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We have applied the microscopic coupled-cluster method (CCM) of
many-body quantum theory to the U(1) lattice gauge models in (1+1)
and (2+1) dimensions. The mode couplings and plaquette correlations
are studied in detail by means of a hierarchical truncation scheme. Good
numerical results for the ground-state energy have been obtained for a
range of coupling constants varying from strong to weak. The systematic
and nonperturbative natures of the CCM are emphasized.
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1. Introduction

Lattice gauge models have been a subject of study for almost two
decades by various techniques. Such techniques include perturbation the-
ory (1] and various analytical continuations from or resunmations of the
perturbation series [2], finite lattice calculations [3], Monte Carlo calcula-
tions [4, 5], variational methods [6], and renormalization group methods
[7]. Recently, two of the most universal techniques of quantum many-body
theory, namely the method of correlated basis functions (CBF) [8] and the
coupled-cluster method (CCM) [9], have also been applied to the Hamilto-
nian models of lattice gauge field theory, and have shown some promising
results [10, 11].

In our previous paper [11], we have shown that within the one-plaquette
approximation (i.e., one in which no inter-plaquette correlations are re-
tained) the U(1) lattice gauge model becomes the well-known Mathieu prob-
lem; and within a subtruncation scheme we were able to obtain essentially
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the exact numerical solutions of the Mathieu equation. In this paper we ex-
tend our analysis to include the two-plaquette correlations. We also employ
a similar sub-truncation scheme to study in a systematic manner the mode
couplings and the plaquette correlations. We focus on the local correlations
in this paper. A computer algebraic technique is employed to derive and
solve the coupled CCM equations.

The outline of this paper is as follows. In Section 2 we give the general
analysis of the CCM for U(1) models and briefly outline the one-plaquette
approximations. Section 3 is devoted entirely to the two-plaquette approxi-
mation scheme. We employ a local approximation within this two-plaquette
scheme in order to study the effect of high-order mode-mode couplings. We
conclude with a summary and discussion in Section 4.

2. Coupled-cluster formalism for U(1) models
and its one-plaquette approximation

For most applications a parallel can be drawn between the coupled-
cluster method (CCM) and perturbation theory. Both usually start from a
non-interacting (unperturbed) state and the correlations are incorporated
va excitations from this non-interacting state or the model state as it is
often called. The key difference between the two theories, however, lies in
the fact that in the CCM the correlation operator takes the form of an
exponentiated function. This feature not only gives the CCM the property
of extensitivity for such quantities as the ground-state energy, but also takes
the CCM completely out of the realm of perturbative techniques, as we shall
see more clearly later. Both these and other features of the CCM have been
well documented. The interested reader is referred to Ref. [9] and the
references quoted therein.

Firstly in this section, we briefly outline our CCM analysis for the U(1)
lattice gauge theory. We consider in this paper only the cases of (1+1)
dimensions (1D chain, i.e., a linear array of plaquettes) and of (2+1) di-
mensions (2D square lattice). The Hamiltonian for U(1) models is usually
written as

1 o?
H=—3 547 +AZ(1_COSBP), (2.1)

where the first summation is over all hnks I of the corresponding lattice ,
and the second over all plaquettes p; A is the coupling constant, and A — 0
is referred to as the strong-coupling limit, while A\ — oo is the weak coupling
limit; A; is a vector potential defined on the link /, whereas the magnetic
field By is a plaquette variable defined by the four values of A; with I € p,
t.e., Bp = Ay + Ay — A3 — A4, where the order for the 4 link indices is
counterclockwise around the plaquette. For the U(1) model we can easily
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express H in terms of the plaquette variables alone for any dimensionality.
Since we consider only the 1D and 2D models in this paper, we quote the
corresponding Hamiltonians,

- . —xr < B, <
H= Z OBZ A(1 - cos Bp) ZaB 55 *<B,<m,

(2.2)
where p is a lattice vector connecting nearest-neighboring plaquettes of the
lattice. In 1D p has two values, while in 2D it has four.

