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1. Introduction

It is well known that shell effects play essential role in the properties
of nuclei. The effects are particularly strong in the magic spherical nuclei.
They are, however, also large in deformed nuclei. For example, they increase
the binding energy of heavy nuclei by up to about 5 MeV [1], as will be
illustrated below. The property which displays especially large shell effects
is the spontaneous-fission lifetime. These effects elongate the lifetime of
heavy nuclei by up to about 15 orders of magnitude. This means that some
of the heaviest nuclei could not exist without these effects.

To describe theoretically the large shell effects in deformed nuclei, one
needs, however, to use sufficiently large deformation space. For example, it
has been shown in the analysis of the ground-state energy of heavy nuclei
[2, 3] that the deformations of higher multipolarity A (up to A = 8) give a
significant contribution to this energy.

The objective of the present paper is to study the role of the deforma-
tions of higher multipolarity in the description of the spontaneous-fission
lifetime of a heavy nucleus. A detailed analysis is performed for the nucleus
260106, which is the heaviest even-even nucleus, for which the spontaneous-
fission lifetime has been measured. A part of the results of the analysis has
been presented in [4].

2. INlustration of shell effects
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Fig. 1. Shell effects in the mass of nuclei.
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Fig. 1 illustrates [1] shell effects in the mass of even-even nuclei, M*<P — M.
Here, M“*P js the experimental mass and M is the mass calculated by the
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Fig. 2. Shell effects in the spontaneous-fission half-lives.

macroscopic model without any shell effects [5]. One can see that the shell
effect is negative, i.e. it decreases masses of the nuclei. Its absolute value
increases with the increasing atomic number Z, up to about 5 MeV for
the heaviest known even-even nuclei: 26106 and 264108. Shell effects in
the spontaneous-fission half-life Ty; are shown in Fig. 2 [1]. One can see
that the effects delay the fission process in all heavy nuclei, except only few
lightest ones (isotopes of uranium). The delay increases from few orders (Pu
isotopes) to about 15 orders of magnitude for the heaviest even-even nucleus
with measured Ty (26°106). For such a heavy nucleus like 260106, with T
of the order of few milliseconds, this elongation makes up practically the
whole half-life of these nuclei. In other words, they would not exist without
shell effects. The reason is that only shell effects create the fission barrier
for them.

3. Description of the calculations

The calculations are, in many aspects, similar to those of Ref. [3], where
many details can be found.

3.1. Potential energy

The potential energy of the nucleus is calculated by the macroscopic-
microscopic method. The Yukawa-plus-exponential model [5] with the stan-
dard values of its parameters (e.g. [6]) is used for the macroscopic part of
the energy. The Strutinski shell correction, based on the Woods-Saxon
single-particle potential [7], is taken for the microscopic part. The “univer-
sal” variant of the parameters of the potential is chosen (the same as in [3]
where they are also specified).
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The residual pairing interaction is treated in the usual BCS approxima-
tion. The strength of the interaction is taken the same as in [3], where it
has been fitted to recent data for nuclear masses.

3.2. Inertia tensor
The inertia tensor describes the inertia of a nucleus with respect to

changes of its deformation. We calculate it in the cranking approximation.
The corresponding formula is (e.g. [8-13])

CF AL - Y

010‘1 = 2k’ Z (E, + E1)3

(upv,r + u,v,)2 + P (3.1)

where a; and «; are the deformation parameters, H is the single-particle
hamiltonian, u, and v, are the BCS variational parameters and E, is the
quasi-particle energy corresponding to the single-particle state |1/) The
term P describes the effect of the collective motion on the pairing in-
teraction. Various properties of the tensor Boa; have been discussed in

[8-13].
3.8. Deformation space

Main attention is concentrated on the axially symmetric shapes of a
nucleus. The effects of non-axial shapes are, however, also discussed.

3.3.1. Axially symmetric shapes

The axially symmetric shapes may be described by the usual deforma-
tion parameters 3, appearing in the expression for nuclear radius (in the
intrinsic frame of reference) in terms of spherical harmonics,

R(9) = Ro(B,) +ZﬂAYAO (3:2)

where the dependence of Rg on 3, is determined by the volume-conservation
condition.

