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A new version of the supersymmetry scheme for nuclei 32 < 4 < 40
has been proposed. The IBM bosons (pairs of nucleons approximately)
have been taken with spin and isospin degrees of freedom (IBM4) while
nucleons (nucleon) are bounded to the j = 3/, level only. The assumed
supersymmetry group is then the unitary-unitary supergroup U(36/8).
Theoretical energy levels and E2 transition probabilities have been com-
pared with experimental data yielding quite a good agreement.

PACS numbers: 21.60. Fw, 21.10. Ma, 23.20. Ck

1. Introduction

We have already considered the supersymmetry of light nuclei from sd
shells. For several multiplets we have obtained fairly good agreement as
well in energy levels [1] as in E2 transitions [2]. However, in the region
32 < A < 40 the supersymmetry predictions were not so good as for lighter
nuclei from sd shell. The possible reason might be the L — 5 coupling in
which the supersymmetry was assumed. For nuclei 32 < A < 40 both
protons and neutrons obey rather j — 7 coupling because valence nucleons
could be placed most probably on the j = 3/, level. Hence, the unitary
transformation in the nucleon space including isospin degrees of freedom is
of 8 dimensions, i.e. U(8). The boson space is based on s,d bosons of the
standard interacting boson model (IBM) [3] enlarged by the spin-isospin
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formalism [4] which is followed as in [1] bythe symmetry group U(36). The
assumed supersymmetry is then the unitary-unitary supergroup U(36/8).

2. Groups and generators

Realisation of generators of superunitary transformations is usually
done in nuclear theory by quadratic products od creation and annihilation
operators a'(a) for fermions and b7(b) for bosons which read

bg;bﬁ:; alay s b;aa; aLbﬁ, (1)

where a(a') = (j mj 1z m;) for fermions and B(8') = (Im; o ms T m,) for
bosons, with ¢, 7 — the spin and isospin boson quantum numbers which
take on values 1 or 0. The first two operators (1) from the so-called Bose-
-sector of generators with commutation relations and the last two operators
(1) form the Fermi-sector with anticommutation relations. Commutation
relations are also imposed on the mixed commutators of Bose-Fermi opera-
tors (1). The generators are then closed under the above (anti)commutation
relations and define the basis of the Lie superalgebra of the supergroup
U(36/8). The generators (1) while acting on a given boson-fermion state
preserve the total number of particles i.e. the sum of fermions Ny (nucle-
ons) and bosons N, (approximately pairs of nucleons). Hence, a set of
states for a fixed number N = N; + N}, form the basis for an irreducible
representation of the supergroup U(36/8). Such set of states is also called
the supermultiplet (this notion should not be mixed with a Wigner super-
multiplet). Bosons and fermions are taken from the last magic shell either
as particles in the first half of the shell or as holes otherwise. For nuclei
32 €< A < 40 considered here there will be holes only below double magic
shell A = 40.

The assumed supersymmetry consideration enters, in our context, only
through the very important definition of a supermultiplet. Under this as-
sumption all of nuclei which belong to the same supermultiplet (even-even,
even-odd and odd-odd) must behave similarly in the supersymmetry scheme.
The further standard procedure includes:

i) splitting of the supersymmetry group into two unitary subgroups in
fermion and boson space,
i1) construction and analysis of symmetry group chains in both spaces,
i) construction of generators of the combined boson-fermion groups from

sums of boson and fermion operators of the Bose sector of (1).

The last step is a crucial one because it introduces the possibility of fermion-
boson interaction in the constructed Casimir operators which then form an
assumed Hamiltonian of the system.
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At first we take the unitary group product as a subgroup of the U(36/8)
U(36/8) D UB(36) x UF(8). (2)
The generators of these subgroups are the first and second operators of (1)
respectively. The group U(36) chain has been considered in [1] and we take
the same chain

UB(36) > UB(6) x UBL(6) > SOB(6) x SUB(2) x SUB(2).  (3)

In the Fermi space we adopt
UF(8) o SUY, (4) x SU(2). (4)

