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Time dependent Green’s function methods provide a basic theory for
nuclear dynamics and transport-properties such as related e.g. to heavy
ion collisions. In the static limit this theory is also applicable to hot as well
as gero-temperature nuclei. Retarded Green’s functions are introduced in
the non-equilibrium case while causal Green’s functions have been used
extensively for calculating ground-state properties of nuclei as have the
very similar Brueckner methods. The purpose of this paper is to point
out and clarify differences (and similarities) between these methods. In
addition to some formal differences there are those resulting from accepted
methods of application. Errors caused by using free Green’s functions and
related spectral-functions are pointed out. Only non-relativistic theories
are discussed.

PACS numbers: 21.65. +f, 21.10. Pc

1. Introduction

Many microscopic many-body calculations on properties of nuclei and
nuclear matter have been made using causal (and anti-causal) Green’s func-
tions also referred to as chronological or time-ordered Green’s functions. In
addition there are many calculations done with Brueckner theory which are
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in some respect (discussed below) very similar to these Green’s functions
techniques. Examples of recent works are those of Mahaux et al. [1, 2],
Baldo et al. [3], Ramos et al. (4] and K&hler [5]. These methods are however
strictly only applicable to ground state properties although some extensions
to non-zero temperatures have been made 5, 6]. For finite-temperature and
non-equlibrium studies these methods are however superseded by the path-
-ordered Green’s functions techniques first introduced by Schwinger to study
the Brownian motion of a quantum oscillator [7] and extended by Kadanoff
and Baym [8] to the properties of many particle quantum systems in general.
Subsequent work of Danielewicz [9, 10] as well as by Malfliet and coworkers
[11, 12] use these techniques for nuclei. These works are for example of spe-
cial interest for deriving mean fields etc. for transport-equations applicable
to collisions between nuclei.

It appears important to establish a comparison between the non-equi-
librium methods using retarded functions in the static zero-temperature
limit and the previous works using causal Green’s functions because there
are many similarities but perhaps more interesting some formal differences.
These differences have caused some confusion when results of calculations
have been reported using the retarded Green’s functions [13] for ground-
-state nuclear matter, which prompts this publication. Formal differences
have already been pointed out in previous works e.g. [1, 10]. The purpose
of this paper is to point out these differences more explicitly especially as
regards the calculation of mean fields.

The properties of the various Green’s functions and their relations are
found in several references [8, 14, 15]. A summary of some relations etc.
necessary for our discussion is given in Sec. 2. Definition of effective inter-
actions and mean fields are given in Secs 3 and 4 for the causal (as well as
Brueckner) and retarded case respectively. Differences between the results
of applying these theories are pointed out in Sec. 5. Sec. 6 is a summary
and a discussion follows in Sec. 7.

2. Green’s functions

Let us consider an infinite nuclear medium. Although we shall later
discuss this medium in equilibrium let us first consider the general case of
non-equilibrium. It is then convenient to define Green’s functions:

7<) = = ap)F(p), 1)

§(p) = alp)L - F(p). 2)

Here p = (w, p) and a(p) is the spectral function while F(p) is a distribution-
-function. These two Green’s functions (correlation functions) completely
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describe the one-particle properties of the system. In the case of equilibrium
F(p) = f(w) one has in the usual notation

1

f(W) = 1 + eﬁ(w_“) ’

(3)
In this case one finds

97 (p) = —eP(“=1g<(p) (4)

and only one function g is sufficient. The well-known Kadanoff-Baym equa-
tions describe the time-evolution of the functions ¢~ and g<. It is however
at this point convenient to introduce the advanced and retarded functions.
From the Kadanoff-Baym equations one finds (see e.g. Ref. [11])

1
9*(p) = w — p?/2m — BE(p) £ ie’ (5)

where £%(p) is the mean field to be defined later. One can introduce chrono-
logical and antichronological functions F¢ and F* by

Fe=F%f L F5, (6)
F* = -F* } F5. (7)

From the last two equations and Eq. (1) and Eq. (2) one finds a conve-
nient expression for the spectral-function

2 Im 2(+)(p) ) ®)

a(p) = ih ([w — p?/2m — Re £(1)(p)]? + [Im (+)(p))?