The study performed in the present paper shows that the odd-multipo-
larity deformations 3, A = 3,5,... do not contribute to the energy of the
investigated nucleus 269106 in any part of the region of its fission barrier.
Concerning the even multipolarities, the first four of them, A = 2,4,6,8,
contribute to the barrier. The contribution of A = 10 is already negli-
gible. Thus, the analysis is performed in the 4-dimensional space {3,},
A=2,4,6,8.
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3.3.2. Non-axial shapes

In our study of the effects of non-axial shapes, we include the non-
axiality to the shapes described by the most important deformations of the
lowest multipolarity degrees: A = 2 and 4. A general non-axiality of the
quadrupole deformation, A = 2, is described by one parameter vz, while
that of the hexadecapole deformation, A = 4, needs two parameters: 74
and 84 [14]. Here, to have a smaller number of free parameters, we admit
(similar as in [15, 16]) a particular hexadecapole non-axial deformation with

74 = —272 and 84 = 83 = arccos 4/ % [14]. Then, the whole non-axiality is
described by only one parameter ¥ (7 = 72) and the expression for nuclear

radius R(9, ¢) (in the intrinsic frame of reference) in terms of spherical
harmonics Yy, (¥, ¢) is

R(9,9) =Ro(Bx,7){1 + Balcos yYzo + -% siny(Yaz + Ya_2)|

1 1 /5
+ ﬂ4['1-§(7 + b cos 27)Y40 + -\[gsin 27(Y42 + Y4_2)

2
1 /35
+ E1/?(1 — c0s27)(Y4q + Y4_4)]
+ B6Ys0 + BsYs0} - (3.3)

This is the same expression as given in [16], except that the (axial) defor-
mation of multipolarity A = 8, disregarded in [16], is also included here,.
The dependence of Ry on 3) (A = 2,4,6,8) and v is determined by the
volume-conservation condition.

3.4. Spontaneous-fission half-lives

The spontaneous-fission half-life Ty is calculated by the formula (e.g.

(13])
_In2

sf — n—I.; ’
where n is the number of assaults of a nucleus on the fission barrier in unit
time and P is the probability of the penetration through the barrier for a
given assault. The probability P is obtained in the semiclassical (WKB)
approximation

(3.4)

P=[1+exp2S(L)]7}, (3.5)
where the action integral S(L) along a 1-dimensional trajectory L in a
multidimensional deformation space is

33

S(L) = / {%BL(S)[VL(S) - E]}% ds. (3.6)

31
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Here, Vi (s) is the potential energy, Bp(s) is the effective inertia, both
along the trajectory L, and F is the energy of a fissioning nucleus. The
parameter s specifies the position of a point on the trajectory L, with s;
and sz corresponding to the entrance and exit points of the barrier, i.e. to
the classical turning points determined by: V(s) = E. The effective inertia
B (s) associated with the fission motion along the trajectory L is

da, da;
B=Bp(s) = ZBQ,,,J 7 72?]" (3.7)

where Ba’.aj are components of the inertia tensor, Eq. (3.1), and a;, a; are

the deformation parameters (3 or 7).
The dynamical calculation of Ty consists in the search of the (dynam-
ical) fission trajectory Lin, which minimizes the action integral S(L).

3.5. Details of the calculations

The potential energy and the inertia tensor are calculated microscopi-
cally in the following “basic” grid points

Bz = 0.20(0.05)0.70, B4 = —0.05 (0.05) 0.20,
Be = —0.08 (0.04) 0.08,  Ps = —0.04 (0.04) 0.04.

In the non-axial degree of freedom v, the “basic” grid points are
siny = 0 (0.075) 0.30/83> .

To get the values of all calculated quantities for grid points, which are
few times more dense in each degree of freedom, the standard SPLIN3 proce-
dure of the IMSL library has been used for the interpolation (by third order
polynomials). Only in the 3 degree of freedom, the parabolic interpolation
has been applied.

4. Results
4.1. Potential energy

To have small values of the energy, we employ, in the whole paper, the
usual normalization of the energy, putting the smooth part of the energy
equal to zero at the zero deformation. In other words, we subtract from the
energy a constant value equal to the smooth part of the energy of a nucleus
at its spherical shape. This is reasonable as we are only interested in the
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Fig. 3. Contour maps of the potential energy FE, plotted as a function of the
deformations 3; and B4 for B¢ = 0, E(0,0), and s = —0.04, E(—0.04,0), both for
Bs = 0, and the difference between the two. Numbers at the contour lines give the
values of the energy in MeV. Difference in the values between neighbouring solid
lines is specified by the scale. Dashed lines divide this difference by two.

dependence of the energy on deformation, and not in the absolute value of
it.

