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A method of finding the exact solutions to the general two-body nu-
clear Hamiltonian is developed. It is based on the theory of Lie algebras
of special orthogonal group. The algebraic structure of the model is dis-
cussed in details and the simplifications carried by the group theoretical
approach are pointed out.
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1. Introduction
It is known fact that many essential features of rotating nuclei

are connected with the alignment processes of the orbitals carrying
large single-particle angular momentum. These orbitals are known
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to be the intruders (unique parity) among the normal parity states.
Thus, in the first approximation, they do not mix with surrounding
normal parity states and, to large extent, are characterized by their
angular momentum j.

In this context it appears to be very fruitful to limit the single-
particle space to the single high-j subshell. The models based on
this assumption appeared to be very powerful in predicting the ba-
sic features of rotating nuclei. For example, direct application of
different nuclear models and methods in this simplified shell model
space allowed to study (predict) in a very straightforward way the
oscillatory behaviour of yrast-yrare interaction (see e.g. Refs [1, 2]),
many properties of electromagnetic transitions (see e.g. Refs [3, 4])
the distribution of diabolical points and oscillatory behaviour of pair
transfer matrix elements (see e.g. Refs [5, 6]) and many other effects.

The nuclear methods usually provide the approximate solutions.
It is interesting from the theoretical point of view to compare this ap-
proximate treatment to the rigorously exact solutions for these mod-
els in spite of the fact that it is hard to judge which type of treatment
better simulates the reality. There have been many attempts in this
direction. One of the method involves the direct diagonalisation in
the spherical basis — jm-scheme (see e.g. Refs [7-9] and Refs quoted
therein). Another class of methods is based on the Lie algebras of
group theory [10, 11]. For example, in the Ref. {11] we discussed
the advantages of group theoretical treatment over any standard ap-
proach when it is applied to the nuclear cranking Hamiltonian.

In the present paper we develop a formalism to find the exact
solutions to any two-body Hamiltonian. There are in general two

ways of proceeding. One can express any two-body Hamiltonian using

only Ny g = chﬁ operators. It is known that N, g operators are the

generators of Lie algebra of unitary group and, in a case of single
j—shell, it is the Lie algebra of U(27 + 1) group. This algebra was
described in details in our previous publication [11]. One should point
out, however, the basic difference between the realization of u(25+1)
algebra described in the Ref. [11] and the present one. In the present
realization we can attack any two-body Hamiltonian. However, it is
straightforward to show, that the irreducible representations in this
case are labelled by a number of particles. In the previous realization
the limitations superimposed on the Hamiltonian (see the explicit
form of generators given in Ref. [11]) led to appearance of a new
quantum number — representation label — and substantial reduction
of dimensionality of the problem.

An alternative way is to express the nuclear Hamiltonian using,
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beyond N, g = chﬁ operators, also Bl,ﬁ = cac and B, g = cqacg
operators. As was shown in Ref. [10] these operators (more precisely
their special combinations) form the structure of Lie algebra of SO
group. In particular, for single j—shell, it is the so(4j + 2) alge-
bra. One should stress that this method allows also for the studies
of particle number breaking Hamiltonians like, very often used in nu-
clear structure, mean field approximation to the pairing Hamiltonian
Hppir < A(PY + P). Here, A stands for pairing gap and P! (P) are
the pair creation (annihilation) operators.

2. The algebraic structure of the model

As was already mentioned above the main building blocks of
so(47 + 2) algebra are the following operators:

Naﬁ:c:‘lcﬁ, where «,8=1,2,...,2n, (1)

B! g =clch =(Bap)!, where a<f=12..2n, (2)

where ¢! and ¢, are the creation and annihilation single-particle op-

erators in the single j—shell model space. The single-particle states
are enumerated in the following way: If the single-particle levels are
split into n = j + !/; pairs by e.g. prolate quadrupole mean field then
odd and even indices a = 2: — 1 and a = 2i (i = 1,2...,n) label the
time-reversed states |2i) = T|2i — 1) and the lowest pair of states cor-
responds to m = +!/, and i = n, next lowest pair has m = +3/, and
i=n-1 and so on.

