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Knowledge of the symmetry energy of nuclear matter is crucial for the
determination of many properties of matter at ultra high density. Its value
determines the neutron drip density in the crust of neutron star. The sym-
metry energy determines the proton fraction in the neutron star matter
at supranuclear density, and therefore turns out to be of a paramount
importance for the rate of cooling of neutron stars. It determines also
the response of neutron star matter to the deviations from chemical equi-
librium, and enters explicitly the formula for the bulk viscosity of the
neutron star matter.

PACS numbers: 97.60. Jd, 21.65. +f, 95.30. Cq

1. Introduction

Due to Coulomb effects, atomic nuclei have an excess of neutrons over
protons, characterized by the neutron excess parameter, a = (N — Z)/A.
In the idealized limit of infinite nuclear matter this corresponds to the case
of isospin asymmetric nuclear matter, with nonequal number densities of
neutrons, nn, and protons, np. It is suitable to characterize asymmetric
nuclear matter by the nucleon density, n = ny, +np, and by a = (ny —np)/n.

In view of the isospin dependence of the relevant quantities, asymmet-
ric nuclear matter is a significantly more complicated many-body system
than the standard, symmetric nuclear matter. This can be clearly seen in
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the pioneering calculations of the properties of asymmetric nuclear mat-
ter, performed within the Brueckner many-body theory by Brueckner and
Dabrowski [1] and by Brueckner, Coon and Dabrowski [2].

In view of the charge symmetry of nuclear forces, the energy per nucleon
of an asymmetric nuclear matter, Fy, is (at fixed n) an even function of
a (by definition, Coulomb interaction is switched off). For a < 1 we have
thus

En(n,a) = Eg(n) + S(n)a?. (1.1)

Here, Eg(n) is the energy per nucleon of symmetric nuclear matter of density
n, and S(n) is the symmetry energy.

The many-body calculations of asymmetric nuclear matter show, that
Eq. (1.1) is valid, to a very good approximation, even for the values of «
close to unity, so that the energy per nucleon of pure neutron matter, E’(n),
can be very well approximated by Fo(n) + S(n) (see, e.g., [3-6]).

The neutron excess in experimentally studied atomic nuclei is rather
small. Also, finite size and Coulomb effects in heavy nuclei imply, that
the relation between the theoretically studied asymmetric nuclear matter,
which is par excellence an infinite system, and real atomic nuclei, is not
straightforward. However, genuine asymmetric nuclear matter, with a very
large neutron excess, exists in the superdense cores of neutron stars (for
a general review of the properties of neutron stars and their astrophysical
incarnations, see the monograph of Shapiro and Teukolsky [7]).

Experimental determinations of the bulk symmetry energy at the sat-
uration density asym yield asym = 27 — 36 MeV [8]. The quantity Qsym
should be reproduced by the many-body calculations of asymmetric nuclear
matter. Ideally, we would like to get §(n¢) = asym. However, the den-
sity dependence of the symmetry energy, and its value at, say, n > 2nyg
(no = 0.16 fm~3 is the experimental saturation density of symmetric nu-
clear matter), are not available experimentally. Therefore, in the neutron
star matter calculations, we have to rely on the theoretical determination
of S(n). Detailed discussion of the relevance of the density dependence of
S for the neutron star structure can be found in Refs. [9,10].

In the present paper I review theoretical studies of some properties of
matter in the interior of neutron stars, for which the nuclear symmetry en-
ergy is a crucial input quantity. In Section 2 I show how its value determines,
to a large extent, the neutron drip density in the crust of neutron star. The
symmetry energy determines the proton fraction in the neutron star mat-
ter at supranuclear density, and therefore turns out to be of a paramount
importance for the rate of cooling of neutron stars. This is reviewed in
Section 3. As I discuss in Section 4, nuclear symmetry energy determines
also the response of neutron star matter to the deviations from chemical



Nuclear Symmetry Energy and the Properties of Neutron Star Matter 575

equilibrium, and enters explicitly the formula for the bulk viscosity of the
neutron star matter. Finally, Section 5 contains discussion and conclusion.

