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The half-diagonal two-body density matrix pa(r1, P2, 7y, 7%) is stud-
ied in infinite nuclear matter, based on Jastrow-Slater ground-state trial
functions. The associated generalized momentum distribution n(p, @),
related to the half-diagonal version of p; by Fourier transformation in
the variables »; — r{ and r; — 73, is calculated for three representative
models of nuclear matter containing central correlations. The available
numerical results correspond to (a) approximation in lowest (two-body)
cluster order of a straightforward cluster expansion of the generalized mo-
mentum distribution and (b) evaluation, to lowest cluster order, of form
factors and other ingredients of a re-summed structural expression for
n(p, Q) that collects the effects of different virtual scattering processes
in the many-body medium. Dynamical correlations produce significant
departures from the reference case of an ideal Fermi gas. The results
should give an adequate picture of the behavior of n(p, Q) in certain lim-
iting domains of the momenta p and @ where the short-range correlations
dominate the complicated effects arising from the state-dependence of the
interaction.
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1. Introduction

Among his many pioneering contributions to nuclear many-body the-
ory and hadronic physics, Janusz Dabrowski can count the first studies of
a finite nucleus with a Jastrow-correlated trial ground state [1, 2]. In the
thirty-odd years since papers [1, 2] were written in Peierls’ department at
Birmingham, there have been enormous developments in ab inttio calcula-
tion of nuclear properties, within the conventional picture of a system of
nonrelativistic nucleons interacting via two- (and three-) body interactions
fitted to few-nucleon data. These developments were stimulated by striking
advances in experiment and observation, ranging from high-energy electron
scattering to measurements of post-glitch relaxation in neutron stars. A
powerful arsenal of many-body procedures has become available, including
Brueckner-Bethe-Goldstone theory [3] (to which Janusz also made sem-
inal contributions), the self-consistent Green’s function approach [4], the
coupled-cluster method [5], stochastic or Monte Carlo computational algo-
rithms [6] and, of course, correlated-basis or CBF theory [7-10]. The current
generation of ab initio calculations on nuclei and nuclear matter are yielding
a convincing quantitative picture of the correlation structure and dynamical
response of nuclei, as exemplified by recent progress on single-nucleon spec-
tral functions [11-14]. Even so, the essential features of Dabrowski’s original
variational calculation of the 160 ground state are quite recognizable in its
modern reincarnation: the large-scale computational effort of the Argonne—
Urbana group [15] involving state-dependent correlations and Monte Carlo
evaluation of cluster diagrams.

Let ¥(ry,7r2,73...74) denote the unit-normalized ground-state wave
function of a strongly interacting quantum system such as liquid *He or
liquid ®He, nuclear or neutron matter, or a finite nucleus. The associated
two-body density matrix, defined by

P2("’1,7'2a7"1a7"2) =

A(A - 1)/?‘(1‘1,1‘2,1’3 .‘.!‘A)Q(‘l"l,‘l"z,r;;...1‘A)d1‘3 L -d?‘A, (1)

contains a wealth of information on the correlation structure of the many-
body medium. (Spin/isospin labels are left implcit, as is a sum over all
spin/isospin variables.) This function supplies the microscopic input for a
number of fundamental sum rules (investigated systematically by Stringari
[16]) that illuminate the “density fluctuation” and “single-particle” nature
of the elementary excitations in Bose superfluids. In particular, the half-
diagonal version pyp(r1,72,7]) of the two-body density matrix (1), with
ry, = 72, puts constraints on the importance of multiparticle-multihole exci-
tations through the w? sum rule [7, 17]. The quantity p,, is also expected to
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play a prominent role in the corresponding sum rules for Fermi systems in-
cluding nuclear matter. Furthermore, p,}, is an essential structural input for
theories of final-state effects in deep-inelastic neutron scattering from liquid
‘He and in quasielastic electron-nucleus scattering [18, 19). Such theories
provide a basis for quantitative prediction of the dynamic structure func-
tion at high momentum transfer, and for determination of the ground-state
momentum distribution from experimental scattering data.

Indeed, there is rising interest in the two-body density matrix of finite
nuclei. This interest is spurred by the fact that proper interpretation of a
range of recent or planned experiments, in new or projected facilities, is con-
tingent on the availability of a more quantitative, “post-mean-field” treat-
ment of the propagation of ejected nucleons and their final-state interactions
(FSI). Attention is focused on inclusive quasielastic (e, e') scattering [20] as
well as exclusive quasielastic (e,e'N) [21] and (e,e'2N) events. In these
electronuclear processes, FSI can have a significant influence at low energy
transfer even for beam energies in the multi-GeV region. Reliable extraction
of the momentum distributions, spectral functions and transparency from
the experimental data therefore requires an accurate accounting of final-
state effects. In addition to electron scattering, FSI are involved in proton
scattering (p, 2p) [22] and pion absorption [23] experiments. As we progress
beyond mean-field, optical-model approximations, theoretical treatments of
FSI are found to involve the diagonal and half-diagonal portions of the two-
body density matrix. Notable examples include the extensions of Glauber
theory [24, 25], adaptation of Silver’s hard-core perturbation theory to the
nuclear medium [26] and other approaches under current discussion {27, 28].

