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We show that the low energy expressions for the CGLN pion photopro-
duction invariant amplitudes when evaluated at threshold yield a 17% en-
hancement of the de Baenst yp — 7°p threshold electric dipole amplitude.
One can recover the de Baenst result, to lowest two orders in my,/mpy,
by assuming that the Goldberger-Treiman (GT) relation frg = mng4 is
exact. However, accounting for the observed 5% GT discrepancy and the
recent modifications of the Saclay and Mainz threshold data, and compar-
ing the data to the enhanced de Baenst amplitude leads to a large explicit
breaking of chiral symmetry. The magnitude of the explicit chiral symme-
try breaking is not cleanly extracted from the threshold data because of
the GT-like cancellations in the exact ¥p — 7%p threshold electric dipole
amplitude.

PACS numbers: 13.60. Le, 11.30. Rd, 10.50. -w, 11.40. Ha

Recently there has been much concern that the standard low energy
theorem for 7p — 7%p photoproduction
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may not be compatible with the threshold multipole amplitudes measured
at Saclay [2] and at Mainz [3]. We believe there is no conflict here because
of the existence of the photoproduction o term. Four years ago Kamal
[4], and more recently Holstein [5], claimed that there is no explicit chiral
breaking (o term-like) correction to the low energy theorem (1), counter to
the original Furlan et al. [6] treatment using Breit frame methods and Mac
Mullen and Scadron [7] using an analogue dispersion theory covariant anal-
ysis. The latter two studies concluded that the resulting chiral symmetry
breaking equal-time o commutator takes the quark model-dependent form
(for nonstrange current quark mass m)

(V@) [ / d%z’aA(*’(f),Vemm)] IN(=9) = AN@IFN(-5)  (2a)

in the Breit frame, and
@l [ / d3ziaA3(f>,vv+s(0)] p) = — M, (2b)

for proton matrix elements in covariant frames. Such photoproduction o
terms as Eqs (2) indeed can account for the discrepancy between the low
energy theorem (1) and the data [2, 3] for threshold yp — 7%p. This latter
observation has been supported in refs [8, 9].

The (small) yp — 7%p electric dipole amplitude reflects a suppression
of the A isobar M1 contribution which otherwise dominates the low-energy
region and the chiral symmetric current algebra. A much more quantitative
test of chiral symmetry in YN — 7N processes stems from the original
soft-pion current algebra predictions of Fubini, Furlan and Rossetti (FFR)
[10],
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where the former is A isobar dominated. Here A; is the background (i.e.,
the nucleon pole has been removed) first CGLN invariant amplitude [11],
kY = Kp — Kn = 3.70 and k° = kp + K = —0.12 are the respective isovector
and isoscalar nucleon anomalous magnetic moments, fr =~ 93 MeV is the
pion decay constant and the latest PDG value for g4 is [12] 1.2573. Early
confirmation of (3a) based on dispersion relations and phase shifts was given
in Ref. [13]. Later studies of the specific A; background amplitudes dom-
inated by the nearby low-energy A resonance finds at the soft pion point
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gr — 0 [14]

AP = —(0.27 £ 0.02)m;? (4a)
ALY = 40,015+ 0.007)m;? (4b)

both in excellent agreement with the FFR current algebra predictions (3).
It was explicitly shown in Ref. [14] that the A isobar contributes almost all
of the FFR soft amplitude (4a).

With that being said, we return to threshold yp — #%p but formulated
in the covariant form of Refs. [7]. Separating out the nucleon pole terms, o
term and background amplitudes, the relevant CGLN amplitudes are
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where g ~ 13.4 is the 7%pp pseudoscalar coupling constant [15], and m, is
the average vector meson mass ~ 800 MeV which arises in the covariant
o term in (5a) but not in the Breit frame o commutator (2a). Also the
invariants in (5) are v = (s — u)/4 and s; = s — Mm%, Um = u — mi.
The form factors are evaluated for on-shell photons (k* = 0) and pions
(g2 = m2); FP(0) = F7(0) = 1 and g4(m?2) will be discussed shortly. Note
that Eqs (5) reduce to the FFR Egs (3) and (4) in the soft-pion limit. In
that limit the o term and backgrounds B (proportional to the axial-vector
divergence) vanish.

Now we return to the threshold limit, where the precise value of the

threshold vp — 7%p electric dipole amplitude in the center of mass system
is (recall M(7%p) = Mt 4+ M?),

emx(2my + my)[my(my + mvr)}l/z

Eo4(x’p) = - 8r(mn + my)?
mw(l + m"/QmN)Ag(ﬂ'op) mer‘l("rop)
Ar(x°p) + 1+ mq/my 2mp(1 + mvr/mN)J - (0)

In contrast to de Baenst [1}], we have separated the purely kinematical terms
into a prefactor in order to isolate the dynamical aspects of the CGLN
amplitudes in (6). To proceed, we recall the threshold values, sy, u, =
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—4mim2(1 — z2), v = mymq, t = —mZ and k- g = mZ(1 + z)/(1 + 22),
where ¢ = my /2my. Substituting Eqs (5) at threshold into (6), the leading
terms in z = m,/2my are

E, 0y = _ & (1 — g —
04(x%) = — Lol 2’”){2m3v (1-2)
gA(mgr)K’P gkp }
_ 1— oy 7

where the first three terms between the brackets in (7) are due to A; and
the remaining two terms are due to A;. If we set ga(m2) ~ g4, then the
third and fourth terms in (7) cancel because of the Goldberger—Treiman
(GT) relation frg = mpyga. With this approzimation (good to 5%), and
multiplying in the (1 — 2z) factor in (7), the resulting expression is precisely
the low-energy “theorem,” Eq. (1). We regard this consistency with de
Baenst as simply a check that the more ezact expression (6) displays the
correct threshold behavior of the nucleon pole terms for the electric dipole
vp — w°p amplitude. It is the threshold behavior of (6) reflected in (7)
which is then our starting point to test the explicit chiral symmetry breaking
in the threshold 7p — 7%p amplitude.