Fig. 3 illustrates the dependence of the energy on the deformations of
the lowest multipolarities, G2 and B4, with the deformations ¢ and fg
treated as parameters. To shorten the notation, we put

E(B2,B4; Bs,Bs) = E(Bs,Bs) - (4.1)

The figure shows the energy at 8¢ = 0 and 8¢ = —0.04, and the difference
between the two, all with 3 = 0. One can see that, at ¢ = 0, the equi-
librium deformation is 39 =~ 0.24, 83 ~ —0.02 and the value of the energy
is about -4.6 MeV. At B¢ = —0.04, the position of the minimum remains
practically the same, but the energy is lower by about 1 MeV. The position
of the saddle point also remains about the same, but the energy is higher
by more than 0.5 MeV. Thus, the fission barrier in the 8 = —0.04 plane is
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higher by more than 1.5 MeV than in the 8¢ = 0 plane. This suggests that
the fission trajectory in a multidimensional deformation space, including Gs
as a variable, will have a tendency to start at low, negative value of 8¢ and
then to proceed towards increasing values of this deformation. This is really
the case, as will be seen in Fig. 13. The lowest map of Fig. 3 illustrates more
directly the effect of the change of B¢, from ¢ = 0 to B¢ = —0.04, on the
energy.

4.2. Inertia tensor
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Fig. 4a. Contour maps of the diagonal components By (A = 2,4, 6, 8) of the inertia
tensor calculated at g = 35 = 0.

Fig. 4a illustrates the dependence of the diagonal components By of
the inertia tensor on the deformations 82 and 4 at B¢ = 35 = 0, for A =
2,4,6,8. Such illustrations have been given earlier only for 2-dimensional
deformation spaces (e.g. [11, 13]). To shorten the notation, it is put here

Bﬁ)ﬂ# = BAH-' (4.2)

One can see in Fig. 4a that B ) are fast fluctuating functions of deformation.
The reason is that B, are not very collective quantities and they sensitively
depend on the positions of few pairs of the single-particle levels, which are
close to the Fermi level. The largest fluctuations are obtained for the main
component of the tensor, B22. Then, the fluctuations of By, decrease with
increasing A. All components have the smallest values around the point of
minimal energy and these values are similar for all A.
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Fig. 4b. Same as in Fig. 4a, but for the non-diagonal components Bj,, u # A, of
the inertia tensor.
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Fig. 5. Contour map of the component Bj; of the inertia tensor calculated at

Bs = —0.04 and Bs = 0, B23(—0.04,0), and difference between it and that calculated
at B¢ = s = 0, B32(0,0).

The non-diagonal components B)y,, A # p, are shown in Fig. 4b. One
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can see that these components are also much fluctuating with deformation.
The largest values are obtained for the main non-diagonal component Bay.
Values of the other components B, are decreasing with increasing A and,
even more, with increasing |\ — p|. For almost whole investigated region of
deformation, the values of non-diagonal components are positive.

Fig. 5 shows how much the map of the main component of the tensor,
B32(B2, Ba), changes with a change of 8. Comparing the B2, of the upper
part of Fig. 5 (8¢ = —0.04) with that of Fig. 4a (8¢ = 0), one can see
that they are similar. The lower part of Fig. 5 gives directly the difference
between the two and shows that the difference is really small. The values
of By, at B = —0.04 are lower by about 50h%/MeV than at 8¢ = 0, for
deformations around the point of minimal energy. This is because this
minimal energy is lower at 8¢ = —0.04 than at 8¢ = 0, which means that
the density of the single-particle levels around the Fermi level is smaller at
Bs = —0.04. The lower density of these levels results in the lower values of
the inertia function Bj,.

4.3. Fission trajectory

E(MeV) scale:2 min.in:Bs.Bg

0.1

B.

0.0

Fig. 6. Fission trajectories L; and L4 obtained in 1- and 4-dimensional deformation
spaces.

Fig. 6 shows the (dynamical) fission trajectories Ly and L4 obtained
in 1- and 4-dimensional deformation spaces {8,}, A = 2 (Amax = 2) and
A= 2,4,6,8 (Amax = 8), respectively. Although the trajectories are also
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analyzed in 2- and 3-dimensional spaces, only two of them (corresponding to
the extreme cases of the dimension of the deformation spaces discussed) are
shown, for reason of clarity. To understand the “physics” of the trajectory
L4, we also plot the map of the potential energy. As we cannot, however,
plot the potential energy of the 4-dimensional space in this 2-dimensional
figure, the “projected” energy is shown. It is the energy which, for each
point (f2,84), is minimized in the B¢ and S degrees of freedom. One can
see that the dynamical trajectory L4 passes the potential-energy barrier in
such a way as to possibly little change the deformation 3, of the nucleus. We
will see in Fig. 13 that also the deformations 3¢ and g are being only little
and smoothly changed along the trajectory. Thus, although the trajectory
has some tendency to approach the saddle point, which is rather far in the
B4, Bs and Bg deformations from the entrance point to the barrier, it passes
in some distance from the saddle point, trying to change all the deformations
B>, other than f;, as little as possible. Along such trajectory, the effective
By, Eq. (3.7), and also the action integral S(L), Eq. (3.6), is relatively
small.