Ristig and Clark have carried out rather general asymptotic and di-
agrammatic analyses of the half-diagonal density matrices of strongly in-
teracting Bose and Fermi systems (and of the full Bose p;) and developed
methods for their quantitative microscopic evaluation [29, 30]. Both cluster-
expansion [31] and hypernetted-chain (HNC) [8] techniques are available
when the wave function is of the conventional Jastrow form. The formal
structural analysis of the half-diagonal two-body density matrix is pursued
most efficiently in the configuration-space representation. A diagrammatic
cluster expansion of p,} is generated and then graphical resummations per-
formed using hypernetted-chain algorithms. On the other hand, the physical
meaning of the results is more vividly described in the momentum repre-
sentation, i.e., in terms of the so-called generalized momentum distribution

n(p, Q) = Z(‘l?|a£+qa;MQai,ak|!I/) , (2)

k

which is related to the configuration-space density matrix pyp(r1, 72, 7))
by Fourier transformation. (Here, k denotes the single-particle orbital with
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quantum numbers k, o, where k is the wave vector or momentum and o
is the spin projection, while k + Q = (k + Q,0).) In detail, the relevant
Fourier transformation is

1 . ' .
Tl(p, Q) = ;% / p2h(7'1a"‘2, 1,11 )e—zp-(n "Tl)e—lQ‘(”_"z)drl d’r'gd‘l"l , (3)

where A is the number of nucleons, v is the single-particle level degener-
acy (4 for nuclear matter) and p is the (uniform) density of the system,
connected to the Fermi wave number kg through p = vk3 /672, In the ab-
sence of dynamical and statistical correlations, the generalized momentum
distribution function collapses to the elementary result

no(p, Q) = 6qo(4 — 1)n°(p), (4)

where n°(p) is the single-particle momentum distribution assumed for the
noninteracting system of distinguishable particles. Considering a noninter-
acting system of fermions with level degeneracy v, the Pauli exclusion prin-
ciple generates kinematic correlations between particles of the same spin
projection, and n(p, Q) becomes

np(p, Q) = 6go(A-1)0(kr —p) — (1 -8q0)O(kr —p)O(kr —p- Q). (5)

Clearly, for @ = 0 any deviation of n(p, Q) from zero when p is outside the
Fermi sea is indicative of the presence of dynamical correlations; likewise
dynamical correlations are indicated for @ # 0 when n(p, Q) is nonzero at
p values satisfying p > kg or |p — Q| > kp.

The role of n(p, Q) in quasielastic electron scattering from a system of
nucleons becomes more concrete when we write this quantity as

7) — n(p), (6)

— t
n(p, Q) = (¥lp@a;_qap

where pq is the density fluctuation operator }; a;.i_*_Qa;c (with @ # 0) and

n(p) is the single-particle momentum distribution function. The first term
on the right in Eq. (6) may be interpreted as a transition matrix element
for scattering of a particle out of orbital p = (p,c') into another orbital
Pp—-Q = (p - Q,d'), the process being mediated by a density fluctuation
of wave vector Q. Thus, an evaluation of n(p, Q) amounts to a calculation
of the rightmost single-nucleon vertex in the Fig. 1. (It should be pointed
out, however, that in nuclear problems other final-state interaction mecha-
nisms may be more important than the phonon-induced process of Fig. 1,
depending on the momentum and energy transfers involved.)

We may further observe that simple operations determine the radial
distribution function g(r12) and the one-body density matrix p;(ry,7}) or
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single-particle momentum distribution n(p) from the half-diagonal two-body
density matrix or its corresponding generalized momentum distribution. In
the full diagonal case (v} = »; as well as v, = r3), Eq. (1) reproduces the
definition of the radial distribution function, so that

p2r(r1,72,71) = pPg(r12)- (7)

Alternatively, summing Eq. (3) over p we arrive at the so-called p sum rule
[29],

A7 "n(p, Q) = Adgo + P/[Q(T'lz) — 1)e"* @ M12dry,
P

= Abqo +(5(Q) - 1], (8)

where S(Q) is the static structure function (and of course r12 = r1—r2). We
may assume that the short-range repulsions are strong enough that g(rj2)
vanishes at zero distance. Summing Eq. (2) over Q we then obtain the Q
sum rule [29],

q.0 |
P
Q p-Q
= =
e —

Fig. 1. Deep-inelastic scattering of a probe from a normal quantum fluid, involving
final-state interaction between an ejected particle of the fluid and the residual
system, mediated by a density fluctuation (phonon) of momentum Q.

The sequential relation [7]

/ pan(r1,r2,#y)drg = (A = 1)pa(r1, ) (10)

serves to connect n(p, @) with the single-particle momentum distribution
n(p). In momentum space this relation is just

n(p,Q =0)=(A-1)n(p). (11)

There exists a substantial body of work directed to microscopic eval-
uation of the momentum distribution n(p) and one-body density matrix
p1(r1,7}) in nuclear matter (see e.g. [32-36, 12]) and finite nuclei (e.g. [37,
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38]). Quantitative information on the two-body density matrix and asso-
ciated generalized momentum distribution is rather more limited. Prior to
the work of Ristig and Clark (29, 30], three simple prescriptions [39] were
proposed (by Gersch and coworkers, by Silver, and by Rinat) for estimating
the half-diagonal density matrix, with special focus on the problem of final-
state interactions in neutron scattering from the helium liquids. In [29, 30]
cluster expansions of n(p, Q) were formally re-summed for both Bose and
Fermi trial ground states of Jastrow type, in terms of a set of form factors,
and the two-point form factors were calculated in liquid He and liquid
3He. The calculations were performed with Bose or Fermi hypernetted-
chain techniques at the /0 level of accuracy [8] in which “elementary” or
“bridge” diagrams are neglected. In other work of recent vintage, a path-
integral Monte Carlo approach has been applied to obtain pyp(r1,7r2,7))
for liquid *He (with preliminary results reported in [40]). To the best of
our knowledge, there has as yet been no quantitative microscopic treatment
of par(r1,72,7}) or n(p, Q) within the nuclear context, although computa-
tions based on stochastic procedures are in progress [41].

In this paper we shall exploit some of the technology developed by Ristig
and Clark to gain computational insights into the structure of the gen-
eralized momentum distribution of uniform, infinite, symmetrical nuclear
matter. Our study is largely patterned after that carried out for the one-
body density matrix and single-particle momentum distribution by Flynn
et al. [33], although the present considerations do not extend to Fermi
hypernetted-chain (FHNC) resummation of higher-order clusters. The as-
sumed state-independent Jastrow correlations f(r) correspond to simple
models of the ground state of nuclear matter involving repulsive cores at
small interparticle separations [33]. We are interested in the qualitative be-
havior of n(p, Q) in different domains of the variables p and Q. Since the
computations are framed in the cluster-diagrammatic analysis of Ristig and
Clark, the behavior of individual contributions may be readily interpreted
in terms of the interplay of short-range correlations and exchange.

