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The decrease of vector meson masses with the pion decay constant for
increasing baryon density, mj, /my = f:/fx, is related to scaling prop-
erties of the Skyrme Lagrnagian. Experimental data sensitive to vector
meson properties in nuclei, such as K+ scattering and (e,e’,p) reactions,
are shown to be compatible with the above relation.
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1. Introduction

The idea that the vector meson masses (my = m,,m,) decrease in
medium at about the same rate as the nucleon effective mass, i.e.,

my(p) . my(p)
my myn

, (L.1)
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has been suggested in a number of papers, the arguments being economically
summarized in Ref. [1]. In this reference, Brown and Rho rewrote the
Skyrme Lagrangian, which we here consider in the chiral limit (bare quark
masses equal to zero),

2 2
L= "ETx(9,U*U") + EZTT [uto,U,uta,U]*, (1.2)

so that it was consistent with the scaling properties of the QCD action.
Here fr is the pion decay constant, U is the Sugawara variable,

U(z) = exp (i?f' f) , (1.3)

kid

and we shall discuss €? later. Following Campbell et al. [2], the correct
scaling property in the first term was restored by multiplying f2 by (x/x0)?,
where y is the glueball field, and xg is its value at zero density. An additional
term,

§Ly = 20,x0"x + V(x), (1.4)

made the x a dynamical field. The V(x) can then be chosen to explicitly
break scale invariance so as to mimic the way that quantum corrections
break it in QCD. The x field was then written as

x=x«+x', (1.5)

where x. is the glueball mean field. Only x, was retained in the considera-
tion of hadrons composed of the light up and down quarks. In this way, f2
in Eq. (1.2) was replaced by

2
2, g2 _ g2 Xx
fr=f" =1 (XO) : (1.6)

The modified Skyrme Lagrangian then possesses only the scale fr.
Consequently, when the nucleon emerges as a soliton from this modified
Lagrangian, its mass m}, scales as

m}vzﬁ

= (1.7)

The m}; is to be identified as the effective mass of the nucleon; i.e., the
quasiparticle velocity for a nucleon of momentum p is

vop = n‘:’;v. (1.8)
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For simplicity, we do not introduce vector mean fields, which contribute to
the nucleon energy; these would not change our argument.

If we work, as in Ref. [1], at the mean field level with axial vector
coupling g4 = 1, the coefficient ¢Z of the Skyrme fourth order term is (3]

2
2 _ f7r

= -
4mv

€ (1.9)
(Of course, loop corrections, which increase g4, may modify our results.)
Since the fourth order term involves four derivatives, it is already scale
invariant, so €2 does not change with density. This implies that
fr _my
.f big my ’
t.e., that the vector meson mass scales with fr. Since f} is the order
parameter for the broken symmetry mode of chiral symmetry, this shows
that mj, can equally well be used as order parameter. In fact, in justifying
the procedure of [1] starting form the QCD sum rules, this proved to be
convenient [4].

Whereas we believe the above considerations to establish that the vector
meson mass my should decrease with density, it is of interest to consider
what this scaling implies for experiments.

In a first application [5] to Kt scattering by 12C, it was found that the
decreased mj,(p) could explain the fact that the experimentally measured
ratio of cross sections,

(1.10)

+ 12

U(K_’_i) > 6, (1.11)

o(Kt,2D)
was greater than given by the impulse approximation. This was because the
vector meson propagators (m‘{,z(p) +¢%)~! were increased by the decreased
mass. More importantly, the density dependence of mj,(p) changed slightly
that of the optical model potential, and allowed a reconciliation between the
nucleon charge distributions used in K and electron scattering from 12C.
In a similar vein, introduction of dropping masses was found to remove a
long-standing nuclear radius discrepancy in the scattering of several hundred
MeV protons by nuclei [6].