2. Neutron drip in the neutron star crust

The outer envelope of neutron star consists of matter of the density p
increasing with depth d below the stellar surface. Let us consider the prob-
lem of the dependence of the nuclear composition of matter on p, assuming
that the matter is in a complete thermodynamic equilibrium. Thermal ef-
fects are negligible for log;yp > 6 and log;; T < 9 (conditions prevailing
for d > 1 m in neutron stars of age > 1 year), and full thermodynamic
equilibrium corresponds then to the ground state of matter. At log,qp > 6
atoms are so squeezed that they loose their individuality, and matter forms
a plasma composed of nuclei (mass number A, proton number Z), embed-
ded in an ultrarelativistic electron gas. Pressure, P, increases monotonically
with d. At given value of P, the values of 4, Z, electron density n., and
mass density of matter, p, are obtained from the minimization of the Gibbs
potential per nucleon, g, which (neglecting small solid state effects) reads

9(4, Z; P) = —]‘W(A’ Z) + %,uea (2.1)

where W( A4, Z) is the energy of the nucleus (which includes rest energy of
nucleons), and the electron chemical potential (equal to the Fermi energy
of the electron gas) is

fe = 1.0(,06 %)1/3 MeV, (2.2)

and pg = p/10% g cm~3. The pressure of matter is provided by the ultrarela-
tivistic electron gas, P o« u3, so that the electron contribution to g increases
as pe o< P1/4, With increasing P (and p ), the nuclide corresponding to the
minimum of g shifts gradually to lower and lower value of the proton frac-
tion, z = Z/A (larger and larger value of the neutron excess, a = 1 — 2z).
Let us approximate the value of energy per nucleon in the atomic nucleus,
with rest energy excluded and neglecting finite size and Coulomb effects,
W'/A, by the formula W'/A = —a,o] + asyma®. The chemical potentials of
neutrons and protons in nuclei, with rest energy subtracted, are then given
by

Hn = — Gyol T+ Gsym ( 2a0 — a2)

Hp = — Gyol + asym (—2a — o?). (2.3)
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As the equilibrium value of z decreases with increasing p, the value of
ul, increases, too, and vanishes at p = pyp. For p > pnp some neutrons
are not bound in nuclei, and form a gas. So, for p > pnp, neutron star
crust is composed of nuclei, embedded in electron and neutron gases. Using
our simple model, we may estimate the limiting value of proton fraction,
corresponding to “neutron drip”, zxp. Using Eq.(2.3), we get

1 Avol
IND = —,/1 — ——. 2.4
2 \/ Qsym (2.4)

Putting ayo) = 16 MeV and asym = 30 MeV we get znyp = 0.34.

Matter in the neutron star crust is in equilibrium with respect to weak
interactions (beta equilibrium), which results in the relation between the
chemical potentials: pe = pn — pp (1 = pf + mic?, i=n, p). In our ap-
proximation, this relation reads, neglecting the rest mass difference between
neutron and proton:

(te)np = 4(1 — 22)asym - (2:5)

Combining this result with the formula for p., we get an approximate
expression for the neutron drip density,

(asyrn)3

IND

pND = 6.4 X 107 (1 — 2znp)® g em™3, (2.6)

where agym is expressed in MeV. Putting asym = 30 MeV and using our
previous estimate zyp = 0.34, we get pnp =~ 2 x 1011 g cm 3.

Detailed calculations of the composition of the ground state of dense
cold matter give somewhat higher values of the neutron drip density. For
example, the calculation in which masses of neutron rich nuclei were calcu-
lated using the Hartree—Fock-Bogoliubov scheme with Skyrme interaction
yielded pyp = 4.4 x 10! g cm™3 [12]. The calculation based on the ex-
trapolation of the semiphenomenological droplet model mass formula gives
a slightly higher value of pyp = 5.0 x 101! g cm™3 [12].

