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An account is given of a simplified relativistic approach for the study
of single-particle energies for neutrons in nuclei and for a A-particle in hy-
pernuclei and also for their average variation with the mass number. The
analysis is based on the Dirac equation with scalar potential and fourth
component of vector potential, which are assumed to be of rectangular
shapes with the same radius. The energy eigenvalue equation is obtained
analytically for every bound state, as well as the large and small compo-
nent of the wave function. Attempts are also made to derive in certain
cases approximate analytic expressions for the single particle energies as
functions of the mass number. Numerical results, mainly for hypernuclei,
are finally given and discussed.

PACS numbers: 21.60. Cs, 21.80. +a

1. Introduction

As it is well known, there is substantial experimental information on
single nucleon energies [1], in spite of existing ambiguities. This information
comes from various nuclear reactions like (p,2p), (e,e’p) and one nucleon
transfer reactions.

Much progress has also been made by experimentalists in the past and
recent years for the measurement of A-particle energies in hypernuclei by
means of emulsion techniques, the strangeness exchange reaction (K=, 77)
and the associated production reaction (7*,K*) [2]. These experimental
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advances have stimulated considerable theoretical work (see Ref. [3] and
references therein).

The purpose of this paper is to give an account of a simplified relativistic
approach for the study of the single particle energies for neutrons in nuclei
and for a A-particle in hypernuclei and for their average variation with mass
number. Most of its content has been published in recent years or is in the
process of publication. More details can be found in the relevant references.

Our analysis is based on the Dirac equation with scalar potential Us(r)
and fourth component of vector potential Uy(r) . As it is well known, the
advantage in such a general approach is that the spin-orbit potential springs
out naturally from the theory and one does not have to introduce it “ad hoc”
as in the non relativistic Shrédinger equation. The latter equation could be
also used instead, but there is no much complication in the numerical work
by using the Dirac equation.

The potentials Ug(r) and Uy(r) are assumed for our purposes to be
of rectangular shape and of the same radius. This is an oversimplification
of the actual A-nucleus interaction and in this sense the present approach
is less satisfactory than other more sophisticated ones. It has the advan-
tage, however, that it leads to an exact energy eigenvalue equation and to
an analytic expression for the wave function. The eigenvalue equation may
be used subsequently in deriving in certain cases approximate analytic ex-
pressions for the single particle energies as functions of the mass number.
These expressions play the role of elementary “semi-empirical mass formu-
lae”. It should be also noted that the assumed potential model gives rather
satisfactory single particle energies for low-lying states in sufficiently heavy
hypernuclei.

In Section 2 the energy eigenvalue equation for the ground and excited
states is given, as well as the analytic expressions for the large and small
component of the wave function. In Section 3 the problem of the derivation
in certain cases of explicit expressions of the single particle energies in terms
of the mass number is discussed and a number of such expressions are given.
The final Section is devoted to numerical results and comments.

2. The eigenvalue equation and the wave function
for the ground and excited states

As it was mentioned in the introduction the Dirac equation we are using
is of the form [4]:
(cdp + Buc® + BUs(r) + Uy (r)) ¥ = E¥ (1)

which has attracted much interest in the past years (see Ref. [5] and refer-
ences therein). In this equation a and f are the usual Dirac matrices, ¥
the Dirac spinor and E the total energy E = ¢ + puc?.
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By expressing the Dirac spinors in terms of the large (G) and small (F)

component:
iGny5(r)
™
¥ =YNijm = ( ) Plim (2)

Fyij (r)a7
T

where
Prim = (V™ ® X7}, )im (3)

and X;r;sz are the Pauli spinors, one may derive from (1) the following
Schrédinger-type equation (for central potentials) 6, 7]

g"(?‘) - (&%_12 + %;(I/centr + I/s.o. - 5)) g(r) = 0’ (4)

where

g(r)y=D73(r)G(r),

D(r) = (e’ + ¢+ U_(r), (5)

G is the large component of the Dirac wave function and

Veente(r€) = Us(r) + o= (55 (Us(r) = ) (U_(r) +¢)

ﬁ h2c2
D)D)t - (2D() D) + 2D (D)), ()

_ h 1 1 dU_('I') =,
‘/S.O(rje) - _2# 2#62 + c + U__(f,-) ” dr la'. (7)
The potentials U4 (r) are defined as follows
Ut(r) = Ug(r) £ Uy(r) (8)

We consider the case in which U4 (r) and U_(r) are rectangular-wells with
the same radius R and depths Dy and D_ respectively i.e.