Such calculations may give a crude picture of n(p, Q) in medium-to-
heavy nuclei. With this study as a basis (corrected, as necessary, by FHNC
resummations), a better description may be obtained by implementing an
appropriate local-density approximation, as has been done for the momen-
tum distribution of finite nuclei in [42]. Future work should also address
the problem of the inclusion of state-dependent correlations into the trial
ground-state.

Section 2 recollects some necessary elements of the Ristig-Clark formal-
ism and specifies (i) an approximation to n(p, Q) in term of the leading
diagrams in a raw cluster expansion of this quantity [lowest-order (LO)
approzimation] and (ii) an approximation in terms of the structural for-
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mula obtained in [30] by resummation of subseries of the raw expansion,
irreducible components of this expression being evaluated to lowest cluster
order [lowest-order irreducible-cluster (LOIC) approzimation]. The models
of nuclear matter adopted for our study are described in Sec. 3. Numerical
results are reported and discussed in Sec. 4. We draw some general conclu-
sions in Sec. 5 that anticipate the next steps toward realistic computation
of the two-body density matrix in nuclear systems.

2. Cluster approximations

Qur numerical calculations are based on the microscopic treatment of
the half-diagonal two-body density p,; developed for Fermi fluids by Ristig
and Clark [30] at the variational level of CBF theory [7, 8]. The analysis
performed in [30] runs parallel to the more penetrating treatment of the
Bose two-body density matrix formulated in [29] (with the distinction that
general structural results may be derived in the Bose case without recourse
to a Jastrow ansatz). These developments take advantage of techniques and
results from earlier work on the one-body density matrix and momentum
distribution of quantum fluids [43]. For the uniform Fermi system, the
ground-state wave function is approximated by a trial wave function of
Jastrow-Slater form

A
O(1---A) = N7 f(Fi)8(1- - 4), (12)

i<g

where ¢ is a Slater determinant of A plane-wave orbitals filling the Fermi
sea up to a wave number kr, f(r;;) is the Jastrow two-body correlation
function and N is a normalization constant. Considerations begin with
the generalized momentum distribution n(p, Q) defined by Eq. (2). This
quantity may be decomposed into a part that is present only for @ = 0,
which is extensive in the particle number A, and a term present only for
@ # 0 that is of order unity compared to A:

n(p, Q) = qo(A — 1)n(p) + (1 - 8o (PN (P, Q)|¥) . (13)

The first term of this expression, henceforth denoted ng¢(p, Q), contains no
statistical or dynamical effects other than those embodied in the momentum
distribution n(p), and the remainder involves the expectation value of the
non-self-adjoint operator

1 1 1
an;_Qai, + a;_@8pPQ — 305 ~ Gy _A5-Q

2

N($,Q) = (14)
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As shown in (30}, the operator N(p,Q) may be written as a symmetric
sum of two-body operators, allowing a factorized Iwamoto-Yamada (FIY)
cluster expansion to be generated for the indicated expectation value us-
ing standard prescriptions [31, 8]. The individual terms of this expansion
may be classified according to the number of orbital labels involved; as is
customary, we will speak of “two-body,” “three-body,” ..., “n-body” cluster
approximations when terms with more than two, more than three, ..., more
than n orbital indices are neglected. Evaluation is simplified by taking the
thermodynamic limit, i.e., A — oo with p held constant, thus restricting
the treatment to a uniform infinite system. In this manner one arrives at a
cluster series of the form

n(p, Q) - no(pa Q) + (1 - 6Q0)[n(2)(p1 Q) + n(3)(p7 Q) + - ] ) (15)

wherein the subscript (i) on an addend counts the number of “bodies” in-
volved. [We note that the corresponding expansion in Eq. (12) of [30] should
be corrected by replacing the first term on the right, appearing as ng(p, Q),
by n,(p, Q) as defined above and in Eq. (4) of that paper.] Examination of
the terms in the series (15) reveals that n(p, Q) is a reducible quantity, in the
sense of containing factorizable contributions — i.e., it has the structure of
a sum of products of Ursell-Mayer cluster diagrams [8, 43]. However, with
appropriate graphical resummations the generalized momentum distribu-
tion may be succinctly expressed in terms of a small number of quantities,
each defined by a cluster expansion in irreducible (non-factorable) diagrams.
Fermi hypernetted-chain procedures have been devised for evaluation of
these irreducible quantities by solution of coupled integral equations. The
structural expression derived by Ristig and Clark reads

n(p, Q) = (A - 1)égon(p)

+ (1 = 6go)Faa(Q)[n(p) + n(lp - Q)]

+ (1= 6go)Fae(Q)[npi(p) + npi(lp - Ql)]

- n(l - 6Q0)[@(kp - P) - Fcc(p)H@(kF - }p - Q]) - Fcc(]p - QI)]

+ (1= 800)n ™ (9, Q) + (1 = 600)n® (1, Q). (16)

[This expression corresponds to Eq. (42) of [30]; however the strength factor
n, appearing in the fourth term of Eq. (42) has been renamed as n (cf. [43,
33]) to avoid confusion with the first term of Eq. (13) or Eq. (5) above. We
note incidentally that a square bracket is missing from the end of the first
line of Eq. (42).]