It has been shown in Ref. [10] that the following linear combina-
tions of the operators (1) and (2):

Loa-128-1=~% (Nas = Npa— Bl g+ Bap) » (3)
Lra-12 =% (Nap + Npat+ Bl g+ Bag) , (4)
Lrazs-1=~} (Nap+Nga—Bl - Bap), (5)

Lyazs = —1 (N - Nﬂa+Baﬁ—Baﬁ) (6)
Lia-120 = Naya — 3 5 (7)

where a < 8 =1,2,3...2n, obey the standard commutation relations
for SO group:

[Laaﬁ’ L'Yq6] = i(éal’yLﬁaé - 6016L3v‘7 - 6ﬁs‘7Las6 + 6B16L07—Y) ° (8)
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One should also notice that the generators defined through Eqgs (3)-
(7) are hermitian:

Lopg=-Lpa=1Ll, (9)

and, what is clearly visible, this transformation is reversible. It means
that any two-body Hamiltonian can be rewritten in terms of genera-
tors Ly .

2.1. The Gel’fand-Tsetlin representation

The underlying special orthogonal symmetry offers the possibility
of explicit construction of basis states. We use here the method
developed by Gel'fand and Tsetlin [12]. The method is based on
the following decomposition

SO(n) 5 SO(n — 1)...5 SO(3) 5 SO(2). (10)

According to this method the basis state — Gel’fand-Tsetlin (GT)
pattern — is the set of all integer (or all half integer) numbers which,
for the groups of even dimension I = 2k + 2, (we deal with even
dimensions only) has the following form:

my ma e M1 mp M1 \
Mak,1 Mk 2 Mok k—1 Mok k
Mog—-1,1 M2k—1,2 -+ M2k-1,k—1 M2k-1,k
Mok—2,1 ™M2k—-2,2 - M2k-2 k-1
Mok—3,1 M2g—-32 -+ M2k-3 k-1
(11)
m4.1 myg 2
ms3,1 m3z.2
ma2.1
my1

The numbers m; ; are restricted to obey the following relations:

Mopt1,i41 < Mapi < Mmapy1,i, where i=1,2,...,p,
M2p it+1 S M2p—1,4 < map, where i=1,2,...,p-1,
—M2p,p < M2p—1,p < M2pp- (12)
The first row of the GT pattern (11) is the irreducible repre-

sentation (irrep) label (is fixed) and m; > my > ...mp > mypyq. In
other words the irreps are labelled by highest weights associated with
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the eigenvalues of the Cartan subalgebra. In the case considered here
the Cartan subalgebra can be constructed by Lyo—1,24 (7) generators.
They are, up to additive constant, the number operators for given sin-
gle particle levels. Consequently, for fermionic systems (completely
antisymmetric representations), the highest weights can consist 1or
-1/, only (see Eq. (7)) what simplifies the structure of the model.
Generally the highest weights have the following form: (n = j + 1/ is
the number of doubly degenerated levels):

B DT where k=12, (13)

The simplified notation used here have the following meaning: the
highest weight is built by m; = my = ... = m; = 1% followed by
My = Mpyg = ... = mg, = —'/,. However one can easily proof that
the permissible irreps have £k = 2n or k¥ = 2n — 1 only.

From didactical point of view is very instructive to consider the
SO(8) case as an example (j = 3/, model — very frequently discussed
in the literature in the case of 2-fold degenerated j = 3/ multiplet).
For the (1/2)* irrep the allowed GT patterns have the following form:

11 1
/2 2 2 2
111
A S
7 7 *3
72 ; (14)
1
7 *2
1
\ £
z

while for the (12)3(-1/) irrep we get
11 1 1
2 2 2 2
11 1
i i1 A
;7
: 3 (15)
7 T2
1
2]
*3

The numbers of states in both representations are equal and the total
number of states is 24 (22") spanning the full Fock space. One can
immediately generalize this conclusion for arbitrary n. Indeed, k = 2n
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and k = 2n — 1 irreps contain 227~ states each and together they
span full Fock space.

One should also notice, that the m,;_; ;, numbers are the only
active quantum numbers for the problem. All the remaining m; ; are
completely passive. It is important when one defines the action of
Lie algebra generators onto the basis states related to the given GT
pattern.

