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Ground state results for the hypernucleus } He are reported. They
have been calculated with a variational Jastrow-like trial wave function
and also within the Diffusion Monte Carlo method. Simple central poten-
tials have been used to describe NN and AN interactions. The validity of
the rigid core approximation is discussed.
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1. Introduction

When facing up the question of preparing a contribution dedicated to
Professor Janusz Dabrowski, we immediately realized the relevance of his
contributions to the field of hypernuclear physics. Without aiming to be
exhaustive, we may mention his studies on A-hypernuclear matter {1-4],
light A hypernuclei [5], double A hypernuclei [6], £ — A conversion [7-9] and
on ¥ hypernuclear matter and hypernuclei [10-15]. Therefore, the subject of
our research was already defined. Obviously, we had to apply our expertise
in many body systems to a problem involving nuclei and strange particles.
Probably, the simplest non trivial problem is the bound system of a A
particle and the He nucleus, i.e., the iHe. This will be the subject of our
work, with the objective of applying well established many body theories to
the study of hypernuclei.

The AN interaction has been deduced from the existing Ap scattering
data and the analysis of very light hypernuclei. The hypernucleus iHe con-
stitutes a puzzling problem, since the separation energy of the A particle,
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calculated using a variety of models and interactions, results to be consid-
erably larger than the experimental value By (3 He) = 3.12+0.02 MeV [16].
Several reasons have been argued to explain this discrepancy. The inclu-
sion of tensor, spin-orbit and three body ANN terms in the AN interaction
could reduce the A binding energy, but it results that these terms produce
too small changes to appreciably modify the observed discrepancy. Bod-
mer and Usmani [17] reported a variational calculation of the hypernucleus
3 He which includes two- and three-body spin independent correlation func-
tions. They concluded that the experimental A binding energy can be well
reproduced including phenomenological strongly repulsive ANN dispersive
forces, whose origin should be associated with the suppression of two-pion
exchange interactions arising from modifications of the intermediate £ by
the medium. These results suggest the convenience of carrying out a more
precise calculation, without the incertitude of a variational approach.

The empirical A separation energy can be well reproduced within the
a-A model, which takes advantage of the nuclear a-cluster model. However,
there are no Aa scattering experiments which could provide direct informa-
tion on the Aa potential, so that this interaction is obtained by convoluting
the AN potential over the 4He distribution. This approach is called rigid-
core or adiabatic approximation [18] and it assumes that the *He-core is
not very much perturbed by the presence of the A in the nucleus. But a
readjustment of the original AN potential must be done to provide good
agreement with the empirical binding energy. A detailed analysis of this
approximation is given in Ref. [19].

In this paper we report on preliminary results of a Diffusion Monte Carlo
(DMC) calculation of the system 3 He. In this exploratory study we use two
simple NN potentials: the Brink and Boeker Bl {20] and the Afnan and
Tang S3 [21]. For the AN potential we use also effective interactions, whose
parameters have been adjusted {19] to reproduce the empirical A binding
energy in the rigid core approximation. All these NN and AN potentials are
superpositions of Gaussians. Our purposes are to explore the validity of the
rigid core approximation, to study the dependence of the A binding energy
on the NN interaction, to determine the localization of the A particle around
the He core and, finally, to assess the quality of the used AN interactions.

The fact of dealing with a very light system requires a proper treatment
of the center-of-mass motion. The best way to do it is to directly describe
the system in terms of relative and translationally invariant coordinates.
The set of coordinates used in this work is described in Section 2. This
section also includes the description of the elementary AN interactions. In
Section 3 are shown the results given by a variational calculation of the
hypernucleus f'\He with a Jastrow-like trial wave function. The obtained
wave function per each NN and AN interactions is the input for the DMC
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calculation, which is discussed in Section 4. Given that we are concerned
with pure Wigner forces, the hypernucleus f’\He may be considered as a
system of bosons, and the DMC algorithm will provide the exact, within
statistical fluctuations, description of the system. Finally, the conclusions
are drawn in Section 5.