Although the drop in vector meson masses tends to increase the (K+,12C)
scattering cross section, it decreases the longitudinal response in (e,e'p) and
(e,e') reactions {7]. The mechanism for this decrease can be understood by
considering the vector dominance model, by which the virtual 4-ray from
the electron scattering couples to the nucleon through the vector meson.
The propagator for the latter is

2
my, 1

DV = = ,
™) my +¢*  1+¢*/mi

(1.12)
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with approximation to space-like momentum transfer gq. The m""’, in the
numerator, which technically can be considered to be a subtraction, is nec-
essary to ensure that as g> — 0, the correct electron charge e enters into
reaction. In the case of finite density, my — mj, and

Lt
1+q2/m"{,32

D(w) (1.13)

Since mj, < my, this represents a decrease in D(w) and a decrease in
the longitudinal response. In the case of transverse response, an additional
(m}'\,)_I enters in through the magnetic current coupling of the virtual y-ray
to nucleons (8], as we show later, largely cancelling this decrease.

The above somewhat schematic arguments indicate that scaling of vec-
tor meson masses affects the operators entering into electron scattering off
nuclei in such a way to qualitatively explain discrepancies between experi-
ment and theory. Since detailed and accurate data on separated longitudinal
and transverse response exist for several nuclei with varying average densi-
ties, it is of interest to see to what extent theoretical models incorporating
density dependent vector meson masses fit these data quantitatively. This
was the object of the work of Ref. [9]. In this note we summarize the main
points of this detailed work.

2. In-medium electromagnetic form factors in the two-phase
model of the nucleon

In Ref. [9] the most complete model considered was the two-phase chiral
model; t.e., a quark core surrounded by a nonperturbative meson cloud
(soliton cloud). In many calculations, this model has been employed with a
fixed radius of R < 0.5 fm, separating quarks and meson cloud. It is more
usual in QCD to change from nonperturbative to perturbative descriptions
in, e.g., calculation of loop corrections, in momentum space, at a momentum

AXSB ~1 GeV, (2.1)

(where the notation x5B stand for “chiral symmetry breaking”) rather than
in coordinate space. Since a wide range of momenta were considered in
Ref. [9], it was necessary to implement the change, and this was done by
introducing bag radii B which increased with increasing momenta. The
coupling of photons to nucleons in the two phase picture results from two
mechanisms, a direct coupling to the charge of quarks in the quark core and
a coupling through vector mesons to the (soliton) meson cloud. At momenta
somewhat higher them A, sp the effects from the meson cloud, which are
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important for us here, should go away and the picture should go over to one
of scattering by the (perturbative) quark structure of the nucleon. Thus,
our model should be restricted to momenta g < A sp.

Within this domain of momenta |g| < A_sg, a schematic model il-
lustrates simply the main results of our two*pﬁase model. In this model,
isoscalar operators couple equally to quark and meson sectors, whereas
isovector operators couple only to the meson cloud. This approximation is
justified in Ref. [9] and approximately follows the way in which isoscalar and
isovector charges fraction in the chiral hyperbag model [10]. Our schematic
model is similar to that used in Refs [7] and [8]. For completeness, a purely
solitonic model with R = 0 is also used. The difference in predictions be-
tween these models may give some idea of the model dependence of our
results.

We employ the expressions introduced in [7] for the bag and meson form
factors Fg(g?) and Fi(¢?). The bag form factor is given by

1
2
= 2
FB(Q) 1_q2//\27 (2 )
in which A? is related to the bag radius by [10]
6 3,
— = -R". 2.
A? 5R (2.3)

That part of the coupling of the y-ray to the nucleon through the vector
meson involves the product of a hadronic form factor with the vector meson
propagator,
2 2 2
A —m3 my,
b
AT -2 m? 2

Fu(g®) = (2.4)
the propagator having been discussed earlier, Eq. (1.12). Here A% is a
cutoff for which we assume the value A> = 2m2, [7]. The Fu(g?) is then
multiplied by the fraction of the charge in the meson cloud. As noted earlier
and as shown in [9, 10], the fractionation is such that substantially more of
the isovector charge is in meson cloud. This is the basis of our schematic
model.