One can associate the basis vector to any Gel'fand-Tsetlin pat-
tern. Thus, the representation is uniquely defined by the action
of the generators on the basis vector. The representation given by
Gel’fand and Tsetlin [12] is appropriate, however, only for antihermi-
tian generators. We thus choose the following definition for hermitian
generators!:

Lopt1,2p€(a) = %A(IZP_laP)€+(agp—]) + %A(l2p~lm - 1)5_(a§p—1) s
(16)

Lapt2,2p+16(a) = Crpé(a). (17)

Where we are using (in agreement with original notation) the fol-
lowing symbols: £*(af,_,) denotes the wave function for the GT

pattern built by replacing m’z’p_l by m’z’p__1 +1 and lyp_1,p = mop_1,p.
The coeflicients 4 and C are equal in our case:

Cop = 2m2p~1,pm2(p+1)—1,p+1’ (18)
A(lap-1,p) = 6(map—1,p,—3) (19)
A(lzp—l,P - 1) = 5(m2p-1‘p’ %) * (20)

As it was mentioned earlier, the only active quantum numbers are
Mak—1 k- Also the matrix elements defined through the Eqs (16)-(20)
and the selection rules depend only on the active quantum numbers.
It is thus very convenient to use simplified notation for the GT pat-

! We adopt here the phase convention which is equivalent to the standard
Condon-Shortley phase convention for SO(3) group if: Ly = J,, Lzz = J,
and L3; = J,. One should also note an error in the original definition of A
coefficients resulting in a factor 1/2 in Eq. (16). Moreover, the coefficients B
appearing in the original paper by Gel'fand and Tsetlin [12] vanish for com-
pletely antisymmetric representations.
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erns (11), namely:

- - - -

man Vn
Ma(2n—1)—1,2n—1 Van-—1
M2(2n-2)—-1,2n~2 | _ | V2n-2 (21)
. = )
™m3 2 V2
L mia J L vy U

vhere we use integer v; = 2m2;_; ; = %1 instead of the original half
nteger numbers m; ;.

2. Additional symmetries — particle number symmetry and signature

The irreducible representations in this case mix the states with
lifferent particle numbers. It happens because the particle number
jperator

R 2n N 2n
N=> Naa=) Li-12a+n (22)
a=1 az=1

loes not commute with all the generators of the Lie algebra. In the
ase of the particle number symmetry conserving Hamiltonians one
an, however, quite easily select good particle number subspaces. As
s seen from the Eq. (17), any GT basis vector is the eigenvector of
he particle number operator (22). The eigenvalues are equal?:

2n

2N =2n - ZVk—le- (23)

k=1

Jne can show that all the states belonging to k = 2n irrep correspond
o even particle number subspace, while the k = 2n ~1 irrep contains
'dd-N states. Eq. (23) allows to select a given particle number sub-
pace.

Also the angular momentum projection onto symmetry axis is a
;0od quantum number. Indeed, expressing the J, operator in terms
f the generators one gets:

n
J. = Z ; (ﬁzi——l,h’—l - ﬁzi,zi)
=1
n
- Z 2;(Lsi—2,4i—3 — L4iai-1), (24)

i=1

il

2 Here, and in the following, we adopt the convention vy = 1.
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where 2, = j + 1 — . The corresponding eigenvalues are:

n

K = —% Z 2:v9: 1 (V2i—2 - Vzi) . (25)

i=1

This property of GT states is especially useful when calculating the
matrix elements for the components of spherical tensors.

It is worth to note that any GT vector is an eigenstate of number
operator for single particle level. It allows to rewrite the GT vectors
using the representation of the occupation quantum numbers (n; =

0,1):

ni U]
ns T4
fla)= | co - (26)
N2n—-3 MN2n-2
Nan—1 N2n

One can regard the states having the opposite occupation num-
bers as signature (time reversal) coupled. The problem appears how
to calculate the correct phase (or alternatively signature quantum
number, r,, for given GT state)

ny ny n2 ny
3 N4 ng4 n3
R. =7z (27)
N2n-3 MN2n-2 N2n-2 MN2n-3
N2n-—1 N2n N2n N2n—1
Using the following phase convention:
Tljm) = ljm) = (=)7* ™) — m) (28)
and consequently
ﬁvri]m> = i(“)m‘l/zljm% (29)
Re[jm) = i(-)™ 712 |jm), (30)
one ends up with the following phase factor:
ra = (=)7 (=) %0 s (31)

Here, o counts the paired states for given GT scheme and n; are the
occupation factors.
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After selection of “signature coupled” states (see Eqs (26) and

(27) and using the above defined phase relations one can easily con-
struct good signature states as:

- (1K) + Ra|K))
: (15) - Ra15)) (32)

Sl SI“

for even systems, and

K, +) =
IK’_)

- (1K) - iR 1K) ,
- (1K) + ik ) (33)

%I” SI“

for odd systems.