Us(r) = ~Dx(1- O(r - R)), (9)

where O is the unit step function and R = ro4'/3 [8]. A = A, is the mass
number of the core system.
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The generalized Dirac equation with the rectangular potentials we are
discussing may be solved analytically, for every bound state [9]. The ex-
pressions for G and F are given in terms of spherical Bessel functions j; and

spherical Hankel functions of the first kind hgl) and are the following

G(r) = Nnr ((1 ~ O(r — R))je(nr) + O(r — R)j—‘("-l?-)—hgl)(inor)> ,

Y (ingR)
(10]
~ 1 . .
F(r) = Nnen((1 - 0(r - R) ;e =g (Priema(nn) + (k= 8)je(nr)
1 Je(nR) (. ) ()
+ O(r — R)s e h(ll)(z‘noﬁ) (zngrhe_l(mgr) + (k= £)h, (mor)) ) ,
(11)
while the energy eigenvalue equation is [9]
(1 D_ ) ingRh{V (inoR) (k- 1)D_  nRj_,(nR) (12)
2uc +e)  pDn,r)y 2wt te i(nR)
In these expressions the quantities n and ng are defined as follows:
2 1/2
n = (EE(D_;. +e)(1 - (D= - e)(2pc2)_l)) , (13)
9 RS
o= (2 (- e+ e ™) (14

and k = £(j + 1) for j = (I ¥ '/2). The quantum numbers in G, F, ¢ and
N have been suppressed.

3. Approximate analytic expressions for the single particle energie

The disadvantage with eigenvalue equation (12 ) is that in general it can
not be solved explicitly for ¢ and thus it is not possible to have an explicit
expression of the energy in terms of the potential parameters. We may show,
however, that in certain cases this can be achieved approximately in a rather
satisfactory way. Thus, one is led to fairly simple approximate analytic
expressions for £. Before proceeding we recall that usually in practice D_
is quite smaller than 2uc? (at least for hypernuclei) and Dy much smaller
than D_.
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Let us consider the case in which nR and ng R are sufficiently larger than
1/2(1 + 1) (see also Ref. [10]) so that we may use the following asymptotic

form for j;(nR) and hgl)(z’noR)

. 1 Ir . -1 .
ji(nR) ~ R sm(nR—E), hgl)(moR) ~ R exp (—ngR - 215) . (15)

Thus, Eq. (12) may be written in the form:

D_

I
noR + nR cot(nR — —2') = m

[noR — (k- 1)]. (16)

It is seen immediately that for the ground state: 13%, (I =0,k = —1) this

equation coincides with the exact eigenvalue equation for this state (see
appendix of Ref. [8]). For the excited states, however, it is approximate.

Eq. (16) may be written in the following form which is suitable for our
treatment:

2
niR? = h—’z‘D+RZ(1 + Cr)sin®[(2N + 1)2 — nR], (17)

where N = 1,2,3,...,1=10,1,2,... and

(& _ 2y~1
Cr= (D_ D, 1) D_(2uc®)

- D_ k—1)D_\?
+w (‘(noR)2 + (noR(l - 2 +€) + (2#62)_}_6 ) ) . (18)

We are interested in the case of a well of sufficiently large depth D
and radius R. Thus if we write Eq. (17) in terms of the arcsin of the small

quantity
B 2u 5 -1/2
£~nR<(h2)D+R (1+CR)) ’

we may keep only the leading term in the expansion of arcsinz and obtain
the eigenvalue equation in the approximate form
2 - (2N + 1)?x?

nk ,
( 4(1 + Ag)?