In the limit of small absorption, Im ¥ < 1 one can consider using the quasi-
-particle approximation

aqp(paw) = 27{”“6(“" - 61’)‘2(173“‘)) (9)
with the quasiparticle strength Z given by
ORe =1 (p,w) -1
Z(p) = = 1
(p) (1 ( aw )w:ep) ( 0)

and the energy ¢, defined by

=5 +ReZ¥(p,¢p). (11)
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An even simpler approximation is obtained with Z = 1. This is referred
to as the quasi-classical limit and for an infinite homogeneous medium in
thermal equilibrium one finds the following free (or unperturbed) Green’s
functions

1 - n(p) 4 n(p)

90(p) = ot T e (12)

P P

% (p) = wl:en(f )2.6 + = _ne(p )+ = (13)
P 4

96 (p) = 2min(p)b(w — &), (14)

52 () = 27i(1 = n(p))b(w — &), (15)

with a mean field included so that ¢, is the single-particle energy including
this mean field and n(p) are occupation-numbers at thermal equilibrium
defined by Eq. (3) with w = ¢, i.e.

1
exp(ﬂ(ep - p))+1 '

Perturbation schemes are developped in terms of these unperturbed func-
tions.

As noted after Eq. (4) only one Green’s function is necessary in the
equilibrium situation. This is often chosen to be the causal (or chrono-
logical) function g¢ as is the case in many ground state calculations. For
example the mean field that is calculated is then the causal mean field T¢.
For non-equlibrium systems two Green’s-functions are however needed. In
the equilibrium limit the mean field that one calculates is the advanced =+
that for example is needed for calculating the spectral function defined by
Eq. (8) and the propagator gt in Eq. (5). In thermal equilibrium an impor-
tant relation between chronological and retarded functions exists (see e.g.
Ref. [10]):

n(p) = (16)

Re £°(p) = Re B*(p), (17)
Im £°(p) = tanh(38(w — p)) Im =¥ (p). (18)

At temperature T = 0 this becomes especially simple. There is in this case
only a difference in sign between the imaginary parts of the chronological
and retarded mean fields. As a consequence the spectral-function will in this
case be the same if calculated by Eq. (8) with either ¢ or £1. However
for T # 0 this is no longer the case.

Although it may seem sufficient to show these general relations it seems
necessary to investigate to what extent these are valid in the approximations
used in actual calculations.
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We find it illuminating to make this investigation in an approximation
in which the mean fields are calculated to second order in the interaction V.

3. Chronological mean field

Using the chronological method one defines diagonal elements of the
effective interaction by

(2,0 | T(2) | p,P') = (PP |V | p,0") >
+ Z (p,pr l 174 Ip",p"')gc(p")gc(p"')(p",p'" ITC(.Q) I p,pl) . (19)

pll’plll
(To simplify the expressions momentum and energy conservations are not
explicit in this and the following equations.) The calculations are however
done with free propagators g§ and in second order in the interaction V' one
then obtains after doing the w',w"’ integrations.

P | T5(2) | pp'y= Y 1(p,p |V IP"P")
pll‘plll
« ((1 - n(p"))1-n(p")) _ n(@")n(p") ) . (20

- €ptt — €Epuur + ir} 2~ Eptt — Eptt — i77

p

The mean field is given by
=(p,w) = Y (2P | T5(w+w') | p,p")g°(P', ") (21)
pl,wl

and in second order one gets with g¢ substituted by g

Bew)= Y, e VIpp")

P .pp"
N ((1 - n(p"))(1 = n(p""))n(p') N n(p")n(p")(1 - n(p")) ) (22)
w + €pt — Eptt = €y + i w + €pt — €pnt — €pir — 17’) ’

It is of interest to compare this with what one finds from Brueckner
theory. The (diagonal element of the) Brueckner effective interaction K
usually neglects the hole-hole ladders and is defined by

0 | K(2) | p,0')= (P |V Ip,P)+ > (PP |VID",p")
pl’,plll

Q=@ =nlPT)) (| k() | pp'y. (23)

- Eprt — Eptur + in
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We have assumed the same single particle spectrum ¢, although in Brueck-
ner theory it is often defined differently as discussed in Sec. 7.
The Brueckner energy EB is given by

gB =y P 2m +ZZ N, p' | K(ep+ ) [ PP} (24)
P

By the (Landau) definition of single particle energy one has [16]

_ dEB
= dn(p)’

With EB calculated to second order in the interaction V one obtains a term
exactly like Eq. (22) with w = €,. The first term in Eq. (22) is obtained from
the variation with respect to n(p) and n(p') while the second term comes
from the variation with respect to n(p") and n(p"') . The second term is
usually referred to as a Brueckner second order rearrangement energy.