2. The intrinsic coordinates and the elementary interactions

To take proper care of the center-of-mass motion, we will use a set of
intrinsic, t.e., translationally invariant, coordinates. In the following the
external coordinates of the four nucleons will be represented by r1 up to r4,
and the external coordinate of the f\He particle by r,. The four internal
coordinates will be denoted by £; up to &4.

The first three coordinates are defined in the usual Jacobi form, namely

b= \/g(f'z -r1), (1)
522\/%(7'3-2—;“12) , (2)
53:\/§<7‘4‘Ej§—+$)- (3)

The fourth coordinate is the distance of the A particle to the center-of-mass
of the He nucleus,

(4)

4mA T+ r2+r3+ 1y
§a = TA — ’

4m 4 my 4

with a dimensionless scale factor, defined in terms of the masses of the
elementary constituents, so that the intrinsic part of the kinetic energy
operator becomes

- P
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as if it were the kinetic energy operator of equal mass particles. The defini-
tion of the last coordinate is not the usual one, and in fact the Jacobian of
the transformation is not 1. However, this choice will simplify the applica-
tion of the Diffusion Monte Carlo algorithm.

To describe the NN interaction we have considered two commonly used
potentials, the B1 of Brink and Boeker [20] and the S3 of Afnan and Tang
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[21]. The former is an effective interaction which produces a too large bind-
ing energy for *He, and the latter is a realistic interaction which was adjusted
to the s-wave phase shifts in the singlet and triplet channels. The reason of
using these two interactions is that, for an unknown reason, the *He one-
body densities are almost indistinguishable for the two interactions. Con-
sequently, both interactions will generate the same A-a effective interaction
for a given AN interaction. The differences in the full microscopic calcula-
tion of f'\He are to be assigned exclusively to many-body effects. Actually,
the *He two-body distribution functions related to these two potentials are
quite different, because of the short range repulsion of the S3 potential.
In both cases, we will use the Wigner part of the interactions by taking
advantage of the spin and isospin saturation of the core *He nucleus.

Concerning the AN interaction we have considered four of the forms
adjusted by Daskaloyannis, Grypeos and Nassena [19] so as to reproduce
the A-a binding energy in the rigid core approximation. The forms selected
correspond to a convolution based on a single Gaussian (labelled pgr in
Ref. [19]), of the effective interactions of Dalitz and Downs [18], Bassichis
and Gal {23], Gibson, Goldberg and Weiss [22] and Sotona (reported by
Zofka in Ref. [24]). To refer to these four potentials we will use the sym-
bols D, B, G and S respectively. All these interactions are written as a
combination of Gaussians

Vin(r) = Y Viewp (- 7). (6)

Their parameters are displayed in Table L

TABLE I
Parameters of AN potentials, taken from Ref. {19]

Potential Vi(MeV)  a;(fim) V2(MeV) az{(fm)
D [18] ~158.27  0.5907 - -
B [23] —44.98 1.031 27.6 0.5908
G [22] -82.23  1.21 145.0 0.82
S [24] —~212.28 0.8 949.6 0.4

These AN interactions have quite different forms, as is shown in Fig. 3,
ranging from the smooth Dalitz and Downs form which is purely attractive,
to the realistic-like form of Sotona. The common characteristic of these four
interactions, as we have already mentioned, is their fit to the A separation
energy within the rigid core approximation for a given one-body distribution
of the *He core.
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3. Variational description

Prior to the DMC calculation we have obtained an approximation to
the ground state wave function of the system by minimizing the expecta-
tion value of the intrinsic hamiltonian with respect to a Jastrow-like trial
function. It is indeed convenient to use a good starting state for the DMC
method serving as driving or importance sampling function. We have chosen
the variational trial function as a product of two body correlation factors,
both for the nucleon-nucleon as well as for the nucleon-lambda pairs

4 4
= [ ANri—ril) [ N*Ura - 750). (7)
1<j=1 1=1

The correlation functions are parameterized as
NN (r) = exp(—ayr?) + bexp(—ayr?) (8)

and
FNA(r) = exp(—ar?) + b’ exp(—apr?). (9)

One expects a; and a to be small, corresponding to a long range shell-
model like wave function, and a; and a) to be rather large, corresponding
to short range correlations. The parameters b and &' control the depth of
the correlation at zero distance.