(19)
where

_ 2 —1/2
Ar=2(1+CrR) 7V (@), o= (E’;m}z?) ().  (20)
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It is interesting to note that if we neglect completely the terms of order
(2uc?)™? the eigenvalue equation (12) goes over to the corresponding non
relativistic one. In this case Eq. (19) may be written in the form

E_z_(2N + )22

84 (1+ Ag)*R2 (21)

ENR, = — D4 +

This is an approximate expression of the non-relativistic energy for a parti-
cle of mass p in a rectangular-well potential of depth Dy and radius R. In
the case of the s-states the above expression reduces to a known approxi-
mate expression [11] derived from the corresponding Schrodinger eigenvalue
equation.

An approximate relativistic expression for the energy may be derived
from expression (19) if the unknown energy which appears in terms which
are expected to be small is estimated by means of (21). In this way we
obtain the following approximate expression for the relativistic energy which
we shall denote by ep;

R (2N + 1)%x?

Er, = —-D y 22
2= D s U am R (22)
where pg. is a sort of “effective mass” given by
-1
Bg =4 (1 + (enr1 — D-)(2uc?) ) (23)

and Ap; is given by (20a) in which the energy in the expression of Cg has
been substituted by ¢y r; (expression (21)). The above procedure may be
iterated. Thus we may use as expressions for the energy in tg, and AR,
which appear in (22) and (23) the ones obtained in the previously described
way and so on.

An improved expression for (¢ = ¢g,) may be obtained if instead of
retaining only the leading term z in the expansion of arcsinz :

. n 23 + 1-3 5 +
arcsinez =z + — T ..
2.3 2.4.5
= 2(1+ F(z)), (24)
that is, instead of setting F(z) = 0 , we write in the above expression

F(z) =~ F(2°P) where z°P is the expression resulting from the eigenvalue
equation solved approximately with arcsinz ~ z. The relevant results are
given in Ref. [12].

We discuss also the case of states for which in addition |¢] < Dy. This
condition is satisfied for loosely bound states in a sufficiently deep well. In
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this case it may be seen from Eq. (16), in analogy with the corresponding
non-relativistic treatment [13], that the cotangent should be close to zero.
Thus, we arrive at the following approximate expression

where
1/2
o = Ao ( £ ) (26)
Hgs

and py, is calculated from the expression of

py = p(1+ (e = D-)(2pe))71), (27)
by using for the energy the corresponding non-relativistic expression [13]

T

ENR; = 2D (—1 + Xo(2N +1 - 1)2) . (28)

Expressions (25) and (28) gave poor results in the cases we studied. How-
ever, an alternative expression which gives considerably improved results in
a variety of cases (see next section , Table III}) may be derived by treating
approximately expression (17) on the basis of expansion 4.4.42 of Ref. [14].
Such a procedure has not been followed, to our knowledge, even in the non
relativistic case. The final result for the energy eigenvalue is

h? 6%,
er, = -Dy + — DL, (29)

4 2#9 RZ

where
1
o _ 4Xg - 3ap; ) . (AL =3)(7-3a%)\? 30)
MU= T T (4Ag - 3apm)? (
R—3 (4AR — 3apn)

with ay; = (2N +1-1)r/2.

The energies entering in ¥ and Ag may be evaluated by using for ¢ the
eNR Which is of the same structure as (29) but with p instead of pj and
with Ay instead of AR in the expression of 6.



614 M.E. Grypreos, C.G. KouTRoULOS AND G.J. PAPADOPOULOS

4. Numerical results and comments

In this Section we give numerical results we have obtained so far for the
single particle energies by using the formalism exhibited in the previous two
Sections. Further work for possible improvements and extensions is under
way.

We give first the results regarding the A-particle energies in hypernu-
clei. The eigenvalue equation for the ground state (Eq. (12) with [ = 0
and k = —1) was solved numerically by using the following values of the
potential parameters D4 = 30.55 MeV, D_ = 300 MeV and rg = 1.01 fm.
These were obtained by choosing approximately D_ = 300 MeV [7], for
4 the reduced mass of the A-core system and determining Dy and r¢ by
(unweighted) least squares fitting [8] of the ground state energies of the A
to the corresponding experimental values. This is somehow analogous to
the procedure used by Davis et al. [15] (see also the discussion of Ref. [16])
for the asymptotic expression of the binding energy By = —e&¢ with the
rectangular-well in the non-relativistic case. If the value D_ = 443 Mev
[17] is chosen, for the fitting with the present model, the results obtained
for B, are very similar to those of Table I. It should be noted that D_ could
also be determined by the least squares fitting but it is doubtful whether
the value obtained in such a way is reliable.