2.3. Matriz elements and selection rules for so(47 + 2) generators

The advantage of group theoretical approach is the simple form
of matrix elements for so(4j + 2) algebra generators. As a conse-
quence one gets very straightforward selection rules when calculating
matrix elements of nuclear Hamiltonian. Indeed, it is easy to proof
the following formulas:

Lajt12(a) = %uzukfi(a) , where k> (34)
L21+2,2l+1€(0) = %V1V1+1E(01) ’ (35)
Lok 21418(a) = %ulukffill(a) , where k>1[1+1, (36)
Lok 206(a) = —%uluk.ffc_l(a), where &k >1, (37)
Laks1,20416(a) = %Vluk£i+1(a), where k> 1, (38)

where £, (a) denotes GT vector obtained from original one, £(a), by
repla‘Cing {Vl’ Vig1,*: "Vk} by {—Vl’ R S TR "'Vk}1 see Eq (21)

Using Eqs (34)—(38) one can easily calculate matrix elements for
any nuclear Hamiltonian. In the appendix we will give the explicit
formulas for several selected operators frequently used in the nuclear
structure.
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3. Summary

The method for finding the exact solutions to the fermionic sys-
tems has been developed. The method is based on the theory of
Lie algebra of SO group. In particular, we applied the well known
techniques based on the Gelfand-Tsetlin scheme to find the base
functions and the matrix elements of the Lie algebra generators. The
resulting matrix elements appear to be very simple with straightfor-
ward selection rules showing the advantage of the group theoretical
treatment over any other method used so far. Using these formu-
las we calculated the explicit form of the matrix elements for several
operators frequently used in the nuclear structure physics.

The special orthogonal symmetry allows to study arbitrary two-
body Hamiltonian including also the particle number breaking Hamil-
tonians. However, in the cases of the Hamiltonians possessing special
symmetries like the particle number symmetry, signature or axial
symmetry, we developed the methods which allows to extract, from
the full space, the subspace of a given symmetry. These methods ap-
pear to be again rather straightforward in the practical applications.

One of us (W.S.) acknowledges gratefully the NFR postdoctoral
position at the Department of Mathematical Physics of Lund Uni-
versity of Technology.

Appendix
A.1. Matriz elements of quadrupole tensor

A.lLl. Matrix elements of Y component

The single particle matrix elements of Y29 component of quadru-
pole tensor are equal (see [13] p. 363):

2
(u|Yaoljp) = ‘;11‘ %’W (39)

Introducing the following quantities:
o (40)

and 0
¢ =3u2 — (5 +1), (41)
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where, u; =n 4+ 1/2 — 4, one can write the Yy field as:

Yoo = h i;qgo)(Nzi—l,zi—l + N2ip2i) (42)

It is straightforward to express the Yo field (42) in terms of
so(43 + 2) generators (see Eq. (7)):

7] n
Y20 = TG+ ; q§°) (L2(2i—2)+2,2(2i—2)+1 + L2(2i—1)+2,2(2i—1)+1) .

(43)
In the derivation of Eq. (43) the following identity has been used:

Y gi=0. (44)

Finally, using the Eq. (35) one ends up with the explicit formula for
the matrix elements of Y5, field:

(€(a)|Y20lé(a)) = —‘;‘]—(‘]“1—1‘*)“ Z qz('O)VZi—l(VZi—2 + v2i). (45)
i=1

A1.2. Matrix elements of Yy +Y,.; components

The matrix elements for Y24; components of quadrupole spherical
tensor in the spherical basis are equal (see [13] p. 363):

S 1[5 (1520)VBG T2 F DG L)
Y- 1) = — =4/ — . 46
(ulYaalin 7 1) = - 54/ = i(G+1) (46)
Note, that the matrix elements between time reversed states vanish.
The Y31 + Y21 operators could be represented as:

1 7
Y- Yoo1= 2o
21 £ Y24 3G +1)
n-1
X Z qﬁl) {N2iz12i41 F Nait1,2i-1 + Naig2,2i F Naipita} (47)
i=1
where

¢M = 2(i - n),/6i(2n - 1). (48)
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Rewriting Eq. (47) in terms of generators one gets:

1
Yor+ Y = ij(jz- 0

n-—-1
Xy ¢ {Lairsaio1 — Laiv1,4i—3 + Laivasi — Laiv2,giz2} ,  (49)

i=1

1

1
Ypn-Y1= -2-],(3. 71

n—2
X Z 91(1) {Lait+3,ai + Lait1,4i—2 — Laitaai-1 — Laiz2,0i-3} . (50)

