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The Momentum Sum Rule in deep inelastic scattering on nuclei is dis-
cussed and limitations of nuclear convolution model are pointed out. The
pion and vector meson contributions to the nuclear structure function are
derived from the composite picture of the nucleon in the nuclear medium
and presented as correction to the nuclear convolution with nucleon de-
grees of freedom. Finite size effects of a nucleus are discussed.
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1. Introduction

In this paper, we want to examine the conventional nuclear models of
deep inelastic electron-nucleus scattering, and show how mesonic degrees
of freedom describe the effect of nuclear medium. The mean free path of
nucleon in a nucleus is relatively long [1] (of the order of 1 fin) and therefore
the nucleus can be treated in mean field approach as the sum of “bound”
nucleons. The word “bound” refers to the natural approximation in this
approach: the nucleons are off energy shell and their energies are shifted by
the mean separation energies ey given by the conventional nuclear physics.

In the kinematic region where the value of momentum transfer from
the electron to parton (quark) is much bigger than the mass of the nucleon,
-¢% >> M}{,, and transfer energy square v >> |¢|?, the nucleon interac-
tion with electron is much faster than the interaction with other nucleons
and we expect that only Fermi motion [2] of free nucleons should be in-
cluded as the medium correction. The experiment [3] revealed however that
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the ratio R(z) of nuclear structure function to nucleon structure function
as a function of Bjorken scaling variable  shows a strong departure from
unity with a dip around z ~ 0.7. This phenomenon (EMC effect) can be
explained in conventional nuclear models, without explicit quark degrees of
freedom (Convolution Models), by assuming a negative shift (around 30-40
MeV) of the nucleon longitudinal momentum p?\} = pON + p?v. On the other
hand the Momentum Sum Rule is not satisfied {5] when the nucleons are
off shell in the Convolution Model (CM). Consequently, the EMC effect has
no simple explanation in terms of “bound” nucleons only. This is the rea-
son to include the additional mesonic degrees of freedom in order to have a
consistent description of the nuclear structure function.

The CM is an attempt to describe the EMC effect in terms of nucleon
and meson degrees of freedom and is restricted to intermediate z > 0.2,
because uncertainty of photon spatial localization (along transfer direction)
~ 1/z can be very large for small z. For z < 0.2 these uncertainties are
comparable with nucleon size and therefore this is the limit for CM.

The parton structure function F;(z) gives the distribution of the frac-
tion of nuclear longitudinal momentum zcarried by partons. Let us start
from the following convolution formula [4] for the function Fit(z):

# = /dyN PN(yN)FzN(yiN) + ;(nm)/dy pm(y)Fi"(g)- (1)

T

This model includes conventional degrees of freedom: nucleons (¢ = N) and
mesons (¢ = m), and is implemented as a convolution of the free hadron
structure function Fi(z) with the distribution p*(y;) of longitudinal mo-
mentum p?’ = y; Pt for each type of hadron in the nucleus. The number
of additional constituents per nucleon is (n,,) and the value of nucleus mo-
mentum (P7) is equal to the mass of nucleus in LAB.

Let us for a moment forget about meson degrees of freedom. Keeping
only the nucleon term in the convolution (1), the nuclear structure function
F{(z) has the form:

o0

Fi(z) = /dy pN(y)FzN(?y')s (1a)

T

and the nuclear distribution can be written as [4, 5):

A_ pA-1 _ D1
P = 3 [ Eaga@Pst (v - T re P
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where @ (p) is the single-nucleon overlap [7] between the A-particle ground
state and the (A — 1)-particle state a. The vector @ = §/v lies along
the direction of the 3-component of momentum transfer and can be taken
to be the unit vector ¢/|¢] in the Bjorken limit. The interpretation of
F{‘(z) for small z, in terms of simple parton model is in fact impossible
because here one has to take into account the interaction of partons from
different nucleons. The usual Momentum Sum Rule can not be applied to
such a strongly interacting system. There is an evidence [22] that in the
nonperturbative parton wave function for nuclear matter, the momentum
carried by charged partons is depleted by about 5%. This is connected with
shadowing for small z. In our approach, however, F/i(z) is given by CM (1)
which assumes parton picture for all z, so we can assume in this approach
that integration [ Fj*(z)dz should give 1. Neglecting mesonic degrees of
freedom the Momentum Sum Rule in the nuclear medium is given by [5,8]

