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A. MANN AND M. REVZEN

Department of Physics
Technion — Israel Institute of Technology
Haifa 32000, Israel

(Received November 9, 1992)

Physical properties of some Gaussian distributions in quantum optics
are considered. A useful definition for a temperature for a general Gaus-
sian distribution is presented and used for analyzing the quantum optics
version of Cramer’s theorem.
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1. Introduction: “the classical quantum state”

For convenience and definiteness we shall consider in the following only
the electromagnetic radiation field (although the results can be general-
ized considerably). More than 25 years ago Aharonov, Falkoff, Lerner and
Pendleton [1] (AFLP) posed the following question: what quantum state(s)
(if any) is such that the result of its splitting can be faithfully reproduced by
two independent beams (states)? i.e., given a beam (designated by 1) whose
state is specified by a density matrix p(1) and given (say) a semitransparent
mirror, can we split this beam into two independent modes (designated by
3 and 4)

p(1) = p(3)® p(4) ?

And if the answer is in the affirmative, what is the quantum state, p(1), that
allows this? This problem is interesting because, classically, this is always
possible: Thus, given that two beams (3 and 4) are physically separated
— their classical distribution function is a product. Whilst quantum me-
chanically, the frequent assumption to the contrary notwithstanding, this is,
generally, not so. The qualitative reason is that classical physics, being free
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of the uncertainty principle, allows the exact reproduction of the beams
(3 and 4) both in phase and amplitude by two independent sources (see
Fig. 1). AFLP [1] were able to prove that the only quantum state satisfying
the above criterion is Glauber’s coherent state (CS):

|a) = D(a)[0), (1)

where
D(a) = exp(aal — a*a). (2)

Here al is the creation operator for the mode in question, and |0) is the
vacuum state. Since this state is unique in possessing the above classical
property AFLP termed it the “most classical quantum state”. It is possible
to articulate this state as follows: the CS is the only (quantum) state leading,
via a splitter, to a product state,

p(1) = p(3) ® p(4). (3)

p(%) is a density matrix for (the pure) state i(= 1, 3,4).

Now it can be shown that a (quantum) state which is a product state
cannot lead to a violation of Bell’s inequality [2]. All other states, upon
being split, become entangled states and may lead to violation of Bell’s
inequality [2]. Thus, in this sense too, the CS’s are the most classical quan-
tum states [3]. This dual sense of classical attributes is our motivation for
studying further this “splitter problem?”.

2. Bifactorizable density matrices

A natural generalization of the AFLP problem is: what initially un-
correlated states (beams) upon being (nontrivial) split (see Fig. 1(b}) will
result in two independent beams 3 and 4.

We termed [4] density matrices having this property bifactorizable, viz,
the density matrix p(-,-) is “bifactorizable” if for some orthogonal modes 1
and 2,

p(-») = p(1)® p(2), (4)
and

p(+>) =p(3)® p(4), (5)
where the orthogonal modes 3 and 4 are (using quantum mechanical nota-
tion) given by

a; = ,ua; + va}; s (6)

a% = —u"'a; + p*al , (7)
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Fig. 1. Semi-transparent mirror giving rise to mode 3 and 4: (a) upon splitting of
one mode 1; (b) Upon “splitting” two modes 1 and 2.

with
|M|2+|Vl2:17 I/"V|#Oa (8)

i.e., the modes 3 and 4 can be obtained from 1 and 2 via a “number con-
serving” splitter.

It was shown [4] that bifactorizable density matrices are Gaussian. (The
converse is generally not true.)

3. General Gaussian density matrix (GGDM)

Using quantumm field theoretical notation the GGDM can be defined by
(referring to one mode only — generalization is trivial) its characteristic
function

C(A) = Trpexp (Aal — A*a)
= exp (%(()‘at - /\*a)z)) . (9)

Thus, p for which Eq. (9) holds is a Gaussian density matrix, pgpM-

A density matrix must be normalized, hermitian and positive definite.
Imposing these conditions was shown [5] to imply that GGDM can be pa-
rameterized as

paapM —p(a, (, k)
=D(a)5(()

exp(—xala)

51D (a), (10)
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with
12 _ w2
S(¢) = exp (gg__c_c_l_> , (11)

Z=—— k=£r"2>0. (12)

A state parameterized via Eq. (10) is termed “Thermal Squeezed State” 6],
with & identified as
k = fhw; (13)

B is referred to as (inverse) temperature! . Thus we can associate a tem-
perature with GGDM.