1=1

Finally, using the Eqs (34)-(38), one can easily calculate the matrix
elements of Y3; + Y>_; fields in the GT basis:

I
—

1 o .
(Y21 +Y2-1)é(a) = _Z?G%—f)“ ¢V (vaio1vaig1 —vaigv2: )€Y ()
=1

+{v2i-1V2i41 — Vzi”z:‘+2)5§f+1(a) }, (51)

S o~ e
Il

|
ot

1 i
(YZI “YZ*I)E(") = _aj(T}*—lj Q,{l){ (Vzi—2V2i+1 —V2i~1V2i) i_f’i 1(0)

1
+(V2i—1l/2i+2 - VziV2i+1)€§ii+1(a) } . (52)

As is seen form the Eqs (51) and (52) both terms have the same
selection rule: the states coupled by Y;; + Y>_; fields have to differ
by two consecutive quantum numbers.

\

Ii

i

A.1.3. Matrix elements of Yyu+Y:_, components

The matrix elements for Y242 components of quadrupole spherical
tensor in the spherical basis are equal:

(iulYasaling2) = - 5o/ L1 DIETER GRS

(53)
Let us consider, first, these parts of Y25 +Y5_» fields which produce the
couplings between the time reversed states. Introducing the quantity:

&P = (-1)"ny/6(n + 1)(n - 1), (54)
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they could be written as:

—

(Y2 £ YVo_5)) = S . 2){ Nan-32nt Nan2n-3

257 + 1)
FNzn—22n-1— Nan_12n-2}. (55)

Expressing the (Y, + Y2_2)(1) fields by means of generators we get:
g g g

1
(Y22 + Yz—z)(l) = - ___71___ (2) {Lsn—3,4n—4 + Lan an-1

2iG+1)%
~ Lan-1,4n—6 — Lan—2,4n—s} , (56)
Y '—Y (l) == ——“L‘—' ) L n— n— L nd4n—
(Y22 2—2) 327G +1)qg {Lsn-1,4n—7+ Lanan-s
+ Lan—34n-5+ Lan—2,4n-4} - (57)

Finally, acting by (Ya2 + Y2_2)(!) operators on the GT vector we get
(see Eqs (34)-(38)):

1 7 _
(Yoz+Y2_2)Ve(a) = v G+ 1) ( )((V2nV2n—4 — Van_1V2n-3)E2073(a)

+(1 = v2n-1v20-3)€3073 () 5 (58)

1 o
(Yzz—Yz—z)(l)f(a) = _Zj(_jqu‘(’ )((VZnVZn—3 - Vzn—len—4)€§n_f(a)

+ (v2n-1¥2n-2 — V2n~—2”2n—-3)£§;::§(a)) . (59)

Both terms have the same selection rule: the matrix elements do not

vanish between the GT states which differ either by one quantum

number v;,_, or by three quantum numbers vo,,_3,van—2, V2n—1.
The remaining parts of Y32 + Y, _, fields are written as:

o 1 n e (2)
(Yoz £ YVog)® = - T Z g;”’ {Nai-12i+3 + N2it32i-1
2](] + 1) =1

tN2iziva + Naigaai}, (60)

where

= \/6 (2n —i-1)(2n —4)i(i + 1). (61)
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Thus, expressing both fields by means of the generators we have:

Yor + Yo, = _ L @
X {L41+3,41—3 - L4i+5.4i—2 + Laitsai-1 — Laiv1,4i}
(62)
Yoo — Y- (2) - _ 5 (2)
(22 2 2) 21(]+1)ZQ
X {Laits,ai—3 + Laive,4i—2 — Lait7,4i—1 — Laits ai} -
(63)

Finally, acting by (Y22 + Y2-2)(?) fields on the GT state we obtain:

(Ya2 + Yz—z)(z)f(a) =

~ (2)
- Z](] + 1) 1:2:1 % { V2i—-2V2i43 — V2i— ]V21+2)£21+2( )
+ (V2i—-l V2i+4 — V2£V2i+3)fgf+3(a)} s (64)
(Y22 — Yz—z)(z)f(a) =

1 = (2) 2i-1
- Zm ; q; {(V21——1 Vyiy3 — V2:—2V21+2)52i+2(0)

+ (v2i—1v2it3 — V2W2i+4)€§f+3(0)} (65)

with the following selection rule for both terms: the GT states should
differ by four consecutive quantum numbers to be coupled by (Y2, +
Yz—2)®) fields.