4. Retarded mean field

The retarded effective interaction 7't is defined by (see e.g. [9, 11])

(o0 | TY () | p,P)= D (o0 |V |P",P")

1 11

PP
9~ (p")g” (") — g<(p")g<(p")
0N —w'— w4+ in

+ @",p" | TT(2) | p,p'). (25)

The retarded effective interaction to be compared with Eq. (20) is given by

P 1T ) | pp)= D> (e | VIP,p") P
pll,p”l

Y (L OCEL AT 0 10 N s

2 — Eptt — Eptit + 1.1] 2 — Eptt — €pint + in

One finds that the only difference from T lies in the sign of the last 7.
The mean field 7 is given by

2+(P’w) = —th Z [<P’PI ' T+(w + w') |PaP,)9<(P"“’I)
pl,wl
+{p,p' | TS(w+w') | p,p Y~ (P, w")] (27)
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with T< given by

(pp' | T<(w+o") | p,p'y =ik Y (p,p' | T |p",p")
P",p”’
Xg<(p",w")g<(p'",w"')(p",p’" | T—- | plip) (28)

and one finds in second order after substituting with free propagators

)= Y, 1P VI ")
p.p".p"
" ((1 - n(p"))(1 - n(P"))n(p)  n(p')n(p")n(p")
w + €pt — €pnt — € + 17 w + €pt — Ep — €yt + i

n(p")n(p") ) , (29)

w -+ €p! — Eprt — € +in

where the last term comes from the second term in Eq. (27).

5. Comparison between chronological and retarded potentials

Comparing Eq. (29) with Eq. (22) one finds that the real parts of ¢
and £t are identical as required by the general result given by Eq. (17) .
At temperature T = 0 the imaginary parts due to the first terms of both
¢ in Eq. (22) and 1 in Eq. (29) are equal to zero below the Fermi-energy
because of the Pauli-blocking. The same is true for the second term above
the Fermi-energy. The difference then is in the imaginary parts of the second
term which have opposite signs and this is in agreement with Eq. (18) and
discussion below this equation.

For temperatures T # 0 the situation is not that simple. Both of the
terms contribute both below and above the Fermi-energy as is obvious with
n(p) given by Eq. (16). One finds however that

Im 2] (p,w) o exp (B(epn + €ym — 2u)) + exp (B(ep — 1)),  (30)
Im Eg(p,w) & exp (/B(Ep" + €pitt — 2#)) — exp ()B(Ep' - tu')) . (31)

But €,y = €,n + €,m — w because of energy-conservation in the imaginary
parts. Therefore
Im = (p,w) x exp (Bepn + e — u))(e‘ﬁ“ +e Py, (32)
Im £5(p, w) x exp (B(epn + €pm — p)) (e PH —eF¥). (33)

It is then easy to verify that tanh(38(w— p)Im 25 (p,w) = Im TS(p, w)
which is in exact agreement with Eq. (18).
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6. Summary

Most nuclear matter calculations using Green’s function or the, in prac-
tice, very similar Brueckner method have been done using effective inter-
actions and mean fields defined by chronological Green’s functions [1-6].
Only a few have been done with retarded Green’s functions [12, 13]. The
retarded Green’s function method is more general being well suited also
for non-zero temperature as well as non-equilibrium situations. Differences
between the two methods exist in the limit of zero temperature. It is im-
portant to investigate these. In this paper it is only investigated in a second
order perturbation expansion with respect to the interaction V. This may
seem a limitation but one may in fact also explore the differences in an
expansion to second order of the effective interaction; defined by chronolog-
ical or retarded Green’s functions. The conclusions are the same [17]. The
important differences in analytic structure are already seen in second order.
It is, we think, simpler for the retarded (or advanced) functions which are
analytic in either the upper or the lower half-plane while the chronological
functions have a more complicated analytic structure leading to complicated
integrations and are of course only applicable at zero temperature.