4.4. Fission barrier

E(MeV)

02 03 04 05 06 0.7

B,

Fig. 7. Fission barriers obtained in 1- (Aax = 2) and 4-dimensional (Apac = 8)
deformation spaces.

Fig. 7 shows the fission barrier obtained in 1- (Amax = 2) and 4-
dimensional (Amax = 8) deformation spaces. This is the potential energy
calculated along the trajectories Ly and L4 (shown in Fig. 6), respectively.
One can see that the barrier obtained in 4-dimensional space is higher and
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thicker. This is mainly due to the lower (by about 1.5 MeV) potential energy
obtained at the equilibrium (ground state) point in the 4-dimensional case.
In both cases, the same zero-point energy (corresponding to the vibration
of a nucleus in the fission degree of freedom), equal to 0.7 MeV, is taken,
to obtain the ground-state energy (horizontal thin lines) from the minimal
value of the potential energy. It is worth mentioning that a large difference
between the energies obtained at the top of the two shown barriers is con-
nected with the fact that these energies do not correspond to the same, or
even similar, saddle points.

4.5. Effective inertia
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Fig. 8. Same as in Fig. 7, but for the effective inertia B.

Fig. 8 gives the effective inertia B, Eq. (3.7), obtained along the fission
trajectories L1 (Amax = 2) and L4 (Amax = 8) shown in Fig. 6. One can
see that the inertia is much different in these two cases. This difference,
besides the difference in the barrier, gives a contribution to the difference
in the fission half-life T;.

4.6. Fission half-life

Fig. 9 shows logarithm of the spontaneous-fission half-life T¢ as a func-
tion of the dimension of the deformation space used in the analysis. The
dimension is parameterized by the maximal multipolarity, Amax, of the de-
formations taken. One can see that T increases with increasing dimension
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Fig. 9. Logarithm of the spontaneous-fission half-life T;¢ (given in seconds) as a
function of the maximal multipolarity, A ax, of the deformations used. Experimen-
tal value of Ty; is also shown.

of the space, mainly due to the increase of the fission barrier. In partic-
ular, the inclusion of the deformation ¢, usually disregarded or treated
approximately, increases Ty by about 3 orders of magnitude. This means
that the analysis of Tys of the nucleus 29106 in the 2-dimensional space
{6,}, A = 2,4, would be much misleading. The use of a more (at least
3)-dimensional spaces seems to be necessary.

5. Discussion
5.1. Analysis in the “projected” space

Dynamical calculation of the fission lifetimes in a large deformation
space is a complex and time-consuming task. Thus, one tries to find a way
of reducing the dimension of the space as much as possible. A way, however,
which does not spoil too much the results.

One of the ways of such reduction is to use, in a smaller space, the
potential energy which takes into account the effect of the omitted defor-
mations. Usually, it is the potential energy which, for each point of the
smaller space, is minimized in these omitted deformation degrees of free-
dom. For example, when reducing the 3-dimensional space {,}, A = 2,4,6
to the 2-dimensional one {8)}, A = 2,4, one takes the potential energy
which, for each point (82, 04), is minimized in the (¢ degree of freedom.
We will call the smaller space: the “projected” space.

In the present section, effects of reducing the 4-dimensional space {8},
A =2,4,6,8, to the space of a lower dimension will be discussed. These are
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the effects on the potential energy, fission trajectory, effective inertia and
fission lifetime.

5.1.1. Potential energy
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Fig. 10. Effect of mninimization of the potential energy in the 8 and S degrees of
freedom, on the values of this energy.