The chain (3) is, in its orbital part, the IBM version for y-unstable
nuclei for which the symmetry subgroup SO%(6) appeared. There are two
other symmetry subgroups of the IBM, namely SU(5) and SU(3) which are
proper for vibrational and rotational nuclei respectively. We have chosen
the symmetry SO%(G), besides of physical reasons, to fulfill the point (%)
because in the fermion chain (4) the group SUE,(4) is accidentally locally
isomorphic with the group SO%(G). Hence it is possible to form generators
for the group SUJ,, (4) constructed by proper sums of generators of these two
isomorphic groups. Exploiting this isomorphism and also an isomorphism
(mathematical identity) of the groups SUB(2) and SUF(2) we have adopted
the following supersymmetry chain for nuclei 32 < 4 < 40.

U(36/8) D UB(36) x UF(8)
> UB(6) x UB,(6) x SUE,(4) x SUR(2)
5 S0B(6) x SUE, (4) x SUB(2) x SUB(2) x SUG(2)
> SUBF (4) x SUB(2) x SUBF(2)
> SpBE (4) x SUB(2) x SUBF(2)
> SUBF(2) x SUB(2) x SUBF(2)
> SUBF(2) x SUBF(2), (5)
where
J'=Ja+Lg and J=J"+ Sg. (6)

Generators of these group chains have been constructed in the following
way
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UB(36) . (blto,rl.)l/o./.,./)LSlTl
UB(6) : Bi(1,1) = V3 (b], bror )it
o, T

SUET((S) : Blf’fq.;MT(aT’ o'r') = Z V2l + 1(blfo'rzlo"r’)?\/}ngT
l

B®® = v3(B%°(10,10) — B°°(01,01))

S0B(6): B1,(2,2), B3,(2,2), B%,(0,2) + B%,(2,0)
suB(2): $B = v2B13(10, 10)
SUB(2): TE = v2BY}(01,01)
UF(8): (al,d31)’T, 7=0,1,2,3; T =0,1
35 22
SUE,(4): Fi; = —ﬁ(a%%a%%)ﬁ, J=1,2,3
SUT(2) : Tay = vV2(al, a31)%
33 22
SUBF(4): G}y = BL,(2,2) - S5 Fir
G3%; = B3,(2,0) + B34(0,2) + F3,
Gy = B3,(2,2) + %F&
Sp5r (4) : Ghpy Gy
SUBE(2) : Ty = V110G,
SUBF(2): Ty = TE + TE;
SUBF(2): Jpr = T3, + SE. (7)

3. The Hamiltonian

The chain of groups (5) is not, strictly speaking, the symmetry chain.
It only defines the so called dynamical symmetry in the sense that the
Hamiltonian is constructed with the help of generators of the chain (5), or,
in other words, by generators of the Lie superalgebra (1). Both physical
and technical reasons impose on the construction several restrictions. In
the extreme but physically important case the Hamiltonian H is built with
the help of the second order Casimir invariants of the groups (5). Such a
construction fulfills the very important conservation laws and, moreover,
the constructed H can be diagonalized by the standard group theoretical
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procedure. The Hamiltonian comprises also two-body interactions as well
between nucleons, between bosons, as between nucleons and bosons. Then
we assume

H:H0+Zc,-5’,-, (8)

where Hj is a constant part of the H, C; are the second order Casimir
invariants and c¢; are phenomenological parameters. The Hj is irrelevant in
our calculations because we usually calculate H — Hy, i.e., energies of excited
nuclear levels relative to the ground state. Due to the construction (8) each
state vector of a nucleus is an eigenstate of the H. Moreover, lower energy
levels under consideration belong to the unique irreducible representations
of several subgroups of the chain (5) and, hence, the Casimir invariants of
these subgroups can be put into Hy. Then the relevant subgroups of the
supersymmetry group U(36/8) are the following

UB(6) X su¥,(4) x SuB(2) x suBF(2)

SOB(s)

R SUBF (4)
!

SpEF (4)
!

SUBE(2)

(9)

L s -

Eigenvalues of Casimir invariants of the groups in (9) which form the
Hamiltonian (8) are expressed in proper quantum numbers labelling irre-
ducible representations (IR’s) of the groups (9). Hence, we have to analyse
these IR’s as well in a direct product appearing in (9) as in subgroups split-
ting.