We must refer the reader to [30] for detailed definitions of the two-point
form factors Fp (Q), Fue(Q), Fec(p) and F.o(|p — Q) in terms of series of
irreducible cluster diagrams, for specification of the modified single-particle
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momentum distribution np;(p) and for characterization of the more compli-

! 1
cated, three-point quantities n(?) (p, @) and n(®)' (p, Q). The designations
“two-point” and “three-point” refer to the configuration-space functions

whose Fourier transforms yield Fy4(Q), n(z)'(p, Q), etc. In particular, we
have F,y(k) = p [ Fyy(r)e'* "dr (where zy = dd, de, or cc), and Fzy(r) is
by construction a two-point object. A structural formula for the ordinary
momentum distribution function n(p) corresponding to the wave function
(12) has been given in [43], where (among many other manipulations) the
series defining the strength factor n = exp[—Q(0)] is re-summed in terms
of an irreducible-diagram sum Q(r). It should be remarked that the ex-
plicit result (16) is predicated on satisfaction of the sequential relation (11),
which, in the present context, is equivalent to the condition [30]

2Fa(0)n(p) + 2F4e(0)npu(p) — n[@(kr ~ p) ~ Fec(p))?
+2®'(p,0) + 1 (p,0) = =n(p).  (17)
There exist Fermi-hypernetted chain algorithms for quantitative determina-
tion of all of the irreducible ingredients of (16), including the various form

factors F,y(k) as well as the irreducible components of the single-particle
momentum distributions n(p) and np(p), of the strength factor n and of

the three-point quantities n(z)l(p,Q) and n(B)’(p,Q). Alternatively, one
may resort to stepwise evaluation of the terms in the cluster expansions of
these ingredients (see below).

The renormalized expression (16) serves to clarify the physics contained
in the generalized momentum distribution, by collecting into separate terms
the contributions from various virtual scattering processes. The first term
reproduces the trivial result [viz. Eq. (4)] for dynamically and statistically
uncorrelated particles, with the important qualification that the momentum
distribution function of the fully correlated Fermi system is to be inserted.
The correlations prevailing in the interacting fluid permit the scattering of
a fermion from orbital p to another orbital p — @, with the intervention of a
phonon to conserve momentum. This process and the corresponding time-
reversed mechanism are represented by the second term in (16), involving
the direct form factor F;(Q). The associated exchange scattering effects
are given by the third term, which is proportional to the exchange form
factor Fy.(Q). The fourth term incorporates the kinematic effect of the
Pauli exclusion principle seen in Eq. (5), but corrected by the dynamical
(Jastrow) correlations. (The F. corrections account for the population of
states outside the Fermi sea by the interactions. The dynamical correlations
also produce an overall quenching of the Pauli kinematic effect through the
strength factor n (0 < n < 1), which accounts for the depletion of the
Fermi sea.) The last two terms of (16) describes virtual processes of more
complicated nature, which serve to correct those already described.
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From either the raw cluster expansion (15) or the re-summed structural
expression (16) we observe that at @ = 0 the generalized momentum distri-
bution function just reproduces the single-particle momentum distribution
n(p), with the large factor A — 1. Accordingly, our numerical considerations
will focus on the nontrivial addend that enters when Q@ # 0 (this portion
being of order unity compared to A).

We shall explore two simple approximation schemes for the evaluation
of n(p, Q) within the theoretical framework outlined above.

Lowest-Cluster-Order Approzimation (LO). The first procedure involves
straightforward implementation of the cluster expansion (15). The series
in square brackets is truncated at the leading, two-body cluster order; thus
we retain only the addend n(;), which, in detail, consists of a sum of seven
two-body cluster contributions:

n(2) p, Q) Zn(z) P, Q). (18)

The Ursell-Mayer diagrams that depict the individual terms are shown in
Fig. 2. (For an explanation of the relevant graphical conventions, see the
Appendix of [30]. Strictly, this approximation amounts to retaining only
the two-orbital portion of n(p, Q) — n.(p, @) expanded via the factorized
Iwamoto-Yamada algorithm [{30,31].) The corresponding analytic contribu-
tions to the two-body cluster approximation pyp(2)(71, 72, r}) for the half-
diagonal two-body density matrix are (in the same order as in Fig. 2 and
Eq. (18)):
I(kpr117)¢(r12)
l(kpr11)C(r12),
I(kFTn')C(ﬁ'z)C(TI2) )
l(kp’l‘12)l(kp’rllz)
l(kFTIZ)C(Tl'z) (kpryrg),
— v (kpr12)C(r12)l(kpryg)
1I(kF7'12) ((r12)l(kpry2)C(r1r) -
Here, I(z) = 3z ~3(sinz — zcosz) is the Slater exchange function and {(r) =
f(r)—1is a dynamical correlation bond. We use the notationr;z = |r; -7y,
ri = |1 — vy and vy = (7] — ol
The LO approximation np,o(p, @) so defined is evidently equivalent to

taking the two-body part of the component of (16) proportional to (1-8go)-
(1] (2]

Upon detailed comparison it is seen that the cluster terms (2) and () aP-
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7 )~ C {I2 Ay
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Fig. 2. Diagrammatic representation of the two-body cluster contributions n%g)(p, Q)
to the expansion (18) of the generalized momentum distribution function, drawn
in the order i = 1,...,7 [30]. Wavy lines represent dynamical-bond factors ¢(ri; ),
curved oriented lines denote Slater exchange factors I{(kp7;;), and straight oriented
lines stand for plane waves exp(ik - ri;) of momentum k = p (horizontal) or k = Q
(vertical).

ney(p.Q) = +

"‘\"M

pearing in Eq. (18) and Fig. 2 derive from the second term of the decompo-
sition (16), representing the scattering of a nucleon from a plane-wave state
of momentum p to another plane-wave orbital of momentum p — Q with
the exchange of a momentum-conserving phonon (plus the time-reversed
counterpart of this process). To the order considered, the third term in

(16) does not contribute. The cluster terms n%}) with 7 = 4,...,7 belong to

the fourth term of (16), which describes the scattering of Pauli-correlated
nucleons, modified by dynamical effects associated with the depletion of the
Fermi sea and population of states above the Fermi sea. Of course, the piece

(4]

n(2) is identical, for @ # 0, to the generalized momentum distribution (5)
(3]
(2)
tion to the addend n(?)’ of (16) that incorporates some of the higher-order
virtual processes.