To study the most exact yp — #°p threshold behavior, we return to
(6) using the CGLN amplitudes (5) but evaluated at threshold, s, uy, =
—4mim2(1—=2?), v = mymy, and k- g = mZ(1 +z)/(1 + 2z), where z =
my/2mpy. Then (6) becomes, postponing the o term and the background
corrections for the moment,

Eo4(7°p) = —0.0210m [0.1393m % — 0.2588m, ?
+0.2494m; % — 0.0012m?] (8a)

+o term + background term, where e = +0.30282 in rationalized units. The
reason why the second and third terms in (8a) do not cancel is due to our
choice {16] of g4(m2) ~ 1.29, according to the observed t-dependent slope
(ma = 1.3 GeV) of the form factor obtained from electro-weak production
measurements. This g4(m2) is also compatible with the observed 5% GT
discrepancy [16]. Then the combined sum of the first four numerical terms in
(8a) gives a lead term (-0.00270 m 1) which is a 17% increase in magnitude
over the de Baenst threshold value (—0.0023m ) in (1):

Eoi(7°p) = —0.00270m ! + 0.0015Mm? + background. 8b
+ bs s

The second term in (8b) corresponds to the chiral-breaking o term,
o 8
LTP = (-14/9)Mi,Gup in (2b), divided by frm?Z in (5a) due to vec-

v
tor meson resonance-dominating the unsubtracted dispersion relation form
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of the CGLN invariant amplitudes [7]. This (covariant) o-term(-X/frm?2)
arises as an application of the original Bjorken-Johnson-Low [17] infinite
momentum frame g% — —o0, i.e., g — 100, |§] fixed limit [7]. We believe it
significant that Schéafer and Weise in Ref. [9] obtain the same (—14/9)md
form for the leading order o term as we do in (2b), only they work in
the Breit frame as do Furlan et al. [6], with frm2 replaced by frmZ in
(5a) [18]. In either case, one uses the standard PCAC relation applied to
photoproduction [6-9],

i/d%eiq”(N’IT(&Ai(z)V:m(O)|N) = MT’ : (9)

14
g% — mZ

Here T, €” is the invariant photoproduction amplitude containing the CGLN
terms A1 3[¥ ,f ]v5+-- - In the covariant version, one replaces ¢ in (9) by
m2.
Finally, the A isobar-dominated threshold electric dipole background
contribution to Eg4 for yp — 7% in (8a) is very small. The latter fact
is because the yp — AT transition is primarily of the magnetic dipole
M4 type, but the smallness of the background terms can also be verified
explicitly from the covariant background amplitudes listed in Table I in
the second reference of [7]. Neglecting this very small background in the
threshold yp — 7% multipole amplitude (8b), we can set a scale for the
average nonstrange current quark mass m in (8b) once we determine the
LHS amplitude E¢(7%p) from data.
Although the original measurements respectively suggested the very
small yp — 7%p threshold multipole amplitudes [2, 3]

Eo i (7%) = (0.5 £ 0.3) x 10 %m !, Eo (7%) = (0.7£0.3)x 10 3m?,

(10a)
a recent study points to a strong energy dependence near threshold [19].
This is due to the difference between photon lab momentum k = 144.7
MeV where the yp — 7%p channel opens up and the rescattering channel
vp — ®tn — 7% with & = 151.5 MeV. Such a momentum difference in
turn recalibrates the original data in (10a) to the new respective threshold

values [5, 19]

Eoi (%) = —(1.5£0.3)x10%*m !, Eoy(x"p) = —(2.04£0.3)x1073m 1.

(10b)
A similar conclusion was also obtained in Ref. [20]. While Eqs (10b) are
more in line with the de Baenst prediction in (1), the 17% shift to the exact
threshold value of size —2.70 X 1073m_ ! means that the revised data in
(10b) of Refs {2, 3] when substituted into the revised low energy expansion
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(8b) with background— 0 implies respectively

~

270 — (1.5+ 0.3) = 1.5—— or m=(112+28) MeV  (lla)

Nz

2.70 - (20£0.3) = 1.5— or M = (65+28) MeV.  (11b)

While these nonstrange current quark mass values in (11) are rather
large, the latter in (11b) is within one standard deviation of m determined
from many other independent constraints on explicit chiral symmetry break-
ing [21]. Regardless of these latter results, however, we believe as do the
authors of Refs [6] and [7] that threshold pion production does not offer a
clean extraction of explicit chiral symmetry breaking effects in the yp — #%p
channel because then effects of the dominant A isobar are suppressed, ex-
posing the delicate cancellations of (7) and (8a) [22]. Rather, the original
soft-pion theorem of FFR [11] as tested in Eq. (3) and in (4) [13, 14] offers
the clearest confirmation of chiral symmetry in low energy pion photopro-
duction for the M(+) and M(®) isotopic modes separately analyzed, but
then with the A isobar playing a significant role. On the other hand, we
believe that the present day experimental studies of threshold photoproduc-
tion carried out to high precision will ultimately prove valuable to studies
of explicit chiral symmetry breaking. In this regard, we re-emphasize the
suggestion made in Ref. [7] that the new data be analyzed in terms of the
invariant amplitudes below threshold, as is done for #N scattering, rather
than in terms of multipoles at threshold or slightly above threshold.
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That is, a 2% reduction of g from the standard value of 13.4 is amplified by
the GT type cancellation in (7) and (8a) to a 10-20% reduction of m.