For the boson group UE(G) we consider only the completely symmetric
representation [f, 0°] = [f] and of mixed symmetry [f, 1, 04] = [f, 1]. Then
it follows the irreducible representations (g, 0, 0) and (g, 1, 0) of the group
SOB(6). Basis states of further irreducible representations are beyond of the
considered region of excited energy levels. The group SUE,(4) is relevant for
odd nuclei for which we consider one unpaired nucleon with state vectors
belonging to the representation (!/,15,14). Hence, for odd nuclei we get
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the following direct product splitting
s0B(6) x SUF,(4) oSUBF (4):

(00,0 % (b 511 =0+ hh D+ (- b1
(0,10 x (L5 =g+ LD+ e+ 13 -D)
to-hh-D+lo- b
The IR’s of (10) split into the IR’s of SpBY (4)
SuBF(4) o SpEF (4):

(gaéai> 2(y, 2)’ (9 - ) "’(%7%)1

(9,2’ ) ( ’%)’ (9 - ’2)’ a(%’%),

(9:3) (9-1,3)-+(3:3).

Then the lowest IR’s of SpJ,, (4) involve the following J* sets

Sp5h(4) > SUBF(2)
(33)2 3
(3,30 5:.5.3
(.15 35558
(32 3,33

).

(10)

(11)

(12)

We stress that in the direct product (10) we have made an assumption
that the fermion part of a system consists, for odd nuclei, of only one fermion
-~ the rest of them are paired to form bosons. For even nuclei there are
bosons only and hence there is a boson group SO2(6), the same as in [1]
where we considered the full sd fermion shell. However, we should not
expect exactly the same theoretical energy levels for even nuclei because
the adjusted parameters of the present fermion model j = 3/ differ from
those in the sd model. Decomposition of the IR’s of the boson groups into

their subgroups can be found in [1, 3, 5, 6].

In the formulas (10-12) we have introduced the following notation for
the IR’s: [f1, fz] is for the IR’s of U(6), (91, 92,0) {(71,72,73)} denotes the
IR’s of the SO(6) or {SU(4)}, (h;, h2) is for SO(5) or Sp(4) and for SU(2)

we have J; L; §; T whatever is considered.

Following the phenomenological Hamiltonian (8) with restriction (9) we

write

H = Hy + PC[U%(6)] + W1 C[SOB(6)] + Wzé[SUJn( 4)]

+KC[SpEF (4)] + DC[SUBE (2)] + FCISUBF (2)].

(13)
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The Casimir operators commute with each other and we can diagonalise H
with the help of eigenvalues of the Casimir invariants which gives

E =Eo¢ + P[fi(fi +5) + fo(f2 + 3)] + Wilg1(g91 +4) + g2(92 + 2)}
+ Walri(11 +4) + 7272 + 2) + 93] + K[Ra(h1 + 3) + ha(h2 +1)]
+DJ'"(J" +1)+ FJ(J +1). (14)

In (13-14) there are not the spin-isospin dependent numbers coming at
first from the group SUB,(4) and then from SUZ(2) and SU7(2). We
have followed arguments [4] that the lowest energy representations of the
SUI%S(4) are those with the smallest value of the Casimir operator and
then this operator is absorbed by Hg(Eg). This assumption leads to the
boson spin § = 0 with an exception for odd-odd nuclei with odd number
of bosons (z.e. *4Cl) for which (ST') can take on values (0,1) or (1,0); see
also Appendix of [1]. Hence only in this case we need to add to expressions
(13-14) the term AS? + BT? with its eigenvalue AS(S +1)+ BT(T +1). For
excited states (*4Cl) the difference A — B is relevant and we have adopted
the value 4 — B = 0.5 MeV.

TABLE 1

The lowest considered irreducible representations. Values of the total angular momentum
J are given in the last column when total boson spin S = 1 (see text). In other cases
(S = 0) J is equal to J".