Returning to bifactorizable density matrices we now assert (this is
proven in Ref. [4]) that in this case (of bifactorizability) all the density
matrices are of equal temperature (also of equal |(|). (Our point in this
work, to be discussed later, is that the unequal temperatures are handled
by Cramer’s theorem.) An example of this is the AFLP [1] problem. This
case, depicted in Fig. 1(a), can be viewed as a limiting case for Fig. 1(b)
where the mode 2 is in its vacuum state, |0). The vacuum temperature now
implies that all density matrices involved must be (¢f. Eq. (10)) of the form

p = D(a)|0)(0]D}(a), (14)

i.e. we recover the AFLP result of having only the CS as a possible solu-
tion. Up to now we considered only uncorrelated beams. To study beams
(3 and 4) correlated after the splitter (we take throughout the incoming
beams 1 and 2 as independent) we will require some means to quantify the
correlation. This is discussed in the following Section.

4. Correlated and “maximally correlated” modes

A measure of correlation between two systems (e.g. modes 3 and 4) that
was considered by Zurek [7] and more recently by Barnett and Phoenix (8]
is the so called index of correlation,

Ié’4 =53+ 85, - 33,4 ’ (15)
S3,4 = —Trp(3,4)1np(3,4), (16)
Si=Trp;lnp; 1=3,4 (17)

! The identification k = Bhw is formal. Calling 3 inverse temperature (T~1!) is
suggested by: (1) T > 0 and T — 0 projects the vacuum (i.e. ground) state.
(2) For the electromagnetic Hamiltonian, H = hwata, —(8/90)In Tt p gives
the average energy.
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with
pi="Trjp(-,) i#35=34. (18)

Let us consider some special cases:
(a) If p is separable in modes 3 and 4, i.e.,

P(3,4) = p3(3) ® pa(4), (19)
then we have trivially
S34 =853+ 54, (20)
and
I} =g. (21)

Thus in the case of bifactorizable matrices we have
?=r4=o. (22)

(b) What is p(3,4) leading to maximal correlation, i.e. maximal value for

I3 under the constraint of fixed energy (all modes of equal frequency)?
This problem was (posed and) solved by Barnett and Phoenix [8]. Their

result is
p(3,4) = [¥){¥l, (23)
with
[¥) = exp (Gag al — 6*aqa3)|0). (24)

This state is Gaussian.

5. Cramer’s theorem and its field theoretic version

An interesting theorem in classical probability theory is Cramer’s the-
orem [9]. The theorem states:

(a) Given two independent distributions for z; and z; respectively,
p1(z1) and p2(z2), and
(b) given that the distribution for ¢ = z; + z, is Gaussian, then it
follows that p;(z,) and p2(z2) are Gaussian.
Hegerfeldt [10] showed that Cramer’s theorem has a quantum version.
The field theoretic (actually quantum optics) version is the following.
(a’) Given two independent density matrices p; and p2,

p(1,2) = p1(al,a1) ® pz(al, az), (25)
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and,

(b’) Given that

ps = Trs p(3,4) = p(af, a4) (26)

is GGDM (here ala;, ag, al satisfy Egs (6-8)),

then pl(al,al) and pz(a;,az) are GGDM. The proof of this is given in
Ref. [5]. Recalling that to every GGDM we can assign a temperature [5, 6]
we conjecture that Ty > Ti,T2, i.e., the temperature of mode 4 (or 3)
is higher than that of 1 and 2. We now consider the case where modes
1 and 2 are in pure states (i.e., Ty = T = 0). This will illustrate a

particularly curious (and wholly quantum) case that is accommodated by
Cramer’s theorem. Let the initial modes be (i = 1,2).

[¥:) = S:(()10), (27)

atz— * a2 2
si(c)zexp(“’ Cal) > (28)

With the splitter parameters chosen as
1

p= 7_2-ei"°“‘ ) (29)
v= %ei‘” , (30)
with ¢, + ¢, = 7/2, we are led to
|¥(3,4)) = exp (Bagal - 0*a4a3) |0), (31)
= ig. (32)

Thus for this particular choice of the splitter parameters we get a “maxi-
mally correlated state”. It is straightforward [8] to show that

Trs [$(3,4))(¥(3,4)] = 271 D e ™ ng)(ny], (33)
with (h = 1)
e P“ = tanh |4}, (34)
1

i.e. mode 4 is thermal upon tracing out mode 3. The above “occurs” in
Hawking’s black hole radiation [11] — there mode 3 refers to antiparticles
falling into the black hole.
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6. Summary

We considered the old characterization of coherent state (CS), as the
unique state leading to two independent modes upon being split, as a special
case of thermal coherent states (TCS) where two independent modes upon
being split (by arbitrary, complex, splitter) lead to two independent modes:
in the old case one of the initial independent modes was the vacuum. The
general case requires equal temperatures for all the modes. These states
cannot lead to violation of Bell’s inequality upon splitting.

A generalization of the above, viz., two independent modes leading
upon splitting and partial tracing over one mode to a Gaussian was identi-
fied as the quantum version of Cramer’s theorem. This theorem was shown
to accommodate the case, purely quantum, of two pure states leading, upon
passing through a splitter, to a thermal state. The relation of this to Hawk-
ing’s black hole radiation was pointed out.
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