Typical case in which matter in the neutron star crust is not in the
ground state, is that of a mass accreting neutron star. Strong deviations
from the ground state result from the relatively low temperatures, at which
the crust is formed via compression of accreted matter. For accretion rate
~ 10710 Mg /year typical temperature in the neutron star interior is a few
times 10® K, and thermonuclear reactions are effectively blocked by the
Coulomb barriers. The composition of the crust of accreting neutron star
has been studied in [13]. While the mass number of the nuclei — present in
matter at the neutron drip density — turns out to be less than half of these
in the ground state of dense matter, the value of the neutron drip density
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does not change much compared to the ground state case; for a nuclear
model considered in [13] one gets pnp = 6 x 10'! g em 3.

The neutron drip density in the neutron star crust turns out to be
rather insensitive to the models used to describe the neutron rich nuclei in
superdense matter. It is also quite independent of the scenario of formation
of the neutron star crust. The value of agyr, determines a simple estimate

of pNp, with typical result log;o(pnp) ~ 11.

3. Cooling of neutron stars via Urca reactions

Neutron stars are formed as very hot objects, with interior tempera-
tures exceeding 101! K (k7 > 10 MeV). During the first 105 — 10° years,
solitary neutron stars cool via neutrino emission from their interior. How-
ever, although a short (~ 10) s neutrino burst from a neutron star formed
in the SN 1987A has been detected, neutrinos emitted even from a nearby
neutron star are expected to be detectable only during a few minutes after
the neutron star formation, due to a very rapid decline of neutrino lumi-
nosity with time. Young neutron stars could (hopefully) be detected via
photon emission from their surface. Their photon luminosity decreases in
time at the rate resulting from the neutrino cooling of the stellar interior.

The simplest model of the hot, liquid neutron star interior (baryon den-
sity m > ng), is an electrically neutral mixture of neutrons, protons, and
electrons, of number densities n,, ny, ne, respectively. The chemical com-
position of the npe matter is suitably characterized by the proton fraction
z, with ny, = ne = zn, n, = (1 — z)n. The proton fraction is related to
the neutron excess parameter by a = 1 — 2z. Under prevailing conditions,
each of the components is a strongly degenerate Fermi liquid with Fermi
energy Ep; >> kT (i = n, p, e). The energy per nucleon is a sum of the
nucleon component, En(n,z), and the contribution of the free, ultrarela-
tivistic electron gas, E.. As the timescale of cooling is much longer than
that of the weak interactions in the hot, dense plasma, the npe matter is in
the equilibrium with respect to beta reactions

n-——p+e + 7 (3.1a)
pte” —n+re. (3.1b)

Neutron decay (electron capture on a proton) is accompanied by emis-
sion of e (v.), which leaves the star, taking away some of the available
thermal energy. Both processes (3.1) are a specific example of the Urca
process, introduced by Gamow and Schoenberg as very efficient sinks of
thermal energy of highly evolved (hot and dense) stars [14].

The condition of the beta equilibrium results in the relation between the
chemical potentials, un = pp + pe, and strong degeneracy of all components
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restricts severely the momentum space available for the particles participat-
ing in processes (3.1). As the prevailing temperatures are well below typical
Fermi temperatures, T < Tr; = Ep;/k ~ 102 K, all fermions participat-
ing in the processes (3.1) must have momenta close to the corresponding
Fermi momenta, pr;. Since neutrino and antineutrino momenta are at most
~ kT /e € pri, the condition of momentum conservation in (3.1) is the tri-
angle condition ppp + pre > PFn. For simple npe model of the neutron star
matter the triangle condition becomes 2ppp, > ppp, or > z. = %.