The well-known Mathieu equation can be derived from the above equa-
tion in the case of a single plaquette,

d?
9
dB?
and in the strong-coupling (A — 0) limit the Hamiltonian reduces to the
simple unperturbed form,

Ya(B)+ A(1 — cos B)yYn(B) = €npn(B); —#<B<7w, (2.3)

2d?
HOZ—E—EE; —-7<B<mr. (2.4)
This unperturbed Hamiltonian has two sets of eigenstates, namely {cosmB ;
m = 0,1,2,...} with even parity, and {sinmB; m = 1,2,...} with odd
parity.

We now take the ground state of Hy, which is simply a constant and
chosen to be unity, as our non-interacting model state for the U(1) model.
The ground state of the many-body systems described by Eq. (2.2) is then
constructed from these simple strong-coupling single-plaquette wave func-
tions as the starting-point of our CCM analysis. Thus, the exact many-body
ket ground state of Eq. (2.2) is written in the CCM form as,

[9o({B,})) = B DI), S({B,}) = Z 5:({Bp}),  (2:5)

where |$) is the constant many-plaquette model state, NV, is the total num-
ber of plaquettes in the lattice, and the k-body correlation operators S are
decomposed as

51 = Z Z Sp(n) cos(nBy), (2.6a)

n=1p=1

Z Z [815,3,2 n1,n2) cos(ny By, ) cos(ny By,)

2 nlynz—l p1,p2=1

+ S;f;,z(nl,ng)sin(nprl)sin(nzsz)] , (2.6b)
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and similarly for the higher-order partitions §; with k£ > 2. The coefli-
cients {Sp, ...(n1,...)} are to be determined by the coupled sets of CCM
equations discussed below, and the prime on the summation in Eq. (2.6b)
excludes the terms with p; = p;. We note that the choices of Egs (2.6a),
(2.6b) are dictated by the requirements that |¥) should be invariant under
the transformation B, — Bp + 27 and should have even parity under the
interchange of the sign of all {B,} variables simultaneously.

In deriving the coupled CCM equations for the correlation coefficients
{Sp}, {Spip.} etc., one needs to define an inner product of wave functions

(9({B,})| and |f({B,})) as,
T N,
Yy (dB
(3lf) = —215-f. (2.7
i / n(z)g

Thus ($|®) = 1, if the constant value of |#) is chosen to be unity.
From the ground-state (g.s.) Schrédinger equation H|%) = E4|¥,), or
equivalently

e SHeS|8) = E,|¥), (2.8)

one obtains the ground-state energy equation (or zero-plaquette equation)
by taking the inner product with the model state,

E, = (Ble S HeS|®); (2.9)

and the one-plaquette equation for the coefficients {S,} by taking the inner
product with states comprising single-plaquette wave functions,

(¥ cos(nBp)e > HeS|®) = 0. (2.10)

Similar equations for the two-plaquette coefficients consist of two sets of
equations, and will be discussed in the next section.

Before we solve the CCM coupled equations (2.10), it is worth mention-
ing that within the context of the above CCM parametrization there are
clearly two distinct kinds of correlations in play. In the first place one has
the mode-coupling terms between different modes {cos(nB,), sin(nB;)}
specified by the index n on the same plaquette p. Secondly, one has the
more physical correlations between different plaquettes specified by the in-
dices {p;}. Clearly mode-coupling is included even at the one-plaquette
level (i.e., as specified by S; alone), whereas one needs to include at least
S2 as well in order to describe plaquette correlations.