TABLE 1

Binding energy eigenvalues of various states obtained with Dy = 30.55 MeV, D_ =
300 MeV, ro = 1.01 fm (R = roAiéfe) and various hypernuclei, solving numerically
the eigenvalue Eq. (12).

si/2 | P3j2 | Pij2 P dsja | da)2 d

Acore | MeV | MeV | MeV MeV MeV | MeV MeV

12 11.2

15 13.1

27 17.% 5.6 4.5 5.2

31 18.4 7.1 6.1 6.8

39 19.8 9.5 8.7 9.2

50 21.1 11.9 11.3 11.7 1.6 0.2 1.0

88 23.6 16.7 16.3 16.6 8.4 7.5 8.0
137 25.1 19.7 19.4 19.6 13.0 12.4 12.8
207 26.3 21.9 21.8 21.9 16.5 16.2 16.4
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The values of the binding energies of the A in the ground and the ex-
cited states p3 /s, P1/2,d5/2, d3/2, obtained for a number of hypernuclei are
given in Table I. In the same table the binding energies of the unsplitted
states p, d, f are given. These were obtained by means of the usual weighted
average of the splitted states. The numerical results displayed in this ta-
ble may be compared with the experimental values and with the results of
previous calculations as for example with the more realistic Woods—-Saxon
[WS] potential [18, 19] and thus we may have an idea of the limitations of
the potential model used and make a first assessment of its physical signif-
icance in reproducing the A particle energies in hypernuclei. It is realized
(see Fig. 1 of Ref. {9]) that the WS results are closer to the experimen-
tal values, as one should expect in view of its more realistic shape in the
surface region, while those with the rectangular-well usually underestimate
the binding energies. In certain cases, however, the results obtained with
the rectangular-well potential are fairly satisfactory. Firstly, the fit to ex-
perimental ground state binding energies of the A is very good. Also the
A-binding energies for the low lying excited states compare rather satisfac-
torily with corresponding experimental ones for the heavier hypernuclei. It
is further noted that an improved description of the A energies in the excited
states should be achieved with the rectangular model if state dependence
of the potential parameters is allowed. If this is so, the limitations of the
model are restricted. For the Woods—Saxon and the symmetrized Woods—
—-Saxon potentials, however, the state dependence of the parameters is quite
weak [18, 20].

We also note that certain differences occur in the results if different
experimental energies are used for determining the potential parameters. If
the experimental results of P.H. Pile et al. Ref. {2] are used together with
the value 17.5 + 0.5 MeV for 325 from the (K~, 7 ™) reaction, the best fit
values of the (weighted) least squares fitting obtained with D_ = 443 MeV
are D, = 28.23 MeV and ro = 1.125 fm. Furthermore, if the energies of
the A in the 3 lighter elements are exempted from the fitting, the best fit
values become D = 31.3 MeV and ry = 0.93 fm.

In order to test the accuracy of the approximate expressions eg, and
€R,, numerical calculations have been performed by using the first set of
parameters and the results were compared with those obtained by solving
numerically the eigenvalue equation (12). The results obtained for the 1sy/2
and 1lp;/; states and for various hypernuclei are displayed in Table II..In
each case the values of the “exact” relativistic energy €., for the rectangular
potentials, that is the one obtained by solving numerically the eigenvalue
equation (12) and the approximate ones ¢ g, and e g, are shown. In addition,
the quantities nR and ng R calculated with £.x are also displayed. It is seen
from the results of this table (see also Ref. [12] for more details ) that for the
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1s and 1p states and mainly for the larger values of R which correspond also
to larger values of nR and no R the approximate expressions ¢g, and ¢p,
are good approximations to €ex. From the same table it is also seen that the
results with ep, are better compared to those obtained with eg,. In some
cases the improvement is considerable. In Table III the results obtained
with ¢g, are displayed for various states and various hypernuclei and are
compared with those obtained with the numerical solution of the eigenvalue
equation. It is seen that for the ground state the accuracy of ¢g, is very
good for the smaller as well as for the larger values of R. We further observe
from both tables and from the tables of Ref. [12] that for the higher states
the accuracy of the various approximate expressions is deteriorating quite
rapidly. It should be noted, however, that the accuracy depends on the
values of D4 and R. If in a physical problem the values of these quantities
were larger, the accuracy for each state should have been improved.