Fig. 10 illustrates the effect of minimization of the potential energy
E(B2,84;86,0s) in the B¢ and B degrees of freedom. Here, AT, A =
6,8, denotes the value of 3, at which the energy is minimal in this degree
of freedom. The other notation is the same as in Fig. 3. One can see
that the minimization in 8¢ lowers the energy mainly in the region around
the equilibrium point and that the effect is up to more than 1 MeV. The
largest effect of minimization in the deformation (g also appears around the
equilibrium point, but is smaller, less than 0.5 MeV. Thus, the total effect
of minimization in both these degrees of freedom, E(5g*, B5*) — E(0,0), is
to decrease the energy by up to more than 1.5 MeV. The final plot of the
potential energy E(8{",85") = E(B2,B84; 85", B") in the “projected” space
{BA}, A = 2,4, is shown in the lower right corner of the figure. It is the
same plot as already seen in Fig. 6.

5.1.2. Deformations and shapes

Fig. 11 shows the deformations 8¢ and ;" for which the energy is
minimal. The plots are direct reflections (and wvice versa) of the plots:
E(Bg,0)—E(0,0) and E(Bg*, B5")— E(Bg*, 0) (Fig. 10) showing the effect of
B§* and B5* on the energy. One can see that the largest values of ¢ and g§*
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Fig. 11. Contour maps of the deformations 8§* and 7', at which the potential
energy is minimal, and corresponding shapes of the investigated nucleus 260106,

(in the absolute value) are obtained in the region of the equilibrium point.
[Large values of 87* and B[ are also obtained in the region of large 32 and
B4, which is rather far from the fission trajectory and,thus, less interesting
for the problem discussed here.] In a large part of the deformation region,
analyzed here, 37" and B7* are small, close to zero. In the lower part of the
figure, the shapes of the nucleus corresponding to these deformations are
illustrated.

5,1.3. Inertia tensor

Fig. 12 illustrates the effect of inclusion of the deformations 3¢ and 83
on the main component of the inertia tensor B2;. The effect is obtained by
calculating Bs2, for each point of the smaller space {8}, (A = 2,4), at the
deformations 8¢* and B;* which minimize the potential energy in B¢ and (g
at that point. Thus, the figure is done in full analogy to Fig. 10, prepared
for the potential energy.

One can see that the effect is rather small, especially that of the defor-
mation (g. The final effect is to decrease B;2 by about 50h2/ MeV around
the equilibrium point and to increase it by about the same value in an-
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Fig. 12. Same as in Fig. 10, but for the main component of the inertia tensor Bz,.

other region of deformations. The mechanism of the decrease around the
equilibrium point is the same as for the potential energy. The decrease of
both quantities comes from the decrease of the density of the single-particle
levels, close to the Fermi level, due to the inclusion of additional degrees of
freedom in minimization of the potential energy.

5.1.4. Fission trajectory

Three kinds of the fission trajectory are shown in Fig. 13. One (L4)
is the dynamical trajectory obtained in the full 4-dimensional deformation
space {,}, A = 2,4,6,8. This is the same trajectory (L4) as shown al-
ready in Fig. 6. In that figure, it has been illustrated, however, only in the
(B2, B4) plane, while here it is also given in the (82, 0¢) and (82, 3s) planes.
The second trajectory (Lzp) is obtained dynamically in the projected 2-
dimensional space {8,} (A = 2,4), i.e. with the potential energy (shown
in Fig. 6 and also in lower right corner of Fig. 10), which is minimized in
Bs and P deformations, and with the inertia tensor Bj, calculated with
Be = B and PBg = Bg* in each point (82,84). The third trajectory (L)
is the static trajectory, i.e. the line along which, for each 3, the energy is
minimized in all other deformations.

It is rather easy to understand the shape of the trajectories. The shape
of the static trajectory is directly dictated by the potential energy and can
be easily “read” from a plot of this energy in a given plane (f32,3,). The
dynamical trajectory has a tendency to proceed in such a way as to possibly
little and smoothly change any deformation 8 (8 # B2) of a nucleus. In
such case, the contribution of the components of the inertia tensor Bj, to
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Fig. 13. Three kinds of the fission trajectory: dynamical one obtained in 4-
dimensional space (L4}, dynamical trajectory obtained in 2-dimensional projected
space (L3p) and the static trajectory (L,).
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Fig. 14. Fission barrier along the three fission trajectories (L4, Lp and L,) shown
in Fig. 13.

the effective inertia B is small (as d3,/dp; is small, see Eq. (3.7)) and the
inertia B and, thus, the action integral, Eq. (3.6), are relatively small. If
the potential energy forces a change in the deformation 8, of a nucleus, it
is the most “economic” for it to make this change in the region around the
beginning or the end of the fission barrier, where the potential energy is
small and a large inertia B is of relatively small importance for the value
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of the action integral. In a more "microscopic” language, a small change of
B means a small change of the internal structure of a nucleus and, thus,
also a small inertia or “resistance” of it to this change.