For more than 26 years since the classical paper of Chiu and Salpeter
[15], who were first to consider the Urca process as an efficient mechanism
for neutron star cooling, it was believed, that at the baryon densities, n,
prevailing in the interiors of neutron stars, the equilibrium proton fraction,
z = np/n, is so low that the simple “direct Urca processes”, Eq. (3.1),
cannot proceed. This standard assumption was corroborated by the simplest
free Fermi gas model of the npe plasma, for which z = 5 x 1073n/n,
(no = 0.16 fm 2 is normal nuclear density). The paper of Boguta [16], who
pointed out that for some models of the npe matter proton fraction could be
quite large, was unnoticed by the neutron star theorists. It view of this, the
standard assumption was, that the beta equilibrium is maintained through
the modified Urca processes,

n4+n—n+p+e + v

n+pt+te —n+n+uv.. (3.2)
The participation of an additional "active spectator” nucleon in the neutron
decay or electron capture reactions is necessary to allow for the conservation
of energy and momentum in the degenerate neutron star matter, in which
neutron, proton and electron Fermi momenta are assumed to violate the
inequality prn < prp + PFe [15].

Recently, it has been shown that for numerous models of dense nucleon
matter the momentum condition ppn < prp + Pre ts actually satisfied at a
sufficiently high n, allowing thus for the direct Urca processes in the neutron
star matter: n — p+ e~ + Ue, p+ €~ — n + v {17]. This would
dramatically increase (by many orders of magnitude) the neutrino emissivity
of the neutron star interior [17], implying therefore a very rapid cooling of
young neutron stars.

For the npe model of the neutron star matter, the energy per baryon, F,
is the sum of the nucleon, Fy, and electron, E., contributions: £ = Enx+E..
The beta equilibrium condition at a given n, (0F /0z), = 0, determines then
the equilibrium proton fraction z.q as a solution of equation

% _ 45(n)

1-2z hc(37r2)%n% .

(3.3)
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Fig. 1. Symmetry energy versus baryon density, n, for several models of nuclear

matter. Number in square brackets gives the reference number corresponding to a
given model.
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Fig. 2. Equilibrium proton fraction in the npe matter versus baryon density. No-
tation for curves as in Fig. 1. Cross corresponds to the maximum density in the
neutron star models calculated using the specific model of dense matter.

For the npe matter, the value of z.q is thus determined solely by the nu-
clear symmetry energy, §. A sufficiently rapid increase of § with density
implies increase of the proton fraction, and for the densities such, that
Teq > Terit = % (corresponding to ppp + pre = 2PFp > PFn), direct Urca
reactions can proceed [17]. Density dependence of symmetry energy and of
the corresponding equilibrium proton fraction in the npe matter, calculated
for several models of dense matter, is shown in Figs 1, 2. For some of them,
z > 2.t at sufficiently high n, but still below the maximum density for
neutron star models. For such models of dense matter, direct Urca process
is operative in the central core of sufficiently massive neutron stars.
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The neutrino emissivity (energy emitted from 1 cm? in 1 's), Q, from the
direct Urca processes, Eq.(3.1), was calculated in Ref. [17], using Standard
Model of weak interactions. It was assumed, that neutrons and protons
form normal Fermi liquids. The phase space integrations could then be
done analytically, assuming strong degeneracy of all constituents of the npe
matter. The final formula for the total emissivity from direct Urca processes
(8.1) reads

* m# 1/3
Q(dir.Urca) = 4.0 x 1027 Tn e (:cll—)
Mn Mp ng
6 erg
X (TQ) O(pFe +PFp - pFn) 'c-rzlg_s ’ (34)
where Ty = T/10° K, m} (i=n, p) are effective nucleon masses at the

corresponding Fermi surface, and the effect of strong interactions in dense
medium on the weak interaction parameters has been neglected. The thresh-
old factor @(y) is 1 for y > 0 and zero otherwise.

