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The square of the deuteron matter radius divided by the square of the
scattering length can be expanded in powers of a parameter proportional
to the effective range at the deuteron pole. The coefficients of this ex-
pansion beyond second order depend on the shape of the potential. We
consider the third and fourth order terms for several simple potentials,
both local and separable.
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1. Introduction

The low energy behavior of the two-nucleon system is an important test-
ing ground for proposed realistic nucleon-nucleon potential models. The
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deuteron properties and the low-energy scattering parameters are known
very precisely from experiment, and thus any interaction suggested to de-
scribe the nuclear force ought to predict these quantities correctly. Since
nuclear force models are fitted to the elastic scattering data as well as the
deuteron properties, they are approximately equivalent on the energy shell.
However, some properties, such as the deuteron matter radius, also depend
on the nuclear wavefunction in the potential region. Thus, in order to pin
down the potential, it is necessary to fit not only nucleon-nucleon phase
shifts, but also the deuteron matter radius.

A particular relationship between a pair of low-energy quantities, first
studied by Klarsfeld [1], et al., is that of the triplet scattering length, a;, and
the deuteron matter radius »p. When these quantities obtained from the
various realistic potentials available at the time of their study, are plotted
on a scattering length versus matter radius graph, one obtains practically
a straight line which passes below and to the right of the experimental
region. In other words, the predicted matter radius of the deuteron is too
large. The underlying reason for this relationship, which also holds for
simple S-state models is not yet known. Explanations for the discrepancy
in terms of effects due to meson-exchange [1], relativity [2], or quarks (3]
have not been successful. There are indications that non-locality might
help [4], or possibly a change in the local attraction along lines suggested
by the Moscow group [5]. Thus, recently, Mustafa [6] has found it possible
to fit the smaller deuteron matter radius while keeping the fit to scattering
observables, but his potential differs by about 15% from OPEP already at
internucleon spacing of 2 fm, and by more at smaller distances.

2. Relation between deuteron radius and effective
range parameters

It has been previously shown [4, 7] that the dimensionless ratio v/87p /a;
is relatively model independent. The small model dependence can be pa-
rameterized in terms of low energy parameters. Various examples of S-state
potentials were discussed by the present authors in a previous paper [8],
including both local and separable potentials. It was found that simple
nonlocal potentials can lead to a reduction in the value of rp/ay, com-
pared to local potentials, in the direction indicated by experiment. In the
present paper, we extend these results. We have found it more convenient
to consider not the ratio mentioned above, but its square. To get a brief
orientation, consider the case of a sticky core potential. As in Ref. [8], we
choose units so that A2 /2m = 1, where m is the reduced two-nucleon mass.
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2.1 Sticky core potential

A sticky core potential has an infinite repulsion inside a core of radius
¢ and an infinite deep and narrow attraction just outside, at a distance
d = ¢ + 7, and there is no potential at larger distances.

Assuming 7 to approach zero, we can write the narrow attraction as

|4 :d/\ §(r — d),

- C

At any energy, the S-state radial wavefunction u(r) vanishes inside the core,
but the logarithmic derivative of the wavefunction at the outside of the

potential:
( ) ( ' )
dr d+ uj g+

is independent of energy. In terms of the potential parameters, we have:
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The potential can be characterized by its scattering length, a;. Let the
zero-energy wave function outside the core be

r
u=1-—,
at
then .
F = - .
C — Qg

Suppose the potential is strong enough to give a bound state at energy —a?.

Then the wavefunction outside the potential is proportional to e ™7, so that
F=-a,and aa; = 1 + ac.

For the sticky core potential, we can calculate the deuteron matter
radius exactly, and obtain:
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Now we will find it convenient to work with the ratio 8r3 /aZ.
For the sticky core potential, we obtain:
81'12) _ 1+ 2ac + 2a%c?
a? (1+ ac)?
=14 (ac)® - 2(ac)® +3(ac)* +---.