While the CCM parametrization of the ground state given by Eqs (2.5)-
(2.6) is in principle exact, in practice one clearly needs a truncation scheme.
The most common CCM truncation scheme is the so-called SUBn scheme,
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in which only those correlations described by the cluster partitions {$;}
with k < n are included, and those with k > n are set to zero. For example,
in the lowest-order SUB1 approximation, i.e., the one-plaquette scheme, we
make the replacement § — Ssygi = 51, and Eqs (2.9) and (2.10) become

Ny

Eg= AN, =Y ) n*Si(n). (2.11)

rp=1n=1

1 1 o
Z[-—gmm,wmzsp(mng > nn'sp(n)sp(n')(am,n+nf—sm.m*nq)]

n,n'=1

=0; m=12,.... (2.12)

After an extension of the definition of these coefficients to include the
negative modes, and taking advantage of the lattice translational invariance
to introduce the definition,

am = mSp(m); with —a,,, andag =0, (2.13)
we can then readily rewrite Eqs (2.11) and (2.12) as,

E, 1 1 &

(—N—- — /\) 6m,0 + 5/\(6m,1 + 6m,_.1) —mMay, — -2— Z Anlm—n =0, (214)
P n=—oo

which is valid for all integers m.

One can now readily recover the Mathieu equation (2.3) from Eq. (2.14)
by a lattice Fourier transform for the coefficients {a,,}, [11], where the
one-body ground-state eigenvalue ¢¢ is replaced by the intensive quan-
tity E4/Np. This is not surprising since no multi-plaquette correlation ef-
fects have been included in our SUB1 approximation. To go beyond the
one-plaquette scheme (or the Mathieu problem), one needs to include 2-
plaquette (and higher-order) correlations. This is considered in the SUB2
scheme in the following section.

We solve Eq. (2.12) numerically by a hierarchical sub-truncation scheme,
the so-called SUB1(n) scheme in which one retains at the n-th level of ap-
proximation only those coefficients a,, with |m| < n, and sets the remainder
with [m| > n to zero. Solutions for any finite n and A to the general SUB1(n)
approximation to Eq. (2.12) are easily obtained numerically by a simple in-
teraction method [11]. Here we show in Fig. 1 the ground-state energy
per plaquette, E, /Ny, as a function of A, for several SUB1(n) schemes, in
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order to demonstrate the systematic and rapid improvement as n increases.
The full SUB1 values, which are the ezact solution to the Mathieu equation
(2.3), are actually well represented, to the level of accuracy shown, by the
SUB1(20) results for the whole range of A values displayed. The conver-
gence with index n of the SUB1(n) results to the full SUB1 limit is clearly
quite rapid, even in the large-A (weal-coupling) limit. This is contrasted
with the corresponding perturbation theory results for the ground state of
the Mathieu problem which have a natural radius of convergence at a value
Ao < 1.46877 [12]. This perturbation series gives, to eight order,
1., 7 .4 29 68687
4/\ + 256)\ 4608/\ 37748736
We have explicitly verified that in this limit the SUB1(4) approximation for
E4 /N, exactly reproduces this series to the order shown. In general, the
A — 0 limiting form of the g.s. energy in SUB1(n) approximation exactly
reproduces the result from 2n-th order perturbation theory, PT(2n). We
have also included several PT(2n) results in Fig. 1 for comparison.

€0 s A A8, (2.15)

6 H I H ] H
Eq Full SUB1
! PT(4) Lome
SUBIR)
SUBI(4)
41— —
SUBI(3)
2 _
i SUBI() = PT(2) |
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fe) i (6{ i l i
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A

Fig. 1. Ground-state energy per plaquette of the U{1) model as a function of A
for several SUB1(n) approximations, including the full SUB1 scheme which corre-
sponds to the exact solution of the Mathieu problem, and some results from 2n-th
order perturbation theory, PT{(2n), given by Eq. (2.15).

We shall not discuss the one-plaquette approximation any more except
to mention that recently we have also obtained results for both the excitation



A Systematic Coupled-Cluster Calculation... 547

energy gap (glueball mass) and plaquette energy within this one-plaquette
approximation, and have shown they are also exact for the corresponding
Mathieu problem. We now switch our attention to the SUB2 approximations
which include the plaquette correlations.