At typical temperatures, prevailing in the interior of neutron star, the
quantity Q(dir.Urca) is by many orders of magnitude larger, than that re-
sulting from the modified Urca processes, Eq. (3.2). The neutrino emissivity
from the modified Urca processes, as calculated in [18], is

m*\ 3 m? n\/3 erg
Q(mod.Urca) = 10%? (——") —B (z—) (Tq)® . (3.5)

my/) mp ng cm3 s

One finds thus Q(dir.Urca)/Q(mod.Urca) ~ 10° Ty 2. Roughly speaking,
the obtained ratio reflects the fact that the bystander neutrons in the initial
and the final state of the modified Urca process each lead to an additional
phase space factor T /Ty, where Tp, ~ 1012 K.

The presence of muons in neutron star matter introduces minor mod-
ifications. Muons will be present when p. > m,c? = 105.7 MeV. In the
presence of muons pr. < prp. Their presence will therefore slightly increase
the value of the critical proton fraction, above which ppe + prp > pra, but
by a small amount, to not more than 15% [17]. On the other hand, at fixed
n, the proton fraction z = z. + z,,, is larger then for the npe matter. This
actually decreases, for a given §(n), the critical value of n, above which the
direct Urca process is operative. One notices, that for prp, + pr, > pra,
which occurs somewhat above the threshold density for the appearance of
muons (17}, direct Urca processes with muons will proceed, n — p+u~+7,,
p+ pu~ — n+ v,, increasing further the neutrino emissivity of neutron
star matter.
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Dense neutron star matter (n > 2ng) may contain hyperons, beginning
with ¥, A® and £~. Hyperons provide additional sources of neutrino
emissivity via direct hyperon Urca processes [19], which is generally less
than that from the direct nucleon Urca processes, because of reduced matrix
elements for the corresponding weak interaction processes.

Summarizing, nuclear symmetry energy, which increases sufficiently
rapidly with baryon density, leads to significant proton fraction in the neu-
tron star cores. This opens possibility of direct Urca processes, which lead
to neutrino emissivity many orders of magnitude larger that from the “stan-
dard” modified Urca processes. Direct Urca processes in the central core
result in a very rapid cooling of young neutron stars. Specific models of neu-
tron star cooling by the direct Urca processes, including the possible effects

of neutron superfluidity and/or proton superconductivity, were studied in
[20].

4. Bulk viscosity of hot neutron star matter
from non-equilibrium Urca reactions

The viscosity of neutron star matter determines damping timescales of
radial vibrations of neutron stars [21]. Such vibrations can be excited in
the process of formation of neutron star, or can result from the neutron
star quakes. The viscosity enters in criteria for the gravitational wave in-
stabilities in rapidly rotating neutron stars [22], which are essential for the
determination of the maximum rate of rotation of neutron stars.

Recently, the problem of the actual viscosity of the hot neutron star
matter has been reexamined [23, 24]. It has been demonstrated that at
temperatures higher than ~ 10° K, the bulk viscosity exceeds significantly
the shear viscosity. This could have important consequences of for hot,
pulsating and/or rapidly rotating neutron stars. The source of the bulk
viscosity of the neutron star matter is the deviation from beta equilibrium,
and the ensuing non-equilibrium reactions, implied by compression and rar-
efaction of the matter in the pulsating neutron star.

As in Section 3, neutrons and protons are assumed to be normal Fermi
liquids (possible effects of neutron superfluidity and proton superconduc-
tivity will be discussed in Section 5). It is also assumed, that matter is
transparent to neutrinos, so that neutrino absorption can be neglected. The
non-equilibrium reactions in compressed and decompressed npe matter are
driven by the nonzero value of A = pn — pp — pe, where pn, pp, and pe
are instantaneous neutron, proton and electron chemical potentials, respec-
tively. Assuming A4 << kT, one can calculate the linear response of the
rate (in 1 cm?®, per 1 s) of the reaction p + e~ — n + v, (denoted by I',),
and the inverse one, n — p + ¢~ + 7, (denoted by I), to the instanta-
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necus nonzero value of A. This response is determined by the coefficient A,
defined as [23]

A:z(‘?F”) , (4.1)
dA A=0

so that in the linear approximation I',(A) — I';(A) = AA. The value of A
determines the rate of the nonequlibrium Urca reactions in the npe matter.
In the limiting case of a strongly degenerate npe matter, the calculation
of A can be done analytically. In the case when z.q > 2, direct Urca
processes are allowed, yielding [24]

1

* m* 3
A(dir.Urca) = —3.5 x 10%° =2 2 (Yei) Te* em™Sg1s, (4.2)

my Mmp g

where Ty = T/10° K.