Nucleus UB(s) SUPF(4) SpBF(4) SUBF(2) SUSF(2)
[fr, f2] {1,712, 73) (hi, h2) J" J
1 2 3 4 5 6
328
[4,0] {4,0) {0,0) 0
(1,0) 2
(2,0) 2,4
(3,0) 0,3,4
(4,0) 2
v (3,0] (.53 (3 3) :
’ 2t2%2 2’ 2
(3:7) 37
CHNEE E 8
2,1] (3:3:2) (3:2) I3
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TABLE [ continued
1 2 3 4 5 6
32P
[3,1] (3,1) (1,0) 2 1,2
(2,0) 2,4 1,2;3
(3,0) 3,4,6 2;3;5
(1,1) 1,3 0,1;2,3
(2,1) 1,2,3,4,5 0,1;1,2;2;3;4
(3,1) 2,3,4 1;2;3
(2,0) (1,0) 2 1
SQS
[3,0] {3,0) (0,0) 0
(1,0) 2
(2,0) 2,4
(3,0) 0,3,4,
{(1,0) (0,0) 0
(1,0) 2
(2,1] (2,1) (1,0) 2
(2,0) 2,4
(1,1) 1,3
(2,1) 1,2,3
{(1,0) (0,0) 0
(1,0) 2
JsCl
(2,0] G373 I3 H
(33 D
G5 D5
(3,52 »H 3
(.} 3
QHCI
T=0 (3,0] (3,0) {(0,0) 0 1
(1,0) 2 1,2
(2,0) 2,4 1,2;3
(3,0) 3,4,6 2;3;5
[2,1] (2,1) (1,0) 2 1
(2,0) 2,4 1;3
(1,1) 1,3 0;2
(2,1) 2,3,4,5 1;2;3:4
T=1 [3,0} (3,0) (0,0) 0
(1,0 2
(2,0) 2
(3,0) 0
(2,1] {2,1) (1,0) 2
(1,1) 1
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The energy (14) is expressed by the standard labels of the IR’s of groups
involved. The strict group-theory considerations provide the values of those
labels proper for the lowest energy levels (up to 4-7 MeV). The full set
of the lowest irreducible representations are given in Table I. The model
parameters are fitted to the experimental data [7] separately for each super-
multiplet (Table II).

4. Applications

We have considered two supermultiplets from the region 32 < 4 < 40
namely those with the total number of holes N = 4 and N = 3. The first

{a})
32
EiMed g0 Thear
T 2
—_— .
6
—~3=12 —
sk 3
=4 -1 haet]
r - —0
3 —2
ol —2
—2
1k
Lo —
(0.0) (1.0) (2.0) (3.0} (4.0)
{b)
32
E [Mev) Exp P Theor
s
o =i 2 =1
—-m _ L 1
I G =t T
=3 “
KT =1 e, =0
g .-
1 -1 =12
—p=-3 3
—0
12 =2
GOOnEeeHEBna
le)
33g
£ {Mev] Exp Theor —3

—3
ah Gh dh G

Fig. 1. Experimental positive parity {7] and theoretical energy levels of nuclei 32g,
32P and 33S. Levels are grouped according to the IR’s of the group Sp(4), (SO(5)),
with IR labels placed below. Asterisks mark the levels belonging to the IR f, 1] of
the group U(6).



566 L. PROCHNIAK AND S. SZPIKOWSKI

34g
E [Mev] Exp Theor =2
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(c)
3¢
E [Mey) Exp Theor

dhdhaahdhdb

Fig. 2. Experimental [7] and theoretical energy levels of nuclei 34S, 3#Cl and 35Cl.
See caption to Fig. 1.

supermultiplet contains nuclei 325, 32P, 323 and 33Cl and the second one:

345, 1-,Cl, 32Cl1, 33Ar. We present the results only for one nucleus from
rmrror pair with T = 1/;, namely 33S and 32C1 for which there exist wider
experimental data. The model Hamlltoma.n depends practically on four
(five for N = 3) free parameters (Table II). It has been stressed that each
of the supermultiplets contains about 40 energy levels to be described in
a supersymmetry scheme. All of the calculated as well as experimental
angular momenta and energies of positive parity levels are taken into account
in Fig. 1-2 up to considered energies. The levels are organized in multiplets

of the group SpJ,, (4) labelled by numbers (hq, h2). All of the levels belong

to two IR’s of the group UB(6): the completely symmetric [f] and of mixed
symmetry [f -1, 1] the last ones are marked on Fig. 1-2 by asterisks. The
nuclei 325; 33S; 163, 32Cl have been considered in [1] but in L — § coupling
for the full sd shell. For nuclei 32P and 31Cl it is the first supersymmetry
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calculation.