3. Two-plaquette approximation

The two-plaquette approximation of our CCM analysis is considered
under the so called SUB2 scheme which is defined by the truncation of the
correlation operator S in Eq. (2.5) as,

§ — Ssup2 = 51+ 52, (3.1)

where §1 and S; are written as in Eq. (2.6). Similar to Eq. (2.10) of the
one-plaquette equation in the SUBI scheme, in replacing S with Ssyg, one
can drive the two-plaquette SUB2 equations from the Schrédinger equation
(2.8) by taking the inner product with states comprising the corresponding
two-plaquette variables, z.e.

(cos(m1Bp,) cos(mngz)[e”SSUBZHeSSUBHSF) =0; (3.2)
for the coefficients 5;(;2;2(“1, ny), and
(sin(my Bpl)sin(mgBm)|e—SSU32HeSSUBZI¢) =0; (3.3)

for the coeflicients S},ﬂ,z

=1,2,..., and p; # p2.

Comparing with the SUB1 equations (2.12), the final forms of the SUB2
equations (3.2) and (3.3) are quite involved. In the following we consider
a further sub-approximation within this SUB2 scheme. However, we first
need to simplify the notations for the two-plaquette coefficients. Using the
lattice symmetry properties, one can write

(n1,n2), and where in both equations, m;,m;

Séfiz(m,nz) = bp(n1,n2), S;ﬁf;z(m,nz) = co(n,n2), r=p2-— fl . )

3.4

Clearly, 7 is simmply an integer in the 1D array of plaquettes, but a lattice
vector of the square lattice for the 2D case.

The approximation we make is a.lowest-order local approximation in
which one retains those coefficients with |r| = 1 only. The coefficients
involved are therefore the one-plaquette coefficients {a,}, as defined pre-
viously by Eq. (2.13), and the nearest-neighbor two-plaquette coefficients
{b1(n1,n2)} and {c1(n1,n2)}}. These so-called SUB2-1 equations are given
as follows.
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Firstly, the zero-plaquette equation (or energy equation) now becomes,

E O oo
-N—q- =X- Z a — Z E nn'bi(n,n')es(n,n')
P n= n,n'=1
P e o]
-5 E n?[b3(n,n') + c2(n,n")]. (3.5)
n,n'=1

Secondly, in this SUB2-1 scheme the one-plaquette equations become
A
- _(61 m + 6—1 'rn) + ma;,

AnGntm + znapnbi(n,m) + 4manc1(n m)]
—oo

g— Z [ {n(n+m)+n"?}{b1(n, n")b1(n+m,n')+c1(n, n')es(n+m,n')}

+ %nn'{bl(n, n'Ye1(n + m,n') + by(n,n' + m)ey(n, n')}] =0. (3.6)

Finally, the two-plaquette equations, which consist of two sets of equations,
became respectively,

1 1
2 mmzer(ma, mz) + E(mf + m3)by(my,ms)

1 < gl
.._.2. Z [Zan{mlcl(ml,n—i-mg)+m2c1(m2,n+m1)}

n=—oo
+ nan4m, b1(n, m2) + napym,bi(n, my )]

1 < [l
-3 Z [—{n(n'+m2)+n'(n+ml)}bl(n,n')cl(n—i-m],n'+m2)

n,n =—00

+ {n(n + m1) + n'(mz + n')}H{b1(n,n")b1(n + my, n' + my)
+ c1(n,n')er(n + my,n' + mz)}] =0; (3.7)

and

1
7 [0m1 @my + mamzbi(ma, ma)] + E(mg + m3)e1(ma, m)

oo

1 1 1
+5 z {Z'mzan+m1bl(m2an)+Zmlan-i-mzbl(ml’n)

n=—oo
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+ nantm c1{n, ma) + nappm,crn, ml)}

1 < 1
+Z Z [Znn'bl(n,n' + my)bi(n',n+ my)
nn/=—oco

1
+ Z(n + m2)(n' + my)ei(n,n' + my)ey(n',n + my)
+ n(n + my)bi(n,n' + ma)ey(n',n + my)