The trial wave function is thus characterized by six parameters, which
are determined by minimizing the energy expectation value for each nucleon-
nucleon and nucleon-lambda interaction. This minimization procedure is a
rather lengthy job, but otherwise straightforward. The wave function, as
well as the interactions, should be written in terms of the intrinsic coordi-
nates. Moreover, the wave function ¥ is a linear combination of exponentials
of quadratic forms of the intrinsic coordinates. For the kind of interactions
we are dealing with, the expectation value of the potential energy requires
the evaluation of integrals of Gaussian-like forms, which may be carried out
analytically. Something similar happens for the kinetic energy. By using
equation (5) one must carry out the second derivative of a Gaussian-like
form, and subsequently integrate a polynomial times the same Gaussian
form. This procedure must be repeated for each term coming both from
the left-hand side and the right-hand side wave functions. We have used
the algebraic manipulation program REDUCE to carry out all coordinate
transformations for a generic Gaussian form, and generate afterwards an
output acceptable as a FORTRAN source code. Apart from saving a lot
of work, we have also avoided the unwanted presence of typing errors when
writing these long formulae.
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The results of the minimum energy search are shown in Table II, for the
set of NN and NA interactions considered in this work. The table lists the
parameters which minimize the expectation value of the hamiltonian, as well
as the resulting variational upper bound for the energy of the hypernucleus.
The first row of each block displays the variational results for the nuclear
4He systems using an analogous trial wave function. The last column shows
an estimate of the A binding energy obtained by subtracting the upperbound
for the *He energy from the upperbound for the } He energy. It is worth
noting that this estimate is not variational.

TABLE II

Variational determination of the hypernucleus 3He. The table is divided in two
blocks, one corresponding to the Bl interaction of Brink and Boeker, and the other
corresponding to the S3 interaction of Afnan and Tang. The first line of each
block corresponds to the minimum in the absence of the A particle. The remaining
rows correspond to four types of NA interaction. The various columns identify
the interactions and the parameters of the wave function. The last two columns
correspond to the upper bound to the energy (column labelled E) and an estimate
of the binding energy of the A particle (column labelled B).

N-N| N-A | ai(F7?) ax(F7Y) b ai(F?) ay(F?) b E B
(MeV) (MeV)

B1 0.08323 1.7033 —0.4875 ~36.69

D [18] ] 0.07784 1.5832 —0.4914 0.04568 0.9723 0.6648 —43.81 7.12
B (23] ] 0.07778 1.6538 —0.4910 0.01727 0.2438 0.6381 —40.76 4.07
G [22]] 0.07817 1.6457 —0.4863 0.03058 1.2019 —0.1185 —39.71 3.02
S{24] | 0.07670 1.7916 —0.4980 0.05411 4.3802 —0.4820 —42.60 5.91

S3 0.08590 2.1332 —0.7187 ~24.35
D [18] | 0.08096 2.0135 —0.7196 0.04446 0.8981 0.6847 ~31.73 7.38
B [23] | 0.08136 2.0840 —0.7212 0.01784 0.2535 0.6376 —28.60 4.25
G [22] | 0.08057 2.1284 —0.7197 0.03063 1.6136 —0.1451 —27.48 3.13
S [24] | 0.08105 2.0854 —0.7207 0.05752 4.7229 —0.4940 —30.46 6.11

The most appealing result of this variational study is that the lambda
separation energy is almost independent of the nucleon-nucleon interaction.
In fact, the Bl and the S3 interactions are rather different, the latter hav-
ing an important soft core at short distances, whereas the former is quite
smooth. As can be seen in Table II,these interactions produce rather differ-
ent values for the energies, as well as for the wave function parameters. As
we have mentioned in Section 2, the one-body densities of *He obtained with
these interactions are almost indistinguishable, but the two-body densities
differ appreciably at short distances.
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The A binding energies are very sensitive to the AN interaction. This
is somehow surprising because the interactions used were adjusted to give
the experimental value of the binding energy of the A particle in the *He
nucleus, within the rigid core approximation and for a given nuclear density.
The tentative conclusion is that many-body effects are important, and that
the rigid core approximation fails. A glance to Table II illustrates this result.
The parameters of the nucleon-nucleon correlation function are different for
the He nucleus and for the He core in the 3 He hypernucleus, particularly
the parameter a; which is related to the long-range part of the correlation.
The same kind of result is observed in the exact calculations which will be
presented in the next section.