TABLE II

Hamiltonian parameters in MeV

p P+W,+W, K D F

—-0.11 —0.44 0.23 -0.500 0.62
-0.44 0.22 -0.385 0.51

2=
I
oW

5. The electromagnetic E2 transitions

It is usually much easier to reproduce experimental energies as eigen-
values of a considered Hamiltonian of a system than to construct its eigen-
states in a proper way. Hence the next to energy calculations there is a
consideration of transition probabilities which strongly depend not only on
a transition operator in the assumed model but also on constructed vector
states. In what follows we will consider the E2 transition probabilities in
our supersymmetry model.

To construct the electromagnetic transition operator we follow the pro-
cedure of [2] and write

T(E2) = oT§' ") + o', (15)

where for E2 J = 2 and T = 0 as the isovector transitions (T = 1) are
of the order of magnitude lower. The T(E2) operator should not change
the boson (fermion) number and it is, by a simple assumption, of the sec-
ond order in creation and annihilation operators. The next very strong
assumption follows the SO(6) limit in the group chain (3) stating that the
boson (fermion) part of (15) be built by means of generators of the group
SO%(6) (SUE.(4)). Then the total operator (15) is, by an assumption, the
generator of the boson-fermion group SU§§(4). These assumptions and
approximations lead to formulas

ng'o) - Z ((b30T5207)200 + (b;aTBOUT)ﬁ)O) )

a,T

20 J=2;T=0
Tg‘ 9 = (agla“)
53 22

and

= Qeﬂ's (16)
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where Q.g plays a role of an “effective charge”. Then
T2 — 0 o (\/ng,o) _ \/ﬁTé,z’O)) _ (17)

The operator (17) has also the definitive tensor character in the transfor-
mation group SpJ,If‘(4) namely it is of the type (hq, h2) = (1,0). There are
following selection rules coming from the construction (16-17):

(i) Nonzero matrix elements of (17) are only between states belonging to

the same IR of SUBF (4) for odd nuclei and to the same IR of UB(6)

and SO2(6) in even nuclei.
(1) For odd nuclei with initial and final states which belong to the IR’s of
Spg,l,"(ti): (h1, h2); and (h], hY)s respectively there must be

Ahy =0; 41,  Ah; =0.

(#1) For even nuclei the selection rule reads
a) for symmetric representations [f, 0] of the group U2 (6)

Ahy = +1;  Ahy =0,
b) for mixed symmetry representations [f, 1]
Ah;{::tl, Ah2:0 or Ah]zo, Ahzzﬁ:l.

The states of a given supermultiplet N = const can be factorized by
the quantum numbers of the irreducible representations of the groups (9):

IN[f1, f2{71, 72, 73)(ha, h2)J", 5,0, T) = |(6),J) - (18)
Then the B(E2) probability reads

1
2J;i +1

B(E2,i—f) = K@) ki TN (B I P (19)
Labels of the IR’s of the groups (9) describing initial and final state are
listed in Table I. The reduced matrix elements (18) has been evaluated with
the help of already performed calculations [3, 5].

For comparison with experimental data [8] we have taken the nuclei 34§
and 3°Cl from the supermultiplet N = 3 and 328, 33§ from N = 4. Then
the “effective charge” Q). in one parameter formula (17) has been adjusted
to the experimental data E; — E¢ (2.13 MeV— g.s.) of the nucleus 34S and
for E; — E; (2.23 MeV — g.s.) in *2S. We have taken Q% = 8.8 ? fm*
and Q%; = 9.4e% fm* respectively. The experimental [8] and theoretical
values of B(E2) are given in Table III.
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B(E?2) transition probabilities (in e? fm*)