+ n(n + m2)bi(n,n' + mi)ai(n',n+ mg)J =0, (3.8)

where z is the coordination number of the lattice, i.e., z = 2for 1D and z = 4
for the 2D square lattice, respectively. In deriving the above equations, we
have used the lattice symmetries for the coefficients, namely

br(n,m) = b.(m,n), cr(n,m) = cp(m,n); (3.9)
and

br(—n,m)=b.(n,—m)=b.(n,m), c.(—n,m)=cp(n,—m)=—c,(n,m).
(3.10)

One can see that there is still the mode-coupling to deal with as in the
SUBI scheme.

It is also possible to make further truncations beyond those made above.
Within the local 1-mode approximation, for example, we retain only the sin-
gle coefficient, a;, which is the same as the SUB1(1) approximation consid-
ered earlier. In the local 2-mode approximation, however, 4 coefficients are
retained. They are a; and a; from the one-plaquette equations, and b1(1,1)
and ¢;(1, 1) from the 2-plaquette correlations. The equations in this partic-
ular local 2-mode approximation, denoted as SUB2-1(2), are given, together
with the energy equation, by,

E, z z
I—V% =A-al-ai- Zbyey — (b3 + c2); (3.11a)
——}’\-+a1 —ajay — zay (b1 +%c1) =0; (3.11b)
2a; + 3al = 0; (3.11c)
(1-ap)(b1 + 1c1) = 0. (3.11d)

%a% +(1+ ag)(:}bl + c1) =0; (3.11e)
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where we have simplified the notation further in this SUB2-1(2) scheme by
writing b; = b1(1,1) and ¢; = ¢;(1,1). We note that the SUB2-1(2) ap-
proximation reproduces the correct coefficients in the strong-coupling limit
of the U(1) models up to the fourth order [5, 2],

B {,\—1/\2+3840)\4+O(,\6) 1D;
o .

Np A— 00 (3‘12)

A=A+ 38300+ 0(X%), 2D.

In a similar fashion the local 3-mode approximation, the SUB2-1(3)
scheme, and other local higher-order multi-mode approximations, can also
be made within the SUB2 equations. The SUB2-1(3) scheme in partic-
ular retains 7 independent coefficients. The 3 additional coefficients are
as, b1(1,2) (= 61(2,1)) and ¢1(1,2) (= ¢1(2,1)). Generally, for the SUB2-
1(n) scheme, the number N,, of independent variables is given by

Nn = [n(3n+1)], (3.13)

where the symbol [A] denotes the integer part of the number A.

It is not difficult to see that as the number n increases in a SUB2-
1(n) scheme, both the number of the corresponding coupled equations and
the number of terms in each equation increase rapidly. It quickly becomes
awkward and time-consuming to derive this equations by hand. Fortunately,
this task can be easily assigned to a computer-algebraic technique. We have
employed such a technique to derive and solve the SUB2-1(n) equations up
to order n = 10. Tables I and II show the results for the ground-state energy
per plaquette for the 1D and 2D modes, respectively, at various values of
A within several SUB2-1(n) schemes, together with the full SUB1 results
(produced by the SUB1(20) scheme to the same accuracy shown) and the
results from perturbation theory of both weak- and strong-coupling limits
for comparison. In Fig. 2, the same quantity is also shown for the 2D model
only. The behaviour for the 1D case is similar. The agreement with other
calculations (2, 10] is very good.