4. Diffusion Monte Carlo calculation

The DMC method is a procedure of solving the imaginary time A-
body Schrédinger equation and obtaining stochastically the true ground
state energy as well as the corresponding wave function. The method was
originally proposed by Anderson [26] and improved with the addition of
an importance-sampling driving function by Ceperley and Alder [27] and
Reynolds and coworkers [28].

The procedure consists in leaving an initial wave function to evolve with
time, by using an approximate Green function valid for short time steps,
to reach the ground state wave function, by diminishing the amplitudes of
all other components which may be present in the starting state. The wave
function is represented by a collection of random vectors R = {{1, £2, €3, €4}
called walkers, each of them representing a snapshot of the system at a given
time. The time evolution turns out to correspond, in the short time approx-
imation, to a succession of drifting, isotropic diffusion and multiplication of
each walker.

Instead of studying the evolution of the ground state wave function
¥(R,t), it is better to consider its product by an importance or trial wave
function ¥7(R), so that the quantity which is evolving with the time is

f(R,t) = ¥p(R)¥(R,1). (10)

A step forward with time is obtained by means of the equation
fRt+7) = [ G(R, R )R O, (11)

where 7 is the time-step, and G is the small-time approximate Green func-
tion. Among the various approximation to this Green function [29-31], we
have used the O(r?) form
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! 2
G(R',R,7) =(4x D7) 734/ exp { (R’ - R;Dlzrf(R)) }

X exp { (E _ Eu(R) ;EL(R,))T} +0(r%), (12)

where the local energy is

1

EL(R) = 97 (R

HYr(R), (13)

t.e., corresponds to the action of the hamiltonian on the trial wave function
divided by the trial wave function, and the diffusion constant is D = k% /2m,
m being the nucleon mass. Note that the different mass of the lambda
particle has been absorbed into the coordinate transformation described in
Section 2.

Finally, the energy, as well as other observables, is determined by means
of the mixed estimator

E~ lm (PT|H|P(t)) _ fEL(R)f(R,t)dR. (14)

oo (UrlRQ)) [ A(R,04R
This equation has null variance in the limit in which the trial function is
the exact ground state wave function. Furthermore, when dealing with
observables other than the hamiltonian, a correction has to be applied to
the above equation [32].

The stochastic DMC method has been carried out by using as impor-
tance sampling functions the variational wave functions determined in the
previous section, for each set of elementary interactions. The initial set of
walkers was determined from the squared trial function by means of the
Metropolis algorithm [33], and the total number of walkers was maintained
around 500, within the statistical fluctuation. A total of 40 blocks of 1000
time-steps per block was used to determine the energy value, the distri-
butions and the radii of the distributions. This corresponds to 20 million
samples per interaction. The time step was taken as 0.0001 MeV ™!, which
is short enough to have an extrapolation error less than the statistical error
of the result [25].

The main set of results is shown in Table ITI. The structure is analogous
to that of Table II. The table is also divided into two blocks, one correspond-
ing to the Bl interaction and the other to the S3 interaction. The first row
of each block displays the high-precision determination of the He binding
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energy for the referred interactions from Ref. [25]. The third column lists
the energies of the system f\He, and by subtracting the energy of the *He
nucleus one gets the values of the binding energies of the lambda particle
which appear in the sixth column. These values are in a rather wide range
between 3 and 7 MeV, strongly depending on the A — N interaction.

TABLE III

Diffusion Monte Carlo determination of the binding energy of the A particle in *He
for several nucleon-nucleon and nucleon-lambda interactions. The table is divided
into two blocks. The first line of each block contains the binding energy of *He
[25] in absence of the lambda particle, as well as the point mean square radius.
The other rows include the effect of the lambda particle in the total binding energy
(third column), the point mean square radius of nucleons from the center-of-mass of
the *He nucleus (fourth column) and the point A mean square radius again from the
center-of-mass of the *He nucleus (fifth column). The sixth and seventh columns
contain the value of the binding energy of the A-particle, the former as determined
by our DMC calculation, and the later from the rigid core approximation.