It may easily be verified that the approximation nyo(p, Q) conserves
the following properties of the exact generalized momentum distribution:
(i) time-reversal invariance, (1) the p sum rule of Eq. (8) and (i) the Q
sum rule of Eq. (9). (In verifying (8) and (9), one must naturally adopt the
two-body cluster approximation gy,0(r) = f(r)[1 —1?(kpr)/v] to the radial
distribution function.) On the other hand, nyo(p, Q) violates the sequential
condition (11) (or equivalently (17)) when we extend the implementation
of the two-body cluster approximation to @ # 0 and also apply it to the
single-particle momentum distribution n(p).
Lowest-Order-Irreducible-Cluster Approzimation (LOIC). The second calcu-
lational procedure goes beyond simple approximation of n(p, Q) to lowest
cluster order in the expansion (15), yet it still determines the generalized
momentum distribution in terms of quantities evaluated in lowest cluster
order. Instead of truncating the raw cluster series (15) at two-body order,

of the ideal Fermi gas. Finally, the term n_\ is the leading cluster contribu-



670 J.W. CLARK, E. MAVROMMATIS AND M. PETRAKI

we work with the re-summed form of the expansion given by Eq. (16). This
renormalized expansion captures the sum-of-products structure of n(p, Q),
expressing it as a function of certain irreducible-diagram sums. The general
prescription we adopt — LOIC — is to evaluate these irreducible-diagram
sums in lowest (two-body) cluster order. Specifically, we make the following
approximations to the irreducible two-point quantities F; (r) that deter-
mine the form factors F 4(Q), Fy.(Q), Fec(p) and Foo(|p — Q) (see Fig. 13
of (30]): Fya(r) = {(r), Fge(r) = 0 and F..(r) = —((r)l(kpr).

The single-particle momentum distribution n(k) (needed for k = p and
|p — Q) is itself a diagrammatically reducible quantity, itself expressible in
renormalized form in terms of irreducible-cluster sums [43]. Accordingly, for
this quantity we invoke the lowest-order irreducible-cluster approximation
npoic(k) as defined and studied by Flynn et al. [33]. The treatment of
the modified momentum distribution np;(k) appearing in the third term
of (16) is moot because the factor Fy.(@), which has no two-body part, is
neglected. The strength factor n = exp[Q(0)] is determined by truncating
the expansion for Q(r = 0) at two-body order. Thus we set n = exp[—£Kqj,]
with kg;, = p [ (3(r)dr.

We deviate from the strict LOIC prescription in the disposition of the
last two terms of Eq. (16). The separable three-point configuration-space

kernel defining the addend n(2) I( P, Q) of (16) is approximated by the leading
diagram in the raw cluster expansion of the first term of Eq. (38) in [30]
(noting that the Q subscripts in that equation are superfluous). Explicitly,
this kernel is taken as K(ri,r2, 7)) = p?l(kpri1/)((r12)((r12). The more
complicated three-point quantity n(3)’(p, Q) is set equal to zero.

The approximation so defined is called LOIC1, in anticipation of im-

proved approximations which include additional leading contributions to
the irreducible-diagram sums.

To compare LOIC1 and LO procedures in the context of expression

(1] (2]

(16), we may observe that the addends n(2) and n(2) of the cluster decom-
position (18) correspond to the second term of (16), ng) is contained in the

fifth, and nE‘;]), n%sz]), ng]) and nE;]) are all generated by the fourth. The two

approximations, LOIC1 and LO, coincide in their treatment of the form fac-
tors Fyq4, F4. and F,... They likewise coincide in their neglect of n(3)'(p, Q)

and in their approximation of n(z)'(p, Q) by the third diagram of Fig. 2,
(3]

t.e. by 2y Differences arise (for @ # 0) only from two sources:

(i) In the LO prescription, step functions @(kp — k) corresponding to
the ideal Fermi gas are used in place of the momentum-distribution
factors n(k) appearing in the second term on the right-hand side of
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(16), whereas ny,o1c(k) factors are inserted in implementing the LOIC1

scheme.

(i) Similarly, the strength factor n in the fourth term of (16) is replaced
by unity in the LO treatment, but is approximated by exp(-—xq;,) in
LOIC1.

The LOIC1 approximation maintains time-reversal invariance and again
satisfies the p and @ sum rules (for consistently defined gro1c1(r) and
Sroic1(@Q)). In the examples treated numerically, the violation of the se-
quential relation by the LOIC1 procedure is somewhat less severe than oc-
curs in the LO approximation (see Sec. 4). It should be pointed out that
failure of the sequential relation has no direct effect on the evaluation of

n(p, Q) away from Q = 0.

3. Models of nuclear matter

We have considered simple models of the ground state of symmetri-
cal nuclear matter near its saturation density. These models are intended
primarily to capture the essential aspects of the short-range repulsive cor-
relations that exist in nuclei; they will — at best — only reflect the effects
of the intermediate and longer-range components of the nuclear force in a
qualitative manner. The models are specified through the state-independent
two-body Jastrow correlation function f(r) of Eq. (12) and the Fermi wave
number kg.

Monte Carlo Model (MC). One choice for f(r), with associated density
p= 0.182fm™ % (kp = 1.392 fm™!), is taken from the variational Monte
Carlo study of Ceperley, Chester and Kalos [44]:

(1- e""/c3)
r

f(r) = exp[—cie 2" ] (MC). (19)
The parameters ¢; = 1.7 fm, ¢ = 1.6 fm™! and ¢3 = 0.1 fm were deter-
mined [44] by minimization of the ground-state energy expectation value
of symmetrical nuclear matter with respect to the corresponding Jastrow-
Slater trial state. The assumed interaction is the v “homework potential”
[8, 45}, given by the central part of the Reid soft-core interaction in the 3S;-
3D, channel, which is considered to act in all partial waves. This central,
state-independent potential choice has been employed in quite a number
of exploratory studies of nuclear matter (see e.g. (8, 33, 44-47]). It has a
repulsive core that is relatively stiff compared to those of some supposedly
realistic nucleon-nucleon interactions.
Gaussian Models (G1 and G2). We have also investigated two other models
based on a Jastrow two-body correlation function with Gaussian deviation
from unity:

F(r)=1-exp[-6%*]  (G1, G2). (20)
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These models are not connected with any known nucleon-nucleon interac-
tions, but would clearly be associated with potentials having soft repulsive
cores. They have the convenient feature of permitting analytic evaluation
of the integrals that enter the approximation npo(p, Q). Model G1 refers
to a density p = 0.1589 fm™> (kp = 1.33 fm™!). The parameter value
B = 1.1 fm™! completing the specification of G1 was determined [42] by fit-
ting a low-order calculation of the momentum distribution n(p) of nuclear
matter at this density to the result of a correlated-basis-functions calcula-
tion [34] of n(p) for a realistic two-nucleon interaction. Model G2, with
B = 1.478 fm™!, refers to p = 0.182 fm™° (kp = 1.392 fm™!). It has
been used in the work of Flynn et al. [33], which tested various methods
for numerical computation of n(p) for a Jastrow—Slater wave function (12).
The methods considered in [33] include the LOC (lowest-order conserving),
LOIC (lowest-order irreducible-cluster), FHNC (Fermi-hypernetted chain)
and MC (variational Monte Carlo) procedures.