Just as the strong-coupling perturbation series of Eq. (2.15) for the
ground-state energy of the Mathieu problem has a finite radius of conver-
gence, so it seems likely that its counterparts for the 1D and 2D cases of
U(1) lattice gauge theory from Eq. (3.12) also do, as can be seen from the
Tables. Much work in modern field theory goes into attempts to analytically
continue such series outside their natural boundaries. A typical recent such
attempt for the (2+41)-dimensional U(1) model [2] starts from the strong-
coupling perturbation series of Eq. (3.12), utilizing the known coefficients
up to O(A18), as input to generalized Padé approximants. These results
are also included in Table II for comparison. As stated in the previous sec-
tion for the one-plaquette approximation (i.e., the Mathieu problem), we
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TABLE 1

Ground-state energy per plaquette at various values of A for the U(1) model in
(141) dimensions. Shown are the results of the SUB2-1(n) schemes with n =
2,3,4,5,6,8 and 10, defined in the text, together with the full SUB1 results (given
by the SUB1(20) scheme to the accuracy shown) and the results of both strong
(A — 0) and weak (A — o) coupling limits in perturbation theory, PT4(S) and
PT(W), given by Eqs (3.12) and (3.14).

Method

0.5 1 2 3 4 5 6 8 10

SUB1 0.4391 0.7724 1.2430 1.5828 1.8597 2.1000 2.3156 2.6966 3.0315
SUB2-1(2) 0.4389 0.7689 1.1980 1.3684 1.1115 —0.3116 —6.3126 — —

SUB2-1(3) 0.4389 0.7703 1.2319 1.5567 1.8022 1.9833 2.1047 2.1756 2.0250
SUB2-1(4) 0.4389 0.7702 1.2320 1.5615 1.8243 2.0409 2.2184 2.4663 2.6365
SUB2-1(5) 0.4389 0.7702 1.2321 1.5630 1.8308 2.0586 2.2556 2.5708 2.7884
SUB2-1(6) 0.4389 0.7702 1.2322 1.5637 1.8344 2.0694 2.2800 2.6506 2.9723
SUB2-1(8) 0.4389 0.7702 1.2322 1.5638 1.8345 2.0698 2.2811 2.6539 2.9796
SUB2-1(10) | 0.4389 0.7702 1.2322 1.5637 1.8343 2.0693 2.2802 2.6523 2.9780
PT4(S) 0.4389 0.7732 1.3708 2.6273 5.9333 13.236 27.038 86.933 —

PT(W) 0.5744 0.8624 1.2697 1.5822 1.8457 2.0778 2.2877 2.6603 2.9886

again emphasize that our own SUB2-1(n) approximants themselves repre-
sent a natural extension of perturbation theory. They comprise, in effect,
a well-defined analytic continuation or resummation of perturbation theory
results within the context of a natural and consistent hierarchy of approxi-
mations. They may be contrasted with the rather ad hoc approaches based
on Padé and other resummiation techniques, which usually find it difficult to
approach the weak-coupling limit with the correct asymptotic form unless
this is built in from the start.
Finally, perturbation theory in the weak-coupling limit gives

E
-Ni = CoVA — $CE + o(A~1/2), (3.14)

where the values of the constant Cy are 0.9833 in 1D [5], and 0.9581 in
2D [10]. We note that the zero-dimensional analogue (namely, the Math-
ieu problem or our SUB1 approximation) has a similar weak-coupling limit,
but with Co = 1. As can be seen from the Tables and from Fig. 2, the
SUB2-1(2) results are not much better than their counterparts from per-
turbation theory, as is the case for the SUB1(1) scheme for the Mathieu
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TABLE 11

Same as Table II but for the (2+1)-dimensional model on a square lattice, and
with additional results ot 8-th order strong-coupling perturbation theory, PT8(S),
from Ref. [2]. The results from the correlated basis function (CBF) approach
of Dabringhaus, Ristig and Clark [10], and from an analytic continuation of the
strong-coupling perturbation series by Hamer, Oitmaa, and Zheng [2], denoted as
HOZ, are also included.