One can see in Fig. 13 that the trajectory L4, obtained dynamically
in the whole 4-dimensional space, is horizontal (independent of 8, A =
4,6,8) in a large part of the region inside the fission barrier, which means
a relatively small effective inertia. The trajectory L3, is close to it only
in the (B2, 84) plane, i.e. in the plane in which it has also been obtained
dynamically.

5.1.5. Fission barrier

Fig. 14 gives the fission barrier calculated along the three fission tra-
jectories shown in Fig. 13. One can see that the two dynamical barriers
(one obtained in full 4-dimensional space and the other in the projected
2-dimensional space) are close to each other. This is because the respec-
tive trajectories are close to each other in the main degrees of freedom: 3,
and 4. The static barrier differs much from the two dynamical barriers,
especially in the region around the saddle point. It is lower than these two
barriers by more than 1 MeV.

5.1.6. Effective Inertia
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Fig. 15. Same as in Fig. 14, but for the effective inertia of the nucleus 29106,

Fig. 15 shows the effective inertia B calculated along the three tra-
jectories: L4, Lyp and L, given in Fig. 13. One can see that the inertia
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is generally lowest along the dynamical trajectory L4, what should be ex-
pected according to the discussion of subsect. 5.1.4. Large values of it,
observed at the beginning of the barrier, have rather small influence on the
action integral, as also discussed in subsect. 5.1.4.

The inertia obtained along the static trajectory L, has two large max-
ima, one of them appearing in the region (82 = 0.35) of a large potential
energy and, thus, having important influence on the value of the action in-
tegral and, through it, on the fission half-life. This maximum is directly
connected with a fast change of the deformation 84 along L, in this region
of the deformation [, (see Fig. 13). This fast change of 34 results in a
large contribution of the component Byy of the inertia tensor to the effec-
tive inertia B. This contribution is about four times larger, in the region
of the maximum, than the contribution of B3, which is usually the most
important.

5.1.7. Fission half-life

The dynamical calculation of the spontaneous-fission half-life Ts¢, per-
formed in the full 4-dimensional space (i.e. along the trajectory Ly, Fig. 13),

leads to log;o Tsr(s) = —1.89. The dynamical calculation done in the pro-
jected 2-dimensional space (i.e. along the trajectory L3, ) gives a rather close
value: log,o Ts¢(s) = —1.76. The calculation performed along the static tra-

jectory L, gives: log;o Tse(s) = 0.75, t.e. the half-life by about 2.6 orders of
magnitude larger than along L4. This is due to large inertia B along this
trajectory, as illustrated in the previous subsection.

5.2. Effect of non-azial deformations

Fig. 16 shows the dependence of the potential energy on the non-axiality
parameter v, defined by Eq. (3.3). Here, the line v = 0 represents a tra-
jectory in the 4-dimensional deformation space {8,} (A = 2,4,6,8) which
is not far from the dynamical trajectory Ly. The position of a point on
this trajectory is described by the deformation §;. The deformations )
(A = 4,6,8) along the trajectory are functions of 8;. At any point (32,7)
on the plane, these deformations 3, are taken the same as in the point
(B2,0) on the ¥ = 0 line.

One can see that the static trajectory (not shown explicitly in Fig. 16)
starts at the line 7 = 0, passes through the saddle point with a v # 0 and
comes back to the v = 0 line. The energy at the saddle point is by about
1 MeV lower than the energy at the top of the barrier along the v = 0
line. Still, the dynamical calculations shows that the dynamical trajectory
is very close to the ¥ = 0 line. The lifetime Ty along this trajectory is only
by about 0.03 orders of magnitude shorter than along the line v = 0. In



704 R. SMOLANCZUK ET AL.

E(MeV) scale:1.0

260106

*C" 0.2-7/

& !

«a 01F 1

ol TN/
SIS ST |

0.2 03 04 05 06 07

Bocosy
Fig. 16. Dependence of the potential energy E on the non-axial deformation «.

other words, the effect of the vy degree of freedom on the (dynamical) Ty
is very small. This result is similar to that of [17], calculated for a lighter
nucleus.

We would like to thank J. Skalski for an important contribution to this
study and P. Armbruster, S. Hofmann, G. Miinzeberg, W. Noérenberg and
Z. Patyk for helpful discussions and suggestions.
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