0.80

f(r)

0.60

0.40

0.20

0.00 I .
0.00 2.00 4.00 6.00 8.00

Fig. 3. Correlation functions f(r) of the three models of symmetrical nuclear matter
designated as MC, G1 and G2 (see text).

Their qualitative nature notwithstanding, the models defined above will
provide reasonable surrogates for realistic nuclear matter, allowing us to
study effects of different aspects of the state-independent geometrical cor-
relations on the two-body density matrix. The correlation functions f(r)
characterizing the three models are compared in Fig. 3. While quite simi-
lar in appearance, they nevertheless show significant differences in behavior
both in the core region and at medium distances. A commonly invoked
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measure of the overall strength of the dynamical correlations is the wound
parameter Kq;, introduced in Sec. 2 in approximating the strength factor n.
This quantity estimates the effectiveness of the correlations in depleting the
Fermi sea; indeed, the logarithm of the residue at the quasiparticle pole, as
given in leading cluster order of variational theory [43], is just —kg4;;. The
respective values of the wound parameter for models MC, G1 and G2 are
Kgir = 0.297, 0.237 and 0.111. Accordingly, the models chosen for investi-
gation span a range from relatively strong to relatively weak correlations.

4. Numerical results and their assessment

Selected results from numerical calculations of n(p, Q) based on the
nuclear-matter models MC, G1 and G2 are displayed in Figs. 4-12. We have
considered the respective ranges [0, 3kp] and [0, 5kp] in the magnitudes of
the momentum variables p and Q, keeping @ > 0 unless otherwise indicated.
Results in LO Approzimation. As a basis for further discussion, let us first
examine results of the straightforward lowest-cluster-order evaluation for the
MC model, in the special case that p and Q are parallel (i.e. Q = @Qp/p).
Two views of ny,o(p, Q) for this case are shown in Figs. 4 and 5. For

the noninteracting Fermi gas, n(p, Q) (for Q # 0) coincides with ng]) and

(from Eq. (5)) is simply —1 for p < kg and 0 < Q < p + kr, and zero
otherwise. Consider a fixed p < kp and let Q vary. In the two plots the full
nLo(p, @p/P) = n(2)(p, Q) is seen to increase monotonically with @ for Q <
p+ kp, starting from substantial negative values at small Q. At Q@ = p+kp,
this function exhibits a steep rise toward zero. For values of @ in the range

0 <Q < p+ kp, the terms "Elzl)’ Ez;]) and nEz]) are comparable in size and

make the contributions to nyo(p, Qp/p) of largest magnitude, the terms
al8l 6] (3]

T2y T(2) and () are of smaller size, and the remaining term nE ]) is the

least consequential. The deviation of npo(p, @p/p) from zero in the region
Q > p-+kp is attributable entirely to the presence of dynamical correlations;

(2]  [s] (3]
(2)’ "(2) (2)

while ng]) is considerably smaller in magnitude. Dynamical correlations are

of the four nonvanishing terms, n and n},\ are of comparable size,

also responsible for the nonzero values of n(p, Q) seen at p > kp. In this
p range, and for @ satisfying |p — kp| < Q < p+ kp, it is n?]) and next

Ezl) that give the leading contributions, followed by ngzl) and n£2]) The

latter two terms also contribute in the region @ > p + kg. Our findings for
the relative sizes of the individual contributions to ny,o(p, Q) are generally
understandable in terms of the number of correlation lines (the wavy lines
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2.

2. a7

—alp, @

57

Fig. 4. Lowest-order generalized momentum distribution nyo(p, Q) as a function
of p and Q for p parallel to Q (and Q # 0), calculated with the MC correlation
function of Ref. [44] at density p = 0.182 fm 2.

-2 Q/ky

Fig. 5. A different view of the data of Fig. 4.

representing ¢ factors) involved in the corresponding diagrams, as well as the
associated factors in the density p and the inverse degeneracy v—! = 1/4.
Fig. 6 provides numerical data on the variation of ny,o(p, Q) with the
angle 6, between p and Q, in the special case p = kp. For all four choices of
Q, it would seem that np o(p, Q) attains its minimum value at or very near
bpg = 0, t.e., when p and Q are parallel. In the examples with @ < 2kp
(i.e., for which there would be a nonvanishing result with the dynamical
correlations switched off}, the approximated function rises rather steeply
somewhere between 0, = 0 and 6, = 7/2, and then appears to flatten
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Q0

0.00 S e e

n(p.Q)

Opa (deg)

Fig. 6. Lowest-order generalized momentum distribution npo(p, Q) as a function
of the angle 8, between p and Q, for p = kg and the indicated Q values. The MC
correlation function [44] and corresponding density p = 0.182 fm~3 were assumed.
(Numerical results are plotted as small triangles; the curves have been drawn merely
to guide the eye.)

out. Broadly similar behavior has been observed at other values of p.

Figs. 7-9 exemplify the dependence of the results on the choice of cor-
relation function (and density), for 8, = 0 and three characteristic values
of p, namely 0, kr and 2kp. Although the predictions for the three models
MC, G1 and G2 are qualitatively similar, there are conspicuous quantitative
differences at small and intermediate @ values. One observation (intended
as a general statement but subject to exception) is that the departure of
npo from the result (5) for the ideal Fermi gas is found to be larger for
larger wound parameter k4;,. An exception that warrants attention is the
behavior of the MC result just below Q = p + kr (notably in Figs. 8 and
7): one sees a (negative) “depletion” relative to the results for the other
two models. We may further remark at this point that the violation of the
sequential relation is also found to increase with the size of kq;,.