Method

0.5 1 2 3 4 5 6 8 10

SUB1 0.4391 0.7724 1.2430 1.5828 1.8597 2.1000 2.3156 2.6966 3.0315
SUB2-1{2) | 0.4386 0.7652 1.1468 1.1280 0.301% -2.8326 —15.108 — —

SUB2-1(3) | 0.4387 0.7681 1.2216 1.5371 1.7691 1.9282 2.0153 1.9720 1.6422
SUB2-1(4) | 0.4387 0.7681 1.2214 1.5428 1.7994 2.0123 2.1921 2.4585 2.6365
SUB2-1(5) | 0.4387 0.7681 1.2216 1.5442 1.8043 2.0237 2.2105 2.4977 2.6753
SUB2-1(6) | 0.4387 0.7681 1.2217 1.5453 1.8099 2.0404 2.2482 2.6188 2.9512
SUB2-1(8) | 0.4387 0.7681 1.2217 1.5454 1.8100 2.0404 2.2477 2.6142 2.9358
SUB2-1(10) | 0.4387 0.7681 1.2216 1.5452 1.8095 2.0393 2.2456 2.6096 2.9278

CBF 0.4387 0.7677 1.2167 1.5335 1.7929 2.0201 2.2255 — —
PT4(S) 0.4387 0.7690 1.3042 2.2898 4.8667 10.632 21.638 — —
PT8(S) 0.4387 0.7673 1.1358 -0.7375 -20.873 — - — —
HOZ — — 1.215 — 1.785 _ 2.2 — —_
PT(W) 0.5627 0.8434 1.2402 1.5447 1.8015 2.0276 2.2321 2.5917 2.9150

equation. However, as n increases the SUB2-1(n) results improve rapidly. It
demonstrates again that the produce correct numerical results in the weak-
coupling (large \) region, the retention of the higher-order mode-couplings
is necessary.

Different sub-approximation schemes can also be made from the SUB2
equations. For example, one can include only low-order mode-mode coupling
but retain long-range plaquette-plaquette correlations. Thus, for example,
one might retain the coefficients b,.(1,1) and ¢-(1, 1) with all possible values
of r. From the experience of the application of the CCM to spin lattice
models [13] this approximation should in practice suffice to predict a possible
phase transition. We do not discuss it further here, except to note that our
preliminary results do not suggest a critical behavior for any finite value of
A for either the 1D or 2D U(1) models. These findings are in agreement
with the general consensus that these systems exhibit no phase transition.
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Fig. 2. Ground-state energy per plaquette of the U(1) model in (2+1) dimensions
as a function of A for several SUB2-1{n) approximations (n = 2, 3,4, 10), and the
full SUB1 scheme which corresponds to the exact solution of the Mathieu problem.

4. Summary and conclusion

In this paper we have extended our CCM analysis to include the pla-
quette correlations in the ground state of the U(1) lattice gauge models.
We focus on a local approximation scheme and systematically include the
higher-order mode couplings which are essential for the weak-coupling re-
gion.

From the numerical results presented to date it should be apparent that
the key advantage of our CCM analysis for the U(1) lattice gauge models, as
for the many systems in quantum many-body theory to which it has already
received wide applications, lies in its systematic microscopic approach. The
method is manifestly nonperturbative from the outset, although, as we have
shown, easy contact can always be regained with perturbation theory. We
have demonstrated that the CCM results are valid outside the realm of
validity of perturbation theory. In this sense the method provides a very
natural and automatic extension of the perturbative results. By contrast,
Padé and similar resummation techniques can be extremely unreliable, par-
ticularly when no or only limited information is available for the asymptotic
behavior in the continuum (weak-coupling) limit. We believe that a similar
CCM analysis should also be applicable to such non-Abelian theories as the
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SU(2) lattice gauge models, and we hope to report similar results for these
models soon.

Furthermore, although the actual coupled equations for the retained
cluster configurations coeflicients naturally rapidly become awkward and
time-consuming to generate by hand as the order of the approximation
increases, nevertheless, they are extremely amenable to generation by com-
puter-algebraic techniques. Our first attempt to employ computer-algebraic
techniques has proved to be very fruitful. It is apparent to us that more
comprehensive applications of such computer-algebraic techniques within
the framework of our CCM analysis may produce results which are fully
competitive with those obtainable by alternative techniques.
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the form of a research grant from the Science and Engineering Research
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