M, +en

—_— 1, 2
A’[N%-EN# ()

/F{‘(r)dﬂv: /ypN(y)dy= (yw) =

where

A_ pA-1
eN:ZLZE_a__

o

is the single particle energy of nucleon (average nucleon separation energy),
where e = (AMpy — M4)/A. We see that Momentum Sum Rule (2) is
violated by the difference epy —ey. We know from the Hartree~Fock theory
that this difference is related to the average NN potential V;;, 2(ey—en) =
(A| Zij Vi;|A). Since V;; is produced by exchange of mesons, we expect to
be able to satisfy Sum Rule (2) by including direct meson contributions to
nuclear structure function.

The paper is organized as follows: in Section 2 we report the conven-
tional nuclear model with pion (meson) degrees of freedom, in Section 3 we
introduce our model with additional vector {omega) meson and in Section
4 we extend the pionic convolution model and we calculate nuclear struc-
ture function with a new vector meson contribution. The discussion and
conclusions are given in the last Section.

2. Pions in the nuclear medium

In conventional nuclear physics meson degrees of freedom are elimi-
nated in favor of a two body potential and remaining effects are described
by exchange currents. However in deep inelastic scattering, especially for
intermediate z we can start from the picture where the nucleon, a composite
object, is surrounded by meson cloud and exchange interaction can change



652 J. ROZYNEK

this cloud. In this treatment the shift of the average nucleon longitudinal
momentum by (e — exy) comes from the momentum balance with addi-
tional mesons in a nucleus. To estimate the pion excess number per nucleon
we follow Ref. [10]. The nucleus is described in [10] by the Hamiltonian
H = Hy + H', where the free Hamiltonian Hy describes nucleons, pions
and deltas, and H' describes the pion-nucleon interaction. The following
relation between the pion excess operator per nucleon n, and the two body
pion exchange nucleon-nucleon interaction V;7 is derived in [10]:

Vi (k)
5%

nx(k) = - , (3)

where the pion energy p% = (m2 + k2)1/2.

The value of the pion excess number (n,) = 0.12 for kp = 220 MeV
was obtained in a variational calculation [10] with realistic Hamiltonian
where the pion exchange diagrams with delta resonances were included. In
nuclear matter with Fermi momentum pp = 220 MeV, pion excess number
(nx(p)) is strongly peaked for |p| = 400 MeV, which allows us to determine
(gm) = Al(n)|(p)/M 5 = .05 (for (%) = 400 MeV?).

The inclusion of the pion component in (1) changes the nucleon dis-
tribution for intermediate z and gives additional contribution for small
[9,14]. The region of small z can not be described by the convolution model,
therefore the pions are working only as pilferers of nucleon momenta chang-
ing in this way the nucleon distribution. For heavy meson, however, we
would expect also direct contribution for > 0.3.

Now we present the Energy Sum Rule (considered previously in [5,12})
resulting from the Eq. (3) that relates the interaction energy operator and
the meson excess operator. We sum up over the exchanged mesons and

having (ym) = Al(nm)|(p0,)/Ma, we get:

> ,EZ? () (M +en) = S (mp%) = (4] 30 VF|4). (@)

>| m m,i>j

Thus we obtained the energy sum rule which states: The average long:-
tudinal momentum of the binding mesons in the nuclear medium is equal
to the average nucleon interaction energy. The interaction energy can be

estimated from:
(a] X v
m,i>j

A> = (Tn) — €N + € (4a)

where e, is the Coulomb energy (per nucleon) which should be subtracted
from £;y because it is absent in the meson interaction energy. Note that
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when the numbers of protons and neutrons are equal, we have (from the
Weizicker formula) ey — e. = e, + €5, where e,,] and e, are the volume
and surface energies.