The longitudinal response measures the charge density and, therefore,

the operator is
OL = % + %Ta . (25)

The transverse response measures the current density and the corresponding
operator is of the form

OT — ILVE[U X Q]

T3, (2.6)
2mpy
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where ¢ is the polarization vector of the virtual y-ray and py is the isovector
moment
v = 3(pp — pn) = 2.353. (2.7)

We neglect the much smaller isoscalar component of the current. We believe
our nonrelativistic expressions for charge and current density to be adequate
for the momentum range of ¢ < 500 — 600 MeV /e in which comparison of
our theoretical estimates with data is most significant.

At nuclear matter density we take

my(eo) _ g (2.8)
my

and extrapolate linearly from pg to zero by

mP) 1 _1.176p(fm?) (2.9)

for all masses (m = mpy, my, m,).

From the operators (2.5) and (2.6), we can easily see why the longitudi-
nal response is, compared with shell model value, smaller than the transverse
one. The OT has an my in the denominator, which is not present in OL.
This mpy goes to m}y < my in medium and this increases the transverse
response relative to longitudinal. Thus, the relative increase in transverse
response stems from a particularly simple effect.

3. Longitudinal and transverse response functions measured
in (e,e') and in (e,e’ p) reactions

The separation of the electron scattering into longitudinal and trans-
verse components is discussed in Ref. [9] and in many other places, so we
shall simply show separated data and compare them with our theoretical
models.

In Fig. 1 we show the transverse and longitudinal response functions for
the (e,e') reaction on °Ca from [11], compared with an independent particle
calculation. Whereas ~ 30% of the longitudinal strength from this calcu-
lation appears to be missing, the calculation does well for the transverse
response. In our model, the decrease in meson propagators is exactly com-
pensated for at this moment transfer by the enhancement in the operator
07T, Eq. (2.6), due to decreased mpy.

In Fig. 2 we show the g-dependence of the transverse and longitudinal
cross sections for the (e,e’,p) reaction on a bound proton in 4°Ca. The curves
are divided by the independent particle expectations, as calculated in [12].
The theoretical curves here, and in the following figures are obtained:



Vector Meson Masses in the Nuclear Medium 497

40Ca (e.e)
q = 550 MeVic
T v T
TRANSVERSE
N 08 | q
E 06 | 4
= os | J
o
02 J
£
- 03 | J
>
D
= 0z | ]
o

 {MeV)

Fig. 1. Transverse and longitudinal response functions for the (e,e’) reaction on
4Ca (from Ref. [11]). The solid line is an independent particle calculation.
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Fig. 2. g-dependence of the transverse and longitudinal cross sections for a bound
proton in *°Ca divided by independent particle expectations (from Ref. [12]). The
bracketed points are taken in kinematic conditions corresponding to the dip region
and therefore excluded from the one-body analysis. The theoretical curves are
obtained with density dependent vector meson masses using the prescription for
the g-dependence of the nucleon structure described in Ref. [9] (solid line), a soliton
without quark core (dashed line) and a model where the isoscalar photon coupling
is 50% to the quarks and 50% to the soliton cloud (dot-dashed line).
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Fig. 3. g-dependence of the ratio of the longitudinal to transverse responses for
a bound proton in *°Ca normalized by independent particle predictions (from
Ref. {12]). The meaning of the theoretical curves is the same as in Fig. 2

(i) Solid line: with density dependent meson and nucleon effective masses

and the g-dependence of the nucleon structure described in Ref. [9].
(#) Dot-dashed line: with density dependent masses and schematic isoscalar

photon coupling of 50% to the quarks, 50% to the meson cloud, isovector

coupling 100% to the cloud.
(i1z) Dashed line: density dependent masses and soliton without quark core.