A.2. Matriz elements of quadrupole deformed mean field

The quadrupole deformed mean field Hamiltonian (Nilsson po-
tential) has the following form [14]:

7 .
Vip = —%leoeﬂ ~5lr- (cos7Y20 - 511/1;(1’22 + Yz—z)) . (66)

Introducing the following quantity (energy unit), see e.g. [15]

Kj = Shwo(r?)je. (67)
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It is easy to observe that the matrix elements of the axially deformed
part of Nilsson potential can be obtained by formal replacement of

n — K; oSy, (68)

in Eq. (45), while for nonaxial part of Nilsson potential we should
substitute .

n — —.Enjsin-y, (69)

in Eqs (58) and (64).
A.3. Matriz elements and selection rules for J. and J, operators

The J; operator is explicitly given as

Jy = Z {1 i N2i’—],21'—] — Naiaa) + 9,(?) (Nyir_12i + Noyiq200)}

1,i'=1
(70)
with
£ = - 1)@ - i+ )80y, (71)
gf:) =3z (—)"nﬁi,n&:,n . (72)

Using this formula one can easily construct J, and J, operators
and rewrite them in terms of so(4j + 2) algebra generators. The
explicit formulas are given below.

Let consider, first, J; operator. It is convenient to split J, oper-
ator into two parts:

Jo = F 4 3 (73)
where

‘5:]) = %(—)nn(an-],4n~2 - L4n,4n—3) y (74)

J = 3 Z \/(i =1)(2n ~ i+ 1){La2ic1)-1,2(2i-1) 4
2
—Ly(2i-1),2(2i-1)=5 = L2(2i)=1,2(2i)—4 + L2(2i),2(2i)-5} - (75)
Acting on basis state {(a) the J operator gives:

JVe(a) = 1(-)"n (1 - vznvan—2) €277} (a). (76)
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One just obtains very straightforward selection rule for this operator:

The states coupled through jﬁ” should differ by one number vy, _;
only.
Using the formulas given by Eqgs (34)-(38) it is easy to calculate

the action of ng) operator. Namely

K¢e) =3 S\~ 1)En - i+ 1)

X ((V2i~3V2i-2 — vai_gv2i1)E5i 5 (a)

—(v2i—2v2i—1 — v2i-3V2i) §i:;"(a)) (77)

with the following selection rule: the states coupled via J$2) should
differ by two consecntive quantum numbers.
By analogy, the J, operator can be represented as:

J, =0 4+ 7P (78)

jzsl) = %(_)nn(Llin—SAn-l + L4n~2,4n) ’ (79)

B =-1y \/(i =1)(2n — i+ 1){L3zi-1)-1,22i-1)-5
2

+ La(2i-1),2(2i-1)-4 — L22i)—1,2(2i) =5 + L2(2i),2(2i)—4} - (80)
Acting on basis state {(a) the J,f,l) operator gives:
JP¢(a) = ~3(=) nvan1 (van—2 — v2n) E2071(a),  (81)

while for Jg(,z) operator we obtain:

@) = - 3 i Dza- it 1)

X ((v2i—gv2i—2 — Vzi—sVzi—l)ng:g(a)
— (v2i—3v2io1 — v2i—avai)E2i"2 (). (82)

As is visible from the structure of the Eqs (76)-(77) and the Egs
(81)—(82) the J, and J, operators have the same selection rules.



An Ezact Solution to the General Two-Body Hamiltonian 635
A.4. Matriz elements and selection rules for monopole
pairing Hamiltonian

The monopole pairing Hamiltonian has the following form:

n
-GP'P=-G Y B, _; . Ba-1- (83)
k=1
Using the following formula,
B;k—l,zk = (Bzr-1,2%)" = 3{iLas—1,4k-3
—Lygak-3 — Lak—1,4k-2 — iLak ak—2}, (84)
it is straightforward to express the Hamiltonian (83) as a bilinear form

in terms of so(4j + 2) generators. Finally, using the Eqs (34)-(38),
one can calculate the matrix elements of the pairing Hamiltonian:

~GP'PE(a) = = G > (var + vak—2)(v2k - vak-1)&()

k=1
- §G Z {(var + var—2)(var + v21-2)
k>l=1
X (V2k—2V21—2 - V2k-l”2!~l)}£§1k:1](a)' (85)

Here, £F(a) denotes the GT vector obtained from the original £(a) by
replacement of v, and v; by —v, and -y, respectively.
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