In order to estimate (y,,) from (4a) we apply the local density approx-
imation [13] and get for the average kinetic energy Thr = 0.6(p%)/2MN,
where 2p%. /372 = po/{1 + exp[(r — R)]/.57} = p(r) and R is the nuclear
radius. The resulting spatial average gives for A = 56 (Ty)F® = 15 MeV
and for A = 192 (Ty)A" = 18 MeV, which is 1.5 MeV below the estimate
(TN) = 23 MeV (p/po)?/3 for constant p. In the pure pionic CM we have
from (4):

<TN> —EN t+ €
(yn) My +en (4b)
and for A = 56 (y.)F® = 0.029; Thus we see that (y.) is determined by the
nuclear saturation properties. For large A we obtain, by extrapolating (4b)
with e, = 6 MeV for A > 200, the limiting value of (yr)oo ~ 0.036.

Very good agreement with the SLAC data [11] for the EMC ratio (which
are still actual for intermediate range of z) was obtained by Glazek et al.
[14] in the convolution model with pions excess. They made calculations of
EMC ratio R(z) for a whole range of A, taking (n,) and (y.) from [10]. To
describe the A = 192 data (see open circles in Fig. 1) the value (y.) = 0.043
was used. This value is inconsistent with our estimate (y.)A" = 0.034
coming from Eq. (4b). The values of (y.) for heavy nuclei, calculated in
[10], reach 0.05. However, the energy shift in nucleon distribution should be
determined by the sum over all meson contribution, A = 3 (nmym/|nml),
and not by the pions only. In fact (y,) calculated in {10} is much greater than
the our estimation from nuclear interaction energy (4a) but it shows that
we can not restrict our model to pionic degrees of freedom only. In fact it
is impossible to construct the realistic VNV interaction with pion exchanges
— the short range repulsion requires vector mesons [15]. The question —
which mesons constitute the elementary interaction field between nucleons
— is crucial in applying relation (4).

3. Vector mesons

The main features of the NN interaction are: an overall attraction
at distances r 2 r. = 0.5 fm and a strong repulsion for r Sr.. In the
relativistic Dirac phenomenology it corresponds to the scalar and vector
part of the constant mean field. Here, we assume that in the nucleus we
have pions which give one and two pion exchange contributions and omegas
which provide the short range contribution to the NN interaction. In fact
the contributions to the interaction energy from other mesons are much
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smaller [15] and are neglected in our simple considerations. Thus in our
sum rule (4) we have two terms: a large negative one for omegas and a
large positive one for pions. Similarly to (4a) we have:

((Tn) = evol + €c) = (MN + €) ((yr) + (¥0)) - (5)

As an estimate of (y,,) we insert the value (y,) = 0.05 into (5), obtained
from the value (n,) = 0.13 calculated in [10] with a symmetrical maximum
at (pl) = 400 MeV. This leads to the following, nonrelativistic estimate:

(yo) = .02, (n,) = —.026 and (yr)=0.05, (ny) =0.13, (6a)

where for the average energy of w meson we took (p?) = 800 MeV.

As another estimate of the vector meson contribution to the nuclear
structure function Fjl(z), we use the value of the relativistic mean meson
field in the nucleus taken from Dirac phenomenology. The w contributions
to the interaction energy for nuclear matter with pp = 220 MeV for different
OBE potentials vary around 100 MeV [16,17]. This, with the help of (4a),
(4) and (5) leads to the following relativistic estimate:

(yo) = 0.10, (n,) = —0.12 and (yr) =0.13, (n,)=0.36.  (6b)

4. Calculations

We extend the simple phenomenological model of Ref. [14] to include
vector meson contributions to the nuclear structure function according to
formula (1). For the normalized distribution p* we have the usual form with
two parameters (o, 3):

: Lo +Bi)  (a-1) (B:i-1)
1 P S AL ay 1 _ N , 7
P (y) Tla) T (B1)" (1-1y) (7)
Momentum sum rule (2) for the meson part of nuclear structure function
gives:
am + 0
(nm) = ———""(ym) - (8a)
am
In order to obtain the parameters of the meson distribution function we
impose the constraints (m = 7,w):
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,:_(y )am+ﬂm-2

My N am — 1 ’
which reflect the assumption that the p? peaks at My/(pt) and p™ at
M., /(P*). This allows us to express the parameters (aws Buw), (ax,Bx) of

the vector and pion distribution functions by the more physical quantities
(nw, Yo) and (ng, yx).