569

TABLE III

E; E; Ji Jt Exp [8] Theor
325
2.23 0.00 2 0 59.9+ 6.0 59.9
3.78 2.23 0 2 83.9+12.0 0.0
4.28 0.00 2 0 84+ 1.2 0.0
2.23 2 2 55.7+ 7.8 72.1
4.46 2.23 4 2 719+ 12.0 72.1
5.41 2.23 3 2 16.2+ 3.0 0.0
5.55 0.00 2 0 0.7+ 0.2 0.0
6.41 2.23 4 2 18.0+ 4.2 0.0
335
0.84 0.00 s 3/, 23.74+ 1.2 45.0
1.97 0.00 5% 3/ 43.7+ 6.9 45.0
2.31 0.00 3/, 3/ 256+ 4.4 0.0
0.84 3 s 53.7+11.9 16.9
2.87 0.00 5 3/, 2.0+ 0.9 0.0
2.97 0.00 YA 3, 35.0+ 5.6 45.0
4.05 1.97 h 3/ 59.3 + 10.0 33.7
2.97 %/ h 18.7+ 5.0 9.4
4.09 0.00 A 3% 0.7+ 0.2 0.0
1.97 s 5h 23.1+ 94 23.4
34S
2.13 0.00 2 0 37.0+ 1.9 37.0
3.30 0.00 2 0 4.7+ 0.3 0.0
2.13 2 2 26.6+ 6.5 40.6
3.91 2.13 2 2 279+ 4.5 0.0
4.11 0.00 2 0 3.8+ 0.6 0.0
2.13 2 2 201+ 7.8 0.0
4.69 2.13 4 2 56.5+ 6.5 40.6
6.25 4.88 4 3 182.0 + 39.0 0.0
3501
1.22 0.00 s 3 1494 2.7 24.7
1.76 0.00 s 3/, 743+ 6.8 24.7
2.65 0.00 s 3% 20.34+ 2.7 24.7
1.76 A 5/ 29.8 4+ 12.2 7.9
2.69 0.00 3% 3/ 8.1+ 2.7 0.0
3.94 1.76 % 5/, 50.7+ 8.8 14.1
4.11 0.00 - 2 50+ 1.1 0.0
1.76 A 5/2 1.9+ 0.6 9.7
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6. Conclusions

The present investigations have confirmed that light nuclei from the
sd shell behave according to the assumed supersymmetry. Nobody has ex-
pected a perfect agreement between theoretical and experimental data or
even as good as in a standard procedure of the shell model calculations. It is
fully understood because in the supersymmetry scheme we have taken fur-
ther approximations especially in the construction of the phenomenological
Hamiltonian (13). The new feature of supersymmetry considerations comes
from the treatment of even-even, even-odd and odd-odd nuclei on the same
footing. In other words, the supersymmetry reveals the strong connections
between these nuclei which had been treated before quite separately. From
the microscopical point of view it means that for low energy behaviour of
nuclei they can be treated as consisted of pairs of nucleons (bosons) and
unpaired nucleons and these “super-particles” do not feel any differences
while considered in the supersymmetry scheme. Deviations of theoretical
data from experimental values point on approximate procedure in which
an assumption of treating pairs of nucleons as bosons and the Casimir in-
variant structure of the Hamiltonian are, from the very beginning, evident
approximation.

We want also to stress that the much simpler symmetry in the fermion
space, namely UF (8) as compared to U¥(24) considered before [1] does not
spoil the theoretical results and even more: for odd nuclei for which the
group UF (8) is relevant, we have obtained better results. Besides, we have
also included in the supersymmetry multiplets two new nuclei 32P and 32Cl
with a quite good accuracy of their calculated energy levels.

The energy calculations are indirectly confirmed by the E(2) transition
probability evaluations. In the same supersymmetry scheme the one param-
eter B(FE2) approximate formula (21) describes quite well the experimental
values. Inspection of Table III shows up that the theoretical values follow
experimental data with approximations accepted for far going assumptions
of our model. There are only two distinct exceptions: E; — Eg (3.78 MeV
— 2.23 MeV) for 328 and E; — E; (6.25 MeV — 4.88 MeV) for *4S. In the
spirit of our model we should say that the states with energy £ = 3.78 MeV
for 325 and E = 6.25 MeV in 34S are of the structure beyond of our model.

Summarizing the results we are able to state that for ground and low
energy excited states of nuclei in the considered region there is an evident
signature of the supersymmetry.
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