The predictions of the three models of nuclear matter appear to merge
at large Q (i.e. beyond @ = p + kr). On the other hand, the dynamical
contributions outside the @ range max{0,p — kp} < Q@ < p + kr condition-
ally accessible to the noninteracting Fermi gas are of relatively modest size
(compared to unity). This finding contrasts with the substantial dynamical
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Fig. 7. Lowest-order generalized momentum distribution nro(p, Q) as a function
of Q(> 0), at p = 0, for the three models MC, G1 and G2. The corresponding
result for the ideal Fermi gas is —1 for Q/kp < 1 and zero otherwise.
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Fig. 8. The lowest-order generalized momentum distribution npo(p, Qp/p) as a
function of Q(> 0) for Q||p, at p = k, for the three models MC, G1 and G2. The
corresponding result for the ideal Fermi gasis —1 for Q/kr < 2 and zero otherwise.
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Fig. 9. As in Fig. 8, but for p = 2kp. The corresponding result for the ideal Fermi
gas is zero. Note the difference in scale relative to Fig. 8.

effects evident for low Q at p = 0 and p = kg (Figs. 7-8). In the case
p = 2kp (Fig. 9), where statistical correlations alone would make no con-
tribution, we observe significant departures from the Fermi-gas prediction,
at the level of 10-50%, depending on the model assumed. The deviations
are concentrated in the Q range [p — kg, p + kp] = [kp, 3kr). These features
may be traced to the presence of Fermi-gas step functions (©(kg —p) and/or
O(kr — [p — Q])) in the more important addends of Eq. (18).

Silver [39] has proposed simple approximation n(p, Q) = n(p)[S(Q) - 1]
for the generalized momentum distribution at @ # 0, in terms of the
single-particle momentum distribution n(p) and the static structure func-
tion §(Q). We have investigated this ansatz using inputs n(p) and §(Q)
calculated for the MC model in FHNC/0 approximation. The results are
substantially smaller in magnitude than we have found with the LO ap-
proximation procedure, in the “Fermi-gas” regime defined by nonvanishing
O(kr — p)O(kr — [p — Q]). It is to be recalled [30] that Silver’s formula
breaks time-reversal invariance and also misses the Pauli kinematic effect
represented by the fourth term of (16).

Results in LOIC! Approzimation. Our numerical findings with the LOIC1
procedure are summarized in Figs. 10 and 11, while Fig. 12 compares se-
lected results from LO and LOIC1 calculations. First, consider the relative
strengths of individual contributions to the LOIC1 estimate of n(p, Q) in
the reference case having Q parallel to p (O, = 0). The individual contri-
butions in question include the “dressed” counterparts of the LO addends
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nglzl) and n£22]) of (18), which are dressed by replacing the factors O(kp — k)

by n1,01c(k), and of the sum of LO addends ng]) through n{;]), which are

dressed by attaching the approximate strength factor nyo1c = exp(—~£gjr)-
It will be convenient to denote the dressed quantities by the same symbols
as used in the LO calculation, save that the subscript (2) is omitted. The
dressed sum n!4 +n[5] +n[6] +n[7], which we abbreviate as n[4“7], evidently
constitutes the LOIC1 approximation to the Pauli kinematic term of (16)
(the fourth term). The remaining contribution to the LOIC1 estimate is of

course identical with the addend ng]) of the LO prescription. With p fixed

at kp, and Q below 2kp, the most important contributions are nl4~71, nl2]

and nlll the term ng]) = 3l being of lesser magnitude. As ) increases

through 2kp there is an abrupt change of npo1c1(p, Q) (the expected up-
ward shift toward zero), and for @ > 2kp, the contributions nl4=7 x pl2]
have the largest magnitudes, then n!3l and then nlll. Changing p to 2k,
the descending order of dominance, for kp < @ < p + kp = 3kp, is nl1l,
then |nl%| =~ |nl4=7]| and then n!?]. Near Q = kp the approximate n(p, Q)
shows an abrupt drop from near-zero values, followed by a gradual rise to-
ward zero as @ increases through the range kp < @ < 3kp. This general

pattern holds for all three models of nuclear matter.

Turning to a comparison of results for the different models, we find
much the same picture as in the LO calculation, particularly with respect
to the deviations from Fermi-gas behavior and their dependence on the
wound parameter Kq;;,. It is interesting and perhaps significant that the
“depletion” effect just below @ = 2kg noted in the LO result at p = kg for
the MC model — which has the largest x4;, of the three models - has now
become an actual (negative) depletion relative to the Fermi-gas result (see
Fig. 10).

Finally, the differences between the results from the two calculational
schemes, LO and LOIC1, should be assayed. Attention is restricted to
models MC and G2, which have the largest and smallest wound parame-
ters, respectively. Let An(p, Q) be the relative discrepancy between the
two evaluations of the generalized momentum distribution, determined by
H{nLo(p, Q@) — nLoic1 (P, Q))/nLo(P, @) and quoted as a percentage. First
consider the case p = kg (cf. Fig. 12). For Q < 2kg, we find (very roughly)
An ~ 20% (MC) and ~ 10% (G2), the discrepancies decreasing slightly
with increasing Q. The higher-order contributions present in LOIC1 (but
not in LO) have a net positive effect and thus act to reduce the departure
from the Fermi-gas limit. For Q > 2kp, we again find An ~ 20% in the MC
model, but the net contribution of the higher-order terms is now negative.
For the G2 model the small numerical magnitudes of the relevant quantities
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Fig. 10. Lowest-order irreducible-cluster approximation npoici(p, @p/p) to the
generalized momentum distribution, as a function of Q(> 8) for Ql|p, at p = kg,
for the three models MC, G1 and G2.
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Fig. 11. As in Fig. 10, but for p = 2kp.

and differences hinder a useful comparison of the two procedures. In the
case p = 2kp, the estimated values of n(p, Q) for Q@ < kp or Q > 3kp are
also too small in magnitude for useful comments to be made, for either MC
or G2. However, in the range kp < Q < 3kp, the discrepancy An runs from
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Fig. 12. Comparison of lowest-order (LO) and lowest-order irreducible-cluster
(LOIC1) approximations to the generalized momentum distribution n(p, Qp/p),
displayed as functions of @ (with Q > 0 and Q||p), at fixed p = kp, for models
MC (solid curves) and G2 (dashed curves). The corresponding result for the ideal
Fermi gas is —1 for Q/kp < 2 and zero otherwise.

some 17% to some 5% in the MC model and from about 7% to about 4%
for G2, decreasing with increasing @ in both models. The corresponding
higher-order terms have a net positive effect.