(8b)
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Fig. 1. The calculated ratio R(z) = Ff*(z)/FL(z) in A = 56 (dotted line) and A =
192 (solid, dashed, and dashed-dotted lines). See text for explanation. The data
are taken from Ref. [11]. We used the following parametrizations for the structure
functions: for F{'(x) from [19], for F2(z) from [20] and for FJ(z) = F§(z) from
[21].

Our results for A = 192 with the choice (6b) (with Coulomb correction
(5)) are presented in Fig. 1 as a solid line. The dashed line is obtained with
the nucleon contribution only. The relatively large negative contribution
from the vector meson is seen in the intermediate range of #. The nonrela-
tivistic choice (6a) leads to a negligible vector meson correction for z > 0.3,
which is connected with the smallness (n,) = —(n,)/5. For illustration,
we show (as dotted line) the results for pure nucleon contribution in Iron
A = 56 without Coulomb correction. The Coulomb correction would shift
these results approximately to the middle between the dotted and dashed
lines. Finally, we present, the result of the pure pionic model for A = 192
as the dotted-dashed line which coincides with the dashed line for z > 0.3.
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5. Discussion and conclusions

We have shown that in the model of a nucleus with additional pions
(positive excess number) and omegas (negative excess number) we have
sum rule (5) which enables us to improve the Convolution Model for deep
inelastic scattering. The nucleon momenta are diminished by the interac-
tion energy which comes from the momentum balance between mesons and
nucleons. The important new feature of this model is the additional contri-
bution of the omega meson. It reduces the EMC ratio in the intermediate z
region, up to 15% with the maximal reduction around z = 0.5. For small z
the meson contributions are positive and increase rapidly but this happens
outside the range of applicability of this model. We have replaced “bound”
nucleons by free nucleons with “binding” mesons directly related to the NNV
interaction. This gives a more general picture of the deep inelastic scattering
on nuclear targets.

Frankfurt et al. [8] used the nucleon energy shift A, which corresponds
to > (nmpd,) in our model, of A ¥ 24 MeV estimated from A = (Tn) —
€n. The commonly used value A, which gives the good agreement with
experiment is A = 34 MeV [5] (approximately equal to 4 = (Tn) — eyo1)-
In this paper we have argued that in fact A = (Tn) — ey + e.. This
means that in order to estimate the meson interaction energy we ezclude
the nucleon Coulomb energy but include the finite size effect of the nucleus.
These small changes (few MeV) in the A modify the EMC ratio, respectively
by a few per cent with the maximum change at z = 0.6.

Another important question is how to explain the big difference be-
tween nonrelativistic (6a) and relativistic (6b) estimates of the pion and
omega components in the meson interaction energy. The relativistic NN
interaction between positive energy states (nucleons) can be considered, as
an effective interaction which also takes into account the coupling to nega-
tive energy intermediate states. This can change significantly the magnitude
of a particular meson contribution to the final NN interaction. For exam-
ple, the mean scalar field in the relativistic models of nuclear matter {16)
diminishes effectively the nucleon mass which enters the mean field Dirac
equation by 200 MeV [16].

Finally, our single particle approximation can not describe with suffi-
cient accuracy, even with the vector meson correction, the data for z around
z = 0.7. This might hint at the importance of the NN correlations [18],
neglected in our present approach.

We are grateful to Prof. J. Dabrowski and dr. S. Glazek for stimulating

discussions.
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