete amounts, at discrete times, corresponding to the collisions between
the particle and the walls of the box. If we picture this process in terms of
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the motion of this particle along the energy axis, then this motion will consist
. of small, discrete steps, sometimes in the positive direction, sometimes in the
negative. The idea that I am trying to convey here is that, if we ignore all
degrees of freedom of the particle other than its energy, i.e. if we imagine the
motion of the particle along the energy axis, then we can treat this motion
as a sort of Random Walk.

Of course, to formally treat this motion as a Random Walk requires more
justification than the simple picture presented above. Such justification, it
turns out, follows from the assumption that the motion of the particle inside
of the box is chaotic. In other words, if we assume that the particle moves
around chaotically inside of the box, then — it can be shown — we may
formally treat the motion of the particle along the energy axis as a variety
of Random Walk. I will not go into the details of this matter, but mention
it here to point out exactly where it is that the concept of chaos plays a role
in this approach.

Imagine now that we fill our box with a large number of particles which
bounce around independently of one another. Projecting out all degrees
of freedom other than the energy of each particle, we get a distribution of
particles along the energy axis (described by the distribution of energies, 1),
each independently performing a kind of Random Walk along that axis. Now,
from any textbook on stochastic motion you will learn that the distribution
of an ensemble of systems, each independently performing random motion,
evolves by a process of diffusion. This, in a nutshell, is why the distribution
of energies, 7, is governed by a diffusion equation. We have a picture in
our minds of an ensemble of particles “Randomly Walking” along the energy
axis, and this picture suggests to us that the distribution of this ensemble
along that axis evolves by a process of diffusion.

Let me now skip over a good deal of algebraic detail and present to you
the central result of this approach, which is the following equation for the
evolution of n:

0 \/ﬁ -2 2 -1/2
5 = o § it g [Fap(5)] @

Here, m is the mass of an individual particle; V is the volume of the box
(assumed constant). The integral

f #? do 3)
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we have seen before: it is the normal outward wall velocity, squared and
integrated over the surface of the box. The term to the right of this integral
includes the second derivative of  with respect to E, which makes the entire
equation a diffusion equation.

Now that we have this equation, we can use apply it. An obvious first
question is a comparison with Wall Formula. The total energy of the gas of
particles, at time 2, is given by:

Er(t) = j dE n(E,) E . (4)

Differentiating both sides with respect to time, then using the expression for
On /0t given by eq. 2, then performing two integrations by parts, one obtains
the following expression for the rate of change of the total energy:

dEr .,
7 —pvfn do . (5)

This, of course, is exactly the Wall Formula. Thus, with a very simple calcu-
lation one obtains, from the diffusion equation governing the distribution of
energies (eq. 2), the Wall Formula for the rate of change of the total energy
of the gas, which was originally derived using a quite different approach (the
“Piston Approach” described above).

I would like now to point out a feature of the Wall Formula in the form
here presented. Namely, notice that it includes the factor o, the average speed
of the particles in the container. Now, if the total energy of the particles is
changing, then so is their average speed; thus, if we want to integrate the Wall
Formula over a finite amount of time, in order to obtain the total amount of
energy dissipated into the gas, we need to have ¥ as a function of time. The
Wall Formula, as presented above, does not reveal how v evolves with time,
and therefore does not form a closed set of equations. However, in much
the same way that we obtained the Wall Formula (eq. 5) from our diffusion
equation (eq. 2), we may obtain the following equation for the evolution of

vl
dv 3 )
‘a‘t‘ = W f n2 dO‘ . (6)

Again, the calculation required here is simple: we write an explicit expres-
sion for v, differentiate with respect to time, apply eq. 2, and perform two
integrations by parts to obtain eq. 6. We may call this the “Second Wall
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Formula”. When combined, the two Wall Formulae form a closed set of equa-
tions: one integrates eq. 6 to obtain ¥ as a function of time, then plugs the
result back into eq. 5 and integrates to obtain the total energy dissipated
over a finite period of time.