Finally, let us use the effective range r,, to define

armxl_i

)
¢

instead of the core radius, as the independent variable.
For the sticky core, we have:

ac
z= ,
1+ ac
and )
8r
——2Q =1+ 22
ay

2.2 Series expansion for general potential

For a more general potential, there are also higher order terms in z, and
our expansion can be written as:
8ri
—,?::14— 22+ d3zd + dyzt4---.
ay
However, there is no term linear in z, the quadratic term always has coeffi-
cient 1. Since, due to the small deuteron binding energy, z is small,

,_ 0231641755 _ 1

=1 e = (2032
2 0.2316 % 5.419

we obtain, in the model independent approximation (dz = d4 = 0):

a
rp = “\/Lg (1+ z2) = 1.955 fm,
which is close to the experimental result!

We must, however, include the effect of the higher order terms in z as
well. Now it was shown in our earlier work that the d coefficients can be
expressed in terms of two parameters P and J. P is the well known shape
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parameter in the expansion of k ctn &y in powers of k2, while J is an integral
involving the deuteron wavefunction. Details are given in Ref. [8]. It was
shown that

d3 =2+ 16Py — 4Jg.

(In Eq. (2.24) of Ref. [8], the expansion parameter is ary/2 rather than z,
but the two expansion parameters are the same to order a? and hence yield
the same expressions for d3.) Here the subscript 0 of P and J indicates that
these quantities can be obtained from a potential which gives a zero energy
bound state, i.e. infinite scattering length. These results can be extended,
however, to potentials with finite scattering length, i.e. non-vanishing z.
Thus we can define:
P =Py+ zPy +-+-,

J =Jo+ zJy+---.

Then it can be shown that

dy =4+ 32P; + 16P, — 4J,.

3. Results

We shall be particularly interested in the value of z that “corresponds”
to the deuteron binding energy and the associated n — p triplet scattering
length. This is z5 = 0.2032. In Table I, we give the expressions and the
values of Py and P; for 4 local potentials and 3 rank one separable potentials
(Yamaguchi, the separable Yukawa and the separable square well). The
expressions were obtained by using the computer algebra package, MAPLE.
The numerical values of Py and Jy are, of course, those given for P and J in
our previous paper. The expressions for the Hulthen potential contain the
value of the Riemann zeta function {(w) [10] evaluated at w = 3. In TableII,
we give the values of Jg and J;. The values of d3 and d4 in Table III were
obtained by the direct expansion of the quantity Sr%/af for each model.
These values were checked by using the formulae for d3 and d4 in terms of
the P; and J;, {({ = 0,1). We note that, except for the Hulthen potential,
ldsg] < |d3|. We have calculated the higher order terms (ds, dg, ...) and have
found that each series converges rapidly, except for the Hulthen case. The
Hulthen potential behaves differently because the radius of convergence of
the series is much smaller. Introducing d = V;/u?, where V; is the depth
and p is the range [9], we find that as d increases from unity, z increases
from zero to a maximum of about 0.24, decreases to zero at d = 2.43 and
has a pole at about d = 2.86. This means that there exists a particular value
of Vo ( fixed) for which there is a low lying bound state (a = g = 0.7) but
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the corresponding potential gives a scattering length of zero. (The series is

not unlike
1-2z+422 -822+162%—--..

which converges for |z| < 1/2.) In Table IV, we give (for the Yamaguchi
case) the values of 873 /a? from the series truncated at the term in z* and
the corresponding exact model values. For the “deuteron” value of 2=0.2032
(»=0.1658, with v being defined as the ratio a/3, 8 being the range of the
Yamaguchi potential), the agreement is very good. Calculating the radius
from the series for this value of z, we obtain rn=1.9343 fm which agrees
to within 0.01% with the exact value of 1.9345 fm. A similar accuracy was
obtained for the delta shell potential.