N-N N-A E (MeV) *N-a (F) TaA—a (F) Ba (}I)I/IeV) B MeV)
DMC Rigid core
B1 —38.3240.01 1.395
D [18] | —45.614+0.08 1.308 1.768 74+0.1 3.43
B [23] —42.231+£0.05 1.352 2.423 4.0+ 0.06 3.30
G [22] | —41.8+0.09 1.366 2.583 3.6+0.1 3.12
S [24] —45.874+0.08 1.329 1.935 76+01 3.23
S3 —27.354+£0.02 1.398
D [18] | —34.57+0.08 1.293 1.750 7.3+0.1 3.43
B [23] | —-31.32+£0.12 1.339 2.417 4.0+ 0.15 3.29
G [22] | —-30.97+0.15 1.358 2.613 3.7+0.2 3.11
S[24] | —35.1+£0.3 1.315 1.918 7.7+0.3 3.22

One can see that the A binding energy is quite insensitive to the NN
interaction, as we have already noticed in Section 3 with the variational
results. To understand this insensitivity let us examine the one-body dis-
tribution functions. We have found convenient to refer these distribution
functions to the center-of-mass of the *He nucleus, instead of taking as ori-

gin the center-of-mass of the hypernucleus. The distribution functions are
defined as

pn(r) = [ der - deald(er, €078 (r _ (7'1 -

Ty +1‘2-|—1'3+1’4))
4 )

(15)
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Fig. 1. The one-body distribution functions of a nucleon and the lambda particle
referred to the center-of-mass of the *He core nucleus, obtained from the DMC
calculation for the Bl nucleon-nucleon interaction and for the four AN interactions
used in this work. The distribution corresponding to the nucleon has a strong peak
around 1 F.

for the nucleons, and

pa(r) = /dfl - dEq| (€, Eq)I76 (" - (TA SRR RLE +r4)) )

4

(16)
for the lambda particle. In both cases, the wave function should be the exact
wave function, but we have obviously used the mixed estimator to determine
the distributions. These distribution functions are spherically symmetric,
and in Fig. 1 we have plotted both functions for the various combinations of
NN and AN interactions, normalized to unity (i.e., f0°° p(r)dr = 1), so that
these functions include the angular average and the 2 factor of the three-
dimensional integration. A parameter characterizing these distributions is
the root mean square radius, which is defined in both cases as

r? = /drp(r)rz. (17)

The values of the different radii are also displayed in Table III, columns
fourth and fifth. The shape of the distributions and the values of the radii,
clearly show that the A particle is quite outside of the *He core but not
very far away. Actually, after adding the A particle, the He core shrinks
noticeably, the radius being almost a 10 % smaller than in the isolated
nucleus. On the other hand, the A particle is at a distance of almost twice
the nuclear radius from the center-of-mass of the *He core.



Microscopic Calculations of the Hypernucleus 3 He 535

Another way of visualizing the shape of the nuclear core and the sit-
uation of the lambda particle in the hypernuclear system is to plot the
instant positions of a given nucleon and of the lambda particle, along the
Diffusion Monte Carlo stochastic evolution. This is shown in Fig. 2, for the
B1 nucleon-nucleon interaction. At the left side, each point represents the
projection of the position of a nucleon on the X-Y plane, and the same is
shown at the right side for the lambda particle. The axes extend from -4 F
to 4 F, and the total number of points plotted is 10000. The various plots
from the top to the bottom correspond to the interactions D, B, G and S
presented in Section 2. Particularly appealing is the plot corresponding to
the Gibson interaction, where the position of lambda particle is spread in
a wide region compared with the size of the *He core. This is also evident
from the very large radius 75 _, quoted in Table III for this interaction.

