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The growth process of an initially ideal sphere in a convective fluc-
tuating velocity field is considered. The influence of fluctuations of the
velocity field on the growth process is examined.
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1. Introduction

The growth processes attract a great scientific and technological efforts
in the last few years [1]. The most explored topics are connected with a ran-
dom and/or fractal aggregates produced by different fields [2]. The famous
example here is the diffusion-limited aggregation process [3] considered from
the analytical (Partial Differential Equation (PDE)-based) [4] or numerical
(computer simulation-based) [5] point of view. Also, the growth process
driven by a diffusion field has been examined with respect to its basic fea-
tures (structural stability, formation of dendritic patterns, etc.) and results
are reported elsewhere [6, 7). There are, however, some theoretical [8] as
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well as a few experimental evidences [9] that the growth process could also
be driven by convection fields.

In this work we focus ourselves on the sphere growth driven by a con-
vective fluctuating field. The practical realization of such a process could
be observed in, e.g., polymer physics where the growth of spherulites (poly-
crystalline aggregates having a sphere-like shape) from melts or solutions is
often of interest [8].

The aim of this work is to examine how the fluctuations of the velocity
field influence the growth velocity of the sphere, i.e., how the mean value
(R(t)) of the radius R(t) of the sphere is changing with time and how it
fluctuates.

2. Model and results

An equation describing evolution of a growing object can be obtained
using the mass conservation law [6]. For objects with an ideal or perturbed
spherical symmetry, it has the form (cf. Eq. (2.16) in Ref. [10])

(C — e(F, 9, #)) 5 = ~Jle(s, 9, 9)] - 7o, (1)

where

7 = 7Y, ¢; t), (2)
is a surface equation (in the spherical coordinate system (7,6, @) of the
object of interest at instant ¢. C is its density (constant), c(r, ¥, ¢) stands
for a concentration of the external medium at point (», 9, ¢), f[c(r, 9, )] is

a flux of particles of the external surroundings and 7 is the inward normal
[10] to the surface (2),

S ¥ P B L )
=T i 50 Fsino 0
Its length ||| is given by
87N\ OF\2
Il =1+ (55) + (59) - )

For an external convective field
Jle(r, 9, 9)] = (r, 9, $)i(r, 9, ¢), (5)

where #(r, 9, ¢) is a velocity of convective particles at the point (7, 9, ¢).
For a local thermodynamic boundary condition, ¢(#, 9, ¢) is given by the
Gibbs-Thomson relation

c(fa v, ¢) = 00[1 + FK(fa 9, ¢)]’ (6)
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where I' is the capillary constant (cf. [6] or [10]), ¢ is the concentration
field at a flat interface: growing object-environment and K is twice the
mean curvature of the object surface.

Here, we wish to study the simplified model of an ideal sphere of radius
R immersed in a radial convective field

i(r, 9, ¢) = —v(r, t)é,, (7)

with a given velocity field v(r, t) and é, stands for a radial unit vector. In
this case 7(¥, ¢; t) = R(t), K = 2/R and Eq. (1) reduces to the form

dR _ co(R+20)
T = ARURY, AR) = T S (8)

In the case when v(r, t) is a deterministic function, a solution of Eq. (8) can
easily be found. A more realistic situation is when the velocity field v(r, t)
fluctuates about its mean value (v(r, t)), i.e., v(r, t) consists of two parts:
deterministic and fluctuating. Let us analyze the following case

v(ry t) = v + V(t), (9)

where vg = (v(r, t)) is a positive constant and a fluctuating part V(t) is
assumed to be a Gaussian white noise (non-correlated fluctuations) of the
strength D > 0,

V() =0, (V(t)V(s)) = 2Dt~ s). (10)

Under these assumptions, the process R(t) described by Eqgs (8)-(10) is a
stochastic Markovian process of a diffusional type. A Stratonovich interpre-
tation [11] is adopted and, therefore, a single-event probability distribution
P(R, t) obeys the Fokker-Planck-Kolmogorov equation in the form [11]

OP(R, t) 0 0 0

——= = —yg —=A(R)P(R,t) + D—A(R)—=A(R)P(R,t 11
with suitable initial and boundary conditions. As an initial condition, let
us assume that at £ = 0, the object is an ideal sphere of radius Ry and in
consecuence

P(R,0)=6(R - Ry). (12)
As boundary conditions, we should take into account reflecting boundaries:
J(Ro,t) =0, J(oo,t)=0, (13)

where 5
J(R, t) = voA(R)P(R, t) - DA(R);A(R)P(R, t) (14)

OR
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is a probability current and R > Ry, t > 0. We have investigated the
case of the absorbing boundary conditions, P(Rg,t) = 0, P(oo, t) = 0. It
leads to a trivial solution P(R, t) = 0 and should be rejected in the case in
question.