TABLE I
The shape parameter coefficients Py and P; for some simple local and separable
potentials.
Potential Py P, P,y P,
Sticky core —1/24 —-1/24 —0.0417 —0.0417
Square well —(x* = 6)/122% (* —12)/6x% —0.0327 —0.0360
Delta shell —3/80 —27/640 —0.0375 —0.0422
Hulthen —11/216 + (2/27)¢(3)  —4/81 + (4/27)¢(3) 0.0381  0.1287
Yamaguchi -1/54 —2/81 —0.0185 —0.0247
Yamaguchi 2* ~1/32 -1/32 —0.0312 —0.0312
sep sq well (r* - 12)/6%* 2(5x* — 84x% +336)/3x' —0.0360 —0.0411
sep Yukawa 0 0 0.0000  0.0000
TABLE II
The coeflicients Jy and J, for the potentials of Table 1.
Potential Jo J; Jo J;
Sticky core 1/3 1/2 0.3333  0.5000
Square well 4(x* - 6)/3x* —8(x? — 12)/3x% 0.5228  0.5756
Delta shell 8/20 81/160 0.4500 0.5063
Hulthen 10/9 16/27 1.1111  0.5926
Yamaguchi 10/9 16/27 1.1111  0.5926
Yamaguchi 2* 7/8 3/4 0.8750  0.7500
sep sq well 4(x* —6)/37%  8(x* + 207 —~288)/x*  0.5227  0.5586
sep Yukawa 13/8 3/8 1.6250  0.3750
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TABLE III

The expansion coefficients dz and d4 for the potentials of Table I (dp = d2 = 1,
dl = 0)

Potential d3 d4 d; d4
Sticky core 0 0 0.0000 0.0000
Square well (120 — 14x%)/3x% 4(117? - 108)/3x% —0.6138 0.0764
Delta shell —~2/5 1/10 —0.4000 0.1000
Hulthen ~88/27 + (32/27)¢(3)  —64/81 + (128/27)((3)  —1.8346 4.9085
Yamaguchi —74/27 52/81 —~2.7407  0.6420
Yamaguchi 2* -2 1/2 —2.0000 0.5000
sep sq well —2/3 4(23x* — 1200x% + 9600)/3x* —0.6667 —0.0427
sep Yukawa -9/2 5/2 —4.5000 2.5000
TABLE IV

Comparison of the series (up to z*) and the exact values
for the Yamaguchi potential.

v z series exact

0.1 0.1322 1.0113 1.0114
0.1658 0.2032 1.0194 1.0195
0.2 0.2361 1.0217 1.0218
0.3 0.3195 1.0194 1.0201
0.4 0.3878 1.0051 1.0070
0.5 0.4444 0.9820 0.9859

We have also considered a new separable potential which has the form
factor

£(p) = B1B2/1/ (B2 + p?)(8 + p*).

For 81 = 32, we retrieve the Yamaguchi form factor. For 8; >> (1, we get
the Yukawa form factor (see, for example, Ref. [9]).
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TABLE V
The two term separable potential.
Po  (=1/2)(1+7)(47* + 8y + 1)(4y +3)"°
P (=2)(1 + 7)(27 +3)(87* + 1697 + Ty + 1)(dy + 3)~°
Jo 2(287° + 807* + 9643 + 957 + 58y + 15)(4y + 3)73(1 + v) 2
N1 16(48v7 + 266+° + 5869° + 7509* + 6464°% + 34742
+96y + 9)(4y +3)7(1+ )72
da (—2)(649° + 1289* + 729 + 11792 + 1147 + 37)(4y + 3)~3(1 + )2

dq (—4)(12877 + 864v® + 15685 4 17204% + 184043
+11059% + 178y — 39) (47 + 3)~%(1 + 7)~?

Finally, in Table V, we give our results for the rank two separable
Yamaguchi potential, denoted here by Yamaguchi 2:

- fi(e)A(P") + nf2(p) f2(p")

with f;(p) = B%/(p? + B?). Our results are for the limit 7 — co. Each of the
parameters is a smooth function of ¥ = f;/8; and in Tables I-IIT we give
the values for the extreme cases 7 = 0 (which is equivalent to the rank one
separable Yamaguchi potential) and v = oo (Yamaguchi 2*). Other values
of v produce intermediate values of the parameters.
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