In the case when zeq < Z(rit, only modified Urca reactions can proceed.
The corresponding value of A is then typically many orders of magnitude
lower, A(mod.Urca) ~ 1078T¢ A(dir.Urca), which reflects the difference
in the linear response of the rates of the direct Urca and modified Urca
reactions in the strongly degenerate neutron star matter to the perturbation
of matter density [24].

The instantaneous value of A during neutron star vibrations depends
on the value of the neutron excess parameter, a, and on the baryon density,
n, which oscillate around their equilibrium values, aeq and neq. The linear
response of A to the deviation of a and n from the equilibrium values is
determined by the parameters B and C, defined as

B = (%é)n , (4.3)

czn(g—i)a, (4.4)

where all the derivatives should be calculated at equilibrium values of vari-
ables. Using the explicit expression for the chemical potentials of protons,
neutrons and electrons, one can express the parameters B and C in terms
of the symmetry energy and its derivative with respect to n,

8 1
B=_S§ (HZZ) , (4.5)

C = 4(1 - 2z) (nS' - %5) . (4.6)
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All quantities are evaluated at the equilibrium (i.e., at a = aeq, 1 = Neq)
and §' = dS/dn. The fourth coefficient, relevant for the bulk viscosity of
the neutron star matter, measures the linear response of pressure, at fixed

n, to the changes in a,
oP
D=\ 4.
( aa)n , (4.7)

and has to be evaluated at n = n.q, @ = a¢q. Using thermodynamic
relations, valid also off chemical equilibrium, one may show that D = 3C
[24].

Neutron star vibrations of angular frequency w induce perturbation
of n and a around their equilibrium values, n.q and a.q. Following the
considerations of Sawyer [22], one can calculate the time lag of a — a.q as
compared to n — neq, and resulting time dependence of the perturbation of
the local pressure, P — P.q. This enables one to derive expression for the
time average of the energy dissipation rate (in cm3, per 1 s), Qgjss, due to
non-equilibrium Urca reactions,

w? [ én\? AC?
(Qdiss) - “? (a) w2 T 4/\232/7!2(1 . (4.8)

Identifying this dissipation rate with that due to the macroscopic bulk vis-
cosity coefficient, {, given in our case by the expression %(wz (6n/neq)2, one
gets final formula for the bulk viscosity coefficient of the npe matter [23],

AC?
w? 4+ 4X2B2/n?’

(= (4.9)

where all the quantities are to be calculated at z = z.q(n).

Within the approximations used, {(Urca) depends, in an essential man-
ner, on the nuclear symmetry energy, S(n), and its derivative, §'(n). As
an example of the calculation of ((Urca), one can use a simple model of
the density dependence of S, proposed by Prakash et al. [9], in order to
simulate the results of many-body calculations of dense nucleon matter and
parametrized as

S(n) =13 MeV {ug - u] + Sou (4.10)

where u = n/ng. Such a model has an asymptotic behavior § « u for
u >> 1, characteristic of relativistic mean field theory models of dense
baryonic matter {5,6,9]. Results for z.q(n), B, and C, obtained for a rather
conservative choice of 55 = 30 MeV, are shown in Figs 3, 4. For such a model
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Fig. 3. The equilibrium proton fraction as a function of nucleon density of the
npe matter, for the model of symmetry energy, given by. Eq. (4.10) (solid line).
Dashed line corresponds to the free Fermi gas model.

of §(n), direct Urca processes are operative in the npe matter at n > 2.7n,,
and, therefore, can be expected to be relevant for massive neutron stars.