Some general relations between the mean fields are readily established
and given by Eq. (17) and Eq. (18). These relations were also found to be
satisfied by the approximate treatments above. But some caution has to
be taken when applying these methods in order that the mean fields satisfy
the Egs (17) and (18). In Brueckner theory the second order rearrangement
energy has to be included. In the chronological formulation we have already
seen in Sec. 3 that this term is included if hole-hole ladders are included in
the effective interaction. In the retarded mean field the second order term,
i.e. the second term in £ defined by Eq. (27) has to be included. The
importance of this term should therefore not be forgotten. It was apparently
first recognized by Malfliet et al. [11]. It is in fact very different in its
structure (and numerical value) compared to the second order Brueckner
rearrangement energy [13]. At zero temperature one finds in fact that the
two methods differ only in the sign of the imaginary part of this particular
term. It is non-zero only for states below the fermi-surface.

It is important to realize that although the effective interaction in
Brueckner theory by definition neglects intermediate hole-states as seen in
Eq. (23) this theory is still very similar to the chronological Green’s function
method as it for example gives the same expression for X§ as shown above.

7. Discussion

The equality between the three methods at zero temperature, the Brue-
ckner, the chronological and the path ordered Green’s functions has been
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demonstrated to second order in the interactions. There is only a trivial
difference in signs of some imaginary parts. At higher orders there is a dif-
ference but the only real difference is between the Brueckner method and
the Green’s function methods because (usually) Brueckner theory does not
include hole-hole propagators in the effective interaction. The two Green’s
function methods should give rather similar results. The effect of including
hole-hole propagators has been investigated to some extent. It is relatively
small at normal density. The effect on energies is typically a few MeV as
already found in early calculations. This is confirmed by more recent calcu-
lations as seen for example in Ref. [18] especially Fig. 2. The effect on the
calculation of spectral functions is shown in Ref. {13] and it is also minimal.
It is of course important to realize that hole propagations as concerns the
mean field is included in the Brueckner second order rearrangement energy
albeit to a lower order than in the Green’s functions methods. With present-
day computing power there is however no real reason to ignore the hole-hole
ladders. This leads to a more consistent application of the Green’s functions
method applied to non-equilibrium dynamics and heavy ion collisions. It
may also be important for the high densities reached in these collisions with
increased phase-space for hole propagations.

In our analysis we have assumed the single particle energies in the prop-
agators to be the same in all three cases. In Brueckner theory there is how-
ever a common practice to neglect the second order rearrangement mean
field in the propagators defining the effective interaction K i.e. in the en-
ergies ¢; in Eq. (23). (For an exception see Ref. [3]). In other words the
Brueckner choice for single particle energies €2 to be used in the calculation
of the K-matrix equation Eq. (23) is given by

2
D = zp—m—+Re21(€I;’,p),
where X, is the first order mean field ezcluding the Brueckner second order
rearrangement energy. There is good reason for this choice because in the
diagrammatic analysis one finds the second order insertions to be “off the
energy shell” and therefore they contribute little to the total energy. This
was already pointed out by Brueckner and coworkers [16]. In contrast the
Green’s function methods use the full field ¥ (including the second order
Brueckner field) in the propagators. Because the Green’s functions g are
approximated by free field functions gy one obtains quasi-particle energies
defined by Eq. (11). This implies that the w integrations are expected to
give an average value located at the quasi-particle peak. It is well known
however that the spectral functions are heavily skewed (see e.g. Ref. [13])
and a lower average value such as given by the Brueckner choice el; seemns
more reasonable. This may lead to significant numerical differences between
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Brueckner and Green’s function calculations. The practice of using the free
field functions go when applying the Green’s function methods is an untested
approximation. It is our belief that a better approximation is called for.

This is also suggested by a related error committed when calculating
the total energy from the sum rule

+o00 &
o [ s (B-)tr

with the spectral-function given by a quasi-classical approximation

E=2

g'\t

a(p,w) = 27hé(w — wy)

as in Ref. [18]. An improved approximation, the extended quasiparticle
approximation (EQP) for the spectral-function was in Ref. [13] shown to
lead to an important correction. It was in fact found that the second order
rearrangement energy (the hole-hole term) should be excluded in this sum
rule or in other words that this energy does not contribute to the average
energy wi(p g of a hole. Also note that the Brueckner choice of single parti-
cle energy ¢, defined above, also equals this average energy experimentally
referred to as the (negative of ) removal energy of a nucleon.
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