It is now the moment of discussing a consistent rigid core approximation
(18]. The basic idea of this approximation is that the interaction of the
added lambda particle is weak enough so as not to disturb too much the
4He core. In other words, a good approximation to the wave function of the
hypernucleus is the product form

¥ = ¥y(€1,62,63)P4(64), (18)

where ¥, is the exact ground state of the *He core in absence of the lambda
particle. By using the variational principle, with a fixed wave function P,
and an arbitrary wave function for the lambda, there results an one-body
Schrédinger equation with the Hamiltonian

2

h 2
Heﬂ' - ““2—,U,V + Veﬂ', (19)

where p is the reduced A-*He mass, and the effective interaction is given by

4
Vealr) = [ derdtadesliine(en, 0,607 Y. Viealra = ra). (20)
k=1

The lowest eigenvalue of H.g is an upper bound to the binding energy of
the lambda particle, provided the wave function ¥y.(£1,£2,&3) is the ezact
wave function of the uncoupled He core. The evaluation of the effective
interaction is quite simple, being the convolution of the free AN interaction
with the one-body density defined in Eq. (15). In Fig. 3 we have plotted
the elementary AN interactions (left part) and the effective Aa interaction
coming from the convolution with the one-body density of the isolated *He
core. The strong differences among the four AN interactions are clearly
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Fig. 2. A pictorial view of nucleons and lambda particle with respect to the center-
of-mass of the *He core. The instantaneous position of a given nucleon (left plot)
and of the lambda particle {right plot) has been recorded along 10000 steps of the
DMC stochastic evolution, and projected on the XY plane. The NN interaction is
the B1, and the AN interactions are, from top to bottom, D, B, G and S, as defined
in the text.

reduced when obtaining the effective forms. In all cases the effective Aa
interaction is attractive, the range being inversely proportional to the depth
of the potentials.

The upper bounds to the binding energy of the lambda particle in this
approximation are shown in the last column of Table III. Certainly, the
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Fig. 3. Plot of the free AN interactions and the effective Aa interactions obtained
by convoluting the free potentials with the one-body density of the isolated *He
nucleus. The one-body density is evaluated by means of the DMC algorithm for
the B1 nucleon-nucleon interaction.

upper bound condition is always respected. Moreover, the values obtained
in this approximation are quite similar to the experimental values of the
binding energy, but this is to be expected, the free interactions having been
adjusted [19] to reproduce this quantity within the rigid core approximation.
In the work of Ref. {19] a parameterized one-body distribution was used.
This distribution is not too different from the distributions we are obtaining
from the nucleon-nucleon interactions in the DMC algorithm, and so our
values for the rigid core approximation do not differ appreciably from the
adjusted value of Ref. [19]

However, the rigid core approximation to the values of the binding
energy of the lambda particle differs noticeably from the exact, within sta-
tistical fluctuations, results of the DMC algorithm of the full hypernuclear
system. The conclusion is obvious, namely that the rigid core approxima-
tion is not as good as expected, or, in other words, that many-hody effects,
in the form of polarization of the core, are very important.

5. Conclusions

The main contribution of this work is the determination of the bind-
ing energy of the iHe hypernucleus by means of a Jastrow variational ap-
proach and, especially, by solving exactly, within statistical fluctuations, the
five-body Schrédinger equation with the help of the Diffusion Monte Carlo
algorithm.

It would not make much sense to compare our results for the separation
energy of the A particle to the experimental value since the elementary
interactions used are not realistic. Actually we have obtained values ranging
from 3.6 to 7.7 MeV, depending on the AN interaction used. These numbers
are very different from the experimental measurement of 3.124+0.02 MeV.

On the other hand we may state conclusions on the validity of the rigid
core approximation. Due to the obvious difficulties in measuring precisely
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the AN phase shifts, the usual method to determine the AN interaction is
based on the analysis of hypernuclei which may be described as a system
of a particles plus the strange baryon. The required A« interaction is con-
structed by folding the free AN interaction with the one-body density of the
4He nucleus. This procedure will produce upper bounds to the A separation
energy provided that the ezact one body distribution of the nucleon in the
4He nucleus is used. The comparison of the upper bounds determined in
this form with the microscopic calculation shows that the rigid core approx-
imation is not valid, and this means that many-body effects are important,
and also that polarization of the core He nucleus is not small.
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