Although the inclusion of density dependent masses removes much of
the discrepancy between theory and experiment in the case of the longi-
tudinal response, the latter seems to be systematically below our theory.
Indeed, the problem of missing longitudinal strength is a well known one,
and a substantial part of it can be explained in terms of standard many-
-body correlatibns in nuclei [13]. These cannot explain all of the missing
strength, and the conclusion of Alberico et al. [13] is “However, in order
to attain the right magnitude we had to introduce a modified proton form
factor corresponding to an electromagnetic radius larger by about 20% (in
49Ca and 5%Fe) with respect to the free case.” Of course our decrease in ef-
fective mass to m};, = 0.8my increases the scale of the meson sector, which
is chiefly responsible for the low-energy longitudinal electron scattering, so
our conclusions are consistent with the results of [13].

It is constructive in Fig. 3 to plot the g-dependence of the ratio of
longitudinal to transverse responses for a bound proton in 4°Ca, normalized
by independent particle predictions from Ref. [11]. The meaning of the
theoretical curves is the same as in Fig. 2.

We next consider *He and 3He, in which two-particle, two-hole correc-
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Fig. 4. Same as Fig. 3 for *He. The different symbols correspond to different
missing momenta p,, (pm is the momentum of the undetected system). The open
squares, the closed squares and the closed triangle correspond to p, = 30 MeV/c,
90 MeV/c and 190 MeV /c respectively (from Ref. [14]).
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Fig. 5. Ratio of the longitudinal to transverse responses for a bound proton in 3He
normalized by independent particle predictions. The average experimental effect of
a 10% reduction is indicated by a full horizontal line at (L/L5M)/(T/TS™) = 0.9
(from Ref. [15]). The meaning of the theoretical curves is the same as in Fig. 3.

tions, etc., should be relatively unimportant. In Figs 4 and 5 we show ratios
of longitudinal and transverse responses [14, 15], compared with theoretical
models. In Fig. 5 the average experimental effect of a 10% reduction is
indicated by a full horizontal line at (L/LSM)/(T/TSM) = 0.9 [15].
According to our scaling of masses (2.9), the ratio (L/LSM)/(T/T5M)
should go roughly linearly with density. In Fig. 6 we show the density
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Fig. 6. Matter densities of 3He and *He (from Ref. [16]).

distributions in *He and 3He [16]. We note that the 1.5 to 2 times larger
experimental difference of the above ratio from unity in 4He, as compared
with *He, is compatible with the ratio of densities.

4. Conclusions

Our chief conclusion is that the scaling law

miv(e) _ my(p) W

my  my '
is compatible with the Saclay (e,e'p) data. Indeed, introduction of this scal-
ing improves the agreement between theory and data, although additional
correction for multiparticle correlations appears to be needed in the 4°Ca
longitudinal response.

The reduction in the longitudinal response seems to generally follow
the linear density dependence implied by (4.1). However, error bars in
the data and uncertainties in their interpretation do not allow definite and
quantitative conclusions. None the less, we find it encouraging that the
introduction of scaling meson masses for which there is by now the rather
compelling theoretical motivation outlined in Section 1, induces changes in
such a way as to improve agreement between theory and experiment.
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Our treatment of the vector mesons has been somewhat schematic. In
particular, we treated the p-meson in zero-width approximation, whereas it
is known to have a rather rich structure in spectral composition, including a
substantial two-pion continuum. The distribution in spectral strength will
change in medium. A recent calculation [17] shows that a new structure
corresponding to the decay of the p-meson into a pion-like and a AN ~!-like
mode, arises around M = 3m,. In this calculation the p-mass is included
in a term

6L = 3(m3) pup* (4.2)

in the Lagrangian, where mS is treated as a constant, independent of density.
The effect we discuss in this note amounts to replacing mg by m;"(p); i.e.,
making the bare p-meson mass a function of density. Our effect could easily
be incorporated in the calculations. Basically, it arises from the change
in vacuum condensate with density. This change is not included in the
calculations of [17], which deal with standard many body effects concerned
with coupling of pions to nucleons, etc. Thus, there is no double counting
combining the two effects.

One of us (G.E.B.) would like to thank Magda Ericson for helpful
discussions of the matters in this paper. He would also like to recall a
friendship with Janusz Dabrowski that began three and a half decades
ago.
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