As one can see from Figs. 4 a, b, the values of the linear response pa-
rameters, B and C, are actually determined by the interaction contribution
to S.

Let us consider the denominator of expression (4.9) for {(dir.Urca).
The second term in the denominator is strongly temperature dependent
(< T®). Using Fig. 4b we estimate it, at n = 3ng, as ~ 1073Ty% s72.
In view of the fact, that the angular frequency of the fundamental mode
of radial pulsations w ~ 104 s~ (and those of the higher modes are even
higher), we see that at, say, Tg < 10, the second term in the denominator
is negligibly small compared to w?. Notice, that these arguments are even
stronger in the case of the modified Urca process, for which the value of X is
much lower. A suitable expression for {(dir.Urca) can be casted in a simple
“high frequency” formula [24]

1
* * 3 2 4
((dir.Urca) = 8.9 x 1024 Tz 2 (z-’l) (—-i_.) I~ &

my mp \ g 100 MeV wl ems’
(4.11)
where wy = w/10% 571,
In the case of ¢ < z.4, Sawyer [24] gets, at n = 4ny,
6
((mod.Urca) ~ 7 x 101529———5—— , (4.12)
w; cm s

{(dir.Urca)
¢(mod.Urca)

~10° Ty 2. Actually, this ratio can be a few times smaller, because of the

so that at such density one gets an order-of-magnitude estimate
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Fig. 4. Linear response parameters B and C, for the model of symmetry energy,
given by Eq. (4.10) (solid line). Dashed line: free Fermi gas model.

Sawyer’s use of the Fermi gas model for neutrons and protons. In the central
region of a massive neutron star, where the condition ppe + prp > pFn is
satisfied, modified Urca processes yield a negligibly small correction to the
dissipation via the direct Urca reactions.

By comparing results for the bulk viscosity of the npe matter with exist-
ing estimates for the shear viscosity [25] one concludes, that bulk viscosity
dominates over the shear one for T > 10° K, when only modified Urca pro-
cesses can proceed [23], and for T > 108 K when the direct Urca processes
are allowed [24].

The presence of muons in neutron star matter introduces minor modifi-
cations. For ppp + pr, > prn, which occurs somewhat above the threshold
density for the appearance of muons [17], direct Urca processes with muons
will proceed, n — p+p~ +7,, p+p~ — n+v,, increasing further bulk
viscosity of neutron star matter. At lower densities, muons contribute via
the modified Urca processes, analogous to the electron ones, Eq. (3.2). Hy-
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perons, which are likely to be present in neutron star at a density exceed
a few times ng, will also contribute to the bulk viscosity of neutron s
matter. However, as long as they are kinematically allowed, direct U
processes represent a strongly dominating source of dissipation, dwarf
contributions coming from other weak interaction processes.

5. Discussion and conclusion

Numerical results, reviewed in Sections 3, 4 have been obtained assu
ing that both neutrons and protons form normal Fermi liquids. We exp
that at least at some densities, neutrons may be superfluid and/or prot:
superconducting. Calculated gaps in the single-particle spectra, are v
uncertain but are typically of the order of a few hundred keV, which cor
sponds to critical temperature, T, of the order of a few 10° K. For T <«
the Urca reaction rates and consequently, also the values of Q(dir.Urca) ¢
((dir.Urca), will be significantly reduced as compared to those obtained
normal neutrons and protons. The corresponding reduction of Q(dir.Ur
and {(mod.Urca) will then be even stronger.

Neutron stars contain strongly asymmetric and highly compressed :
clear matter. Cooling of neutron stars and their bulk viscosity stron
depend on the composition of the nucleon component of matter. Obs
vations of neutron stars represent therefore, at least at principle, a unit
opportunity to learn about the behavior of nuclear symmetry energy at
densities significantly higher, than the normal nuclear density.

I am grateful to J.M. Lattimer, C.J. Pethick, Madappa Prakash, ¢
R. Schaeffer, for their collaboration on the topics discussed in this revie
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