Let me now discuss a final prediction that follows from the equation
of motion for 7.[2] The prediction is the following: given such a system
of independent particles bouncing around chaotically inside of a box whose
shape changes slowly with time, the distribution of particle velocities will,
asymptotically with time, tend toward an exponential form. Thus, after a
long time, we will have

fv) ~ e, (7)

where ¢(t) is a time-dependent scaling factor, and f(v) is the distribution
of velocities (i.e. f(v)d®v is the number of particles found in a volume d®v
around the point v in velocity space). In a moment, I will show you the
results of some numerical investigations of this prediction. However, I would
like to mention here that this prediction, along with eq. 6, both of which
follow from the diffusion equation for the evolution of 5, are both equally well
derived using the Piston Approach, by which the Wall Formula was originally
derived. Thus, the two approaches represent parallel methods of addressing
the same physical situation.

Let me now show you the results of some recent numerical simulations
performed by J. Blocki.[3] In these, he simulated the motion of a large number
of particles inside of a slowly time-dependent cavity. After a sufficiently
long time, the distribution of velocities of these particles was plotted on a
logarithmic scale. The six different figures shown in Fig. 2 represent six
different types of shape deformations. We see that for four of these, the
distribution of velocities, plotted on a logarithmic scale, makes a straight line
(expect in the low-energy region). This is in agreement with the prediction
mentioned above: the distribution of velocities is exponential. However,
note that in the first two figures we do not get a straight line, i.e. the
prediction fails. - The reason for this is the following. For figures (c)-(f) the
shape deformations of the cavity were chosen to produce chaotic motion,
whereas for figures (a) and (b) the motion of the particles is regular. This
again emphasizes the importance of the assumption that the motion of the
particles inside of the box is chaotic: when this condition does not hold, the
predictions mentioned above fail.
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4 Preliminary Quantal Results

Finally, let me present some preliminary results concerning the quantal ver-
sion of this problem. The model here is the same as that used above — a
gas of non-interacting particles inside of a time-dependent box — only now
the particles are quantized. Thus, we view each particle as a superposition
of standing waves (instantaneous energy eigenstates) inside of the cavity; the
time-dependent Schrodinger equation and the changing shape of the cavity
determine the evolution of this superposition. By numerically solving the
Schrodinger equation, we have simulated such a quantal gas. In our simu-
lation, we used a two-dimensional box in the shape of a stadium (a shape
which, classically, is known to give rise to chaotic motion), and allowed the
aspect parameter — the ratio of the diameter of either endcap to the length
of the flat portions (see Fig. 3) — to change sinusoidally with time, with the
area of the stadium kept constant. Thus, the stadium is “pumped” period-
ically. As initial conditions, we filled the lowest twenty energy levels of the
cavity. Then, allowing this system to evolve in time, we observed the evolu-
tion of the total energy (by which is meant the expectation value of the total
energy) of the twenty-particle system. In Figure 4 we present some of the
results: the increase in the total energy, in units of the total initial energy, is
plotted as a function of time, in units of the period of pumping of the cavity.
This is shown for six diferent values of the pumping speed, ranging from 50
to 300, in arbitrarily chosen units. In each plot, the thick line represents this
quantal increase in energy, while the thin line represents the predictions of
the classical Wall Formula. We see that at the lowest speed of 50 (figure a),
there is considerable disagreement between the classical prediction and the
quantal result. For speeds of 80, 150, and 200 (figures b-d), there seems to
be reasonable agreement, while for the highest speeds, 250 and 300 (figures
e and f), a systematic discrepancy appears.

While these results should be treated as preliminary, a plausible interpre-
tation is the following. If the stadium were to be pumped infinitely slowly,
then no excitation to higher states would occur. Thus, the energy would
always be exactly equal to the sum of the lowest twenty eigenenergies, and
hence would depend on the quantal details of how these eigenenergies change
with the aspect parameter. As we slowly “turn on” the pumping speed, there
will appear excitations to higher eigenstates. Nevertheless, for speeds which
are slow enough, these excitations will be small, and the individual quantal
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energies of the lowest states may still dominate the picture, in which case the
purely classical Wall Formula cannot be expected to hold; this may explain
the discrepancy in figure (a). As the pumping speed is increased, a greater
number of states will participate — due to excitations — and we may expect
the classical approximation to be valid. Figures (b) through (d) represent
this regime. Finally, for high enough pumping speeds, the wall velocity may
become comparable with the average particle velocity, violating one of the
assumptions on which the Wall Formula was derived; hence the discrepancy
appearing in figures (e) and (f). I would like to stress again that both the nu-
merical results and these interpretations should be treated as preliminary: a
considerable amount of work remains to be done before we can claim to have
a good, systematic understanding of the quantal version of this problem.
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