TABLE II

Binding energies (in MeV) of various states obtained with D, = 30.55 MeV, D_. =
300 MeV and ro = 1.01 fm, (R = roAzé?e) and various hypernuclei. The values
obtained with the numerical solution of the eigenvalue equation (12} are denoted
by €ex while those obtained with the approximate expressions by er, and eg, (see
text and Ref. [12] for these expressions and also for the expressions of nR and noR).

S1/2 | S1/2 $1/2 S1/2 $1/2 P3/2 P3/2 P3s2 P3/2 P3/2
Acore | R | noR | —€ex —€R, | —€R, nR | ngR | —€.2 | —€R, | —€R,

12 2.1 1.8 11.2 9.1 11.8
15 22 | 21 13.1 11.6 13.4
39 25 | 3.6 19.8 19.4 | 19.8 3.4 2.5 9.5 5.5 9.0
50 2.5 | 4.0 21.1 20.9 | 21.1 3.5 3.0 11.9 8.8 10.9
88 2.6 | 5.2 23.6 23.5 | 23.6 3.7 4.3 16.7 | 14.8 | 15.6
137 2.7 | 6.2 25.1 25.1 | 25.1 3.8 5.5 19.7 | 18.3 | 18.7
207 27T {73 26.3 26.2 | 26.3 3.9 6.6 21.9 | 21.0 | 211

We may conclude on the basis of the above mentioned results that
the analytic expressions ¢ég, and eg, give, in a number of cases, single
particle energy values which are fairly close to those obtained from the
numerical solution of the eigenvalue equation ,derived by means of the Dirac
equation with potentials Ug and Uy of rectangular shape and of the same
radius. Expression ¢, gives in some of these cases better results than those
obtained with the above mentioned expressions and in particular with ¢p, .
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TABLE III

Binding energies (in MeV) of various states obtained with D, = 30.55 MeV, D_ =
300 MeV and rp = 1.01 fm (R = roAiéfe) and various hypernuclei.The values
obtained with the numerical solution of the eigenvalue equation (12) are denoted
by £.x while those obtained with the approximate expression by ¢gr, (see text).

s1/2 | S1/2 | Paj2 | P3j2 | P2 | Pz | dsj2 | dsjz | dajz | daj2
Acorc —ER, —E€ex —ER, —Eex —€ER, —€ex —~ER, —Eex —ER, —&€ex
12 11.3 | 11.2
15 13.2 | 13.1
19 15.1 15.0 1.4 1.8 0.3 0.5
27 176 | 175 4.4 5.6 3.2 4.5
31 185 | 18.4 5.8 7.1 4.7 6.1
39 19.8 | 19.8 8.1 9.5 7.3 8.7
50 21.1 | 21.1 | 10.6 | 11.9 9.9 |11.3
88 23.6 {236 | 15.5 {16.7 | 15.2 | 16.3 5.5 8.4 4.5 7.5
137 25.2 | 25.1 18.7 | 19.7 | 18.5 | 194 | 10.3 | 13.0 9.6 | 124
207 26.3 {263 |21.1 {219 | 21.0 |21.8 | 14.2 |16.5 | 13.8 | 16.2

Finally we mention that a least squares fit to the 1s;/, neutron en-
ergies was made using the nuclei of Table I of Ref. [20]. These energies
were determined from known experimental values of proton energies (1] by
subtracting approximate values of the Coulomb energies as in Refs [20] and
[21]. The energies were computed by solving the eigenvalue equation (12)
numerically. The D, and r; were used as adjustable parameters and for
D_ an approximate fixed value was assumed (D_ = 698 MeV, [17]). It was
found that the best fit values are Dy = 99.2 MeV and 7o = 0.70 fm and
give a fairly satisfactory overall fit.
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