We close this survey of numerical results with some data on the vi-
olations of the sequential relation by the LO and LOIC1 algorithms. To
quantify these violations, we refer to the pertinent formulation (17) of the
sequential condition and define a discrepancy measure AS in the LOIC1
case as the LOIC1 version of the left side of (17), minus the LOIC approx-
imation to the right side, this difference being divided by nyoic(p) and
given as a percentage; AS for the LO calculation is constructed in the same
way in terms of LO quantities. At p = kp, the results obtained for these
measures are AS = —-273% (LO) and = -192% (LOIC1) when the MC
model is employed and AS = —63% (LO) and = —47% (LOIC1) in the G2
model. At p = 2kp the figures for the MC model are AS = +269% (LO)
and —8% (LOIC1). Judging from these examples, the higher-order terms
contained in the LOIC1 treatment tend to decrease the violation of the se-
quential identity, but departures from this relation remain serious. It should
of course be possible to devise a sequence of conserving approximations that
meets the sequential condition in each order, by appropriate regroupings of
individual Ursell-Mayer diagrams. However, it is to be expected that such
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approximations will fail to satisfy some other identity or sum rule that is
deemed important.

5. Conclusions and prospects

In this contribution we have presented and discussed a collection of
results from an exploratory numerical study of the half-diagonal two-body
density matrix pap(r1, 72, 7)) of symmetrical nuclear matter. These results
have been expressed in terms of a Fourier transform n(p, Q) of p,;, the
generalized momentum distribution [29, 30] defined by Eq. (2). The cal-
culations are based on a Jastrow-Slater ansatz for the ground-state wave
function, and we have examined three versions of the state-independent
Jastrow two-body correlation function f(r), at densities near the empirical
equilibrium density of the system. The results show interesting structural
features arising from the statistical and geometrical correlations and their
interplay. Significant deviations from the reference case of a noninteract-
ing Fermi gas are observed in certain domains of the variables p and Q,
deviations which generally grow in importance with the size of the wound
parameter kg = p [[f(r) — 1)%dr.

It must be stressed that this work takes only the first steps toward a re-
alistic calculation of n(p, @) for infinite nuclear matter and accordingly will
be subject to many refinements. For instance, there are indications that
higher-order cluster corrections may have a stronger influence in n(p, Q)
than was found to be the case for the analogous one-body quantity, the mo-
mentum distribution n(p) [33]. In particular, we may point to the sensitive
dependence of the deviations from the Fermi-gas result on x4;,., as well as
the violations of the sequential relation by the approximations employed,
which can assume serious magnitude for realistic values of this parameter. It
is naturally anticipated that convergence of the relevant cluster expansions
will be worse, the larger the value of k4;;; however, in the present problem it
would seem that the generally larger quantity |p [ ((r)dr| = |p [[f(r)—1]dr]|
may serve as a more appropriate “smallness parameter” for measuring the
rapidity of cluster convergence. On the other hand, it is reassuring that the
LOIC1 results for n(p, Q) at nonzero @, which incorporate some higher-
order cluster contributions relative to the LO treatment, show generally
sensible agreement with the corresponding LO results. Even so, a quan-
titative comparison of LOIC1 and LO results points up the desirability
or necessity of a more precise evaluation, through implementation of the
available Fermi hypernetted-chain techniques [30] for resummation of the
irreducible-diagram cluster series entering the Ristig-Clark structural for-
mula (16) for the generalized momentum distribution. We are proceeding
to carry through this program at the FHNC/0 level, to obtain a firmer basis
for judging the efficacy of the more naive approximations.
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Although FHNC — or alternatively stochastic computation — is the
“algorithm of choice” from the standpoint of accurate determination of the
generalized momentum distribution n(p, Q) for a Jastrow-Slater wave func-
tion, the formulation and testing of simple analytic or semi-analytic ap-
proximations remains an important goal, since it may be possible to adapt
them more easily to the presence of state-dependent correlations and to
phenomenological analyses of final-state interactions in finite nuclei. A sim-
ilar strategy has proven successful in the case of the ordinary momentum
distribution [42].

Further work along the lines we have identified should produce a quan-
titatively reliable description of the generalized momentum distribution,
insofar as state-independent, central, two-body correlations play the domi-
nant role. However, it is doubtless the case that a truly realistic description
of n(p, Q) and the density matrix pyp(r1,72, 7)) over the full ranges of
the momentum and spatial variables will require the introduction of state-
dependent (spin-, isospin- and angle-dependent) correlations into the trial
ground-state wave function of nuclear matter [48, 49]. As a significant step
in this direction, the formalism developed by Ristig and Clark [29, 30] should
be extended to a correlation operator appropriate to a nucleon-nucleon in-
teraction of vg type [31, 49].

This paper is dedicated, with congratulations and best wishes, to our
esteemed colleague and friend Janusz Dabrowski on the occasion of his
65th Birthday. JWC would like to express his deep appreciation to Janusz
for nearly thirty years of stimulating intellectual exchange on the nuclear-
matter problem and countless other matters, and for valuable instances of
congenial and constructive criticism. So many of us have been the benefi-
ciaries of his wisdom, his warm fellowship, and his thoughtfulness.
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