The solution of the problem (11)-(13) is

— . p* :B . - 2
P(R,t) = CCOCO ﬁ+fp{(”m)_l/2 exp[-( (%) 4(5;) o) ]

- é% exp [%(z([i) - z(Ro))} erfc[x(R) (_;1;)(:){10/)2+ vot] } , (15)
where
z(R) = C-a (R~ (R*+2I')In(R +2I')], R*= 2leo Ro. (16)

Co C—C()

and erfc(z) is a complementary error function. The deterministic growth
(D = 0) is governed by the equation

R-Ro - (R" + 2I‘)1n[ (17)

R+ 20 _ vgclop
Ro +2I" -

t.
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Fig. 1. The distribution function for different instants increasing from left to right
D:vozbﬁ_”c—‘;:Rozl, R =0.1).

The evolution of the probability distribution is sketched in Fig. 1. It is
worth to mention that the most probable value of the sphere radius R(t),

which is determined by a maximum of P(R,t), does not evolve according
to (17).
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3. Concluding remarks

The key idea of our preliminary investigations is to study some growth
process driven by a convective field. Our motivation comes from the fact
that an enormous effort is devoted to describe the growth processes by dif-
fusional or diffusion-reaction mechanisms [1] but, in fact, almost none con-
siders the non-diffusional ones. Since in [12] we have studied and compared
two processes, the growth driven by a diffusion field and by a determinis-
tic convective field, in this paper we consider a stochastic description of a
convection-controlled growth. To be more precise, we study the convection-
driven growth in a non-correlated fluctuating velocity field. Our investi-
gations are mostly oriented on the evolution rules for a spherical object.
Then, we examine the influence of the fluctuations of the external field on
the growth velocity of the sphere. To be more specific, we look for the
changes in time of the mean value (R(t)) of the sphere radius and we also
examine its fluctuations.

»
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[T} oA (2] t (] 1}

Fig. 2. The (R(t)) versus t for several values of the fluctuation strength D: the
effect of increasing of growth velocity of a sphere by changing of D. The case D =0
corresponds to the deterministic growth.

Our results show also that when the field fluctuations grow then the
growth velocity increases (see Fig. 2). They also show that at the early
stage of evolution the field fluctuations cause a very fast growth of the
sphere in a nonlinear manner. For the long times, in turn, the growth is
observed to be linear in time.

It results also from our findings that the surface fluctuations manifest
a rather opposite behaviour (see Fig. 3), t.e., at the early stage of evolution
they grow linearly with time, but in the long time limit the nonlinear effect
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Fig. 3. The fluctuations o(t) = (R?(t)) — (R(t))? of the sphere surface with respect
to time ¢ and for two different values of D.

is easy to notice (c¢f. Fig. 2 and Fig. 3 for comparison). We also observe
that the fluctuations, growing in time, are stronger for greater values of the
fluctuations strength D.

We also would like to mention, at least, a few possibilities of extension
(or generalization) of our treatment. E.g., it could be done by:

— incorporating the chemical reaction into our equations, at first, into
Eq. (5) (in the same way as it was done in [13] — making sure that the
Curie-rule has not been violated);

— involving a kinetic term in Eq. (6) (cf. Goldenfeld and Goldenfeld and
Liu in Ref. [8]), which represents the physical situation that the interface
is not static, but moves with certain velocity (note that Eq. (6) is a
statement of thermal equilibrium at the interface [8]);

— studying the system driven by correlated noises (field fluctuations) with
non-zero correlation time [14, 15].

Finally, we wish to emphasize a more practical aspect of our work.
Namely, we are of the opinion that, in general, our approach could be pro-
posed as another way to describe the evolution of the spherulites in polymer
surroundings ( better known is the way due to Goldenfeld and Goldenfeld
and Liu [8], but it describes a diffusion-driven growth).

The authors thank the Organizers of the V Symposium on Statistical
Physics for financial support.
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