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Langevin Equations of Ginzburg-Landau form, with multiplicative
noise, are proposed to study the effects of fluctuations in domain growth.
These equations are derived from a coarse-grained methodology. The
Cahn-Hilliard-Cook linear stability analysis predicts some effects in the
transitory regime. We also derive numerical algorithms for the computer
sitnulation of these equations. The numerical results corroborate the an-
alytical predictions of the linear analysis. We also present simulation
results for spinodal decomposition at large times.

PACS numbers: 05.40. +j, 64.60. My

1. Introduction

It has been pointed out in the interpretation of recent experiments
that noise plays an important role in dynamic processes like pattern for-
mation. Examples of such effects have been observed in the generation of
sidebranching in dendritic growth [1], cells in Rayleigh-Benard convection
[2] and William domains in the electrohydrodynamic instability of nematic
liquid crystals [3]. Ref. [4] gives an overview of this field. In some of these
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experiments [1, 2], the origin of the noise is not clearly stablished, and the
very small thermal additive noise seems not to be enough to explain the re-
sults. We think that a new type of modeling of fluctuations may be needed
to explain them. In other experiments in liquid crystals, the noise has been
deliberately superimposed to the AC voltage [3]. The results imply a strong
effect on the response of the system, like changes in the threshold of the
instability points. A clear evidence of this fact has been presented recently
for a Swift—-Hohenberg model [5]. A modeling of the last situations is given
in terms of Langevin equations with multiplicative noise, for which the noise
appears multiplying a function of the relevant variables. Then, the effects
of the noise depend on the state of the system and due to the coupling they
are more important than those induced by simple additive noise. We will
consider here the situation in which an internal noise could also appear in a
multiplicative way. We derive Langevin equations with multiplicative noise
from a mesoscopic derivation using a coarse-grained procedure [6]. In this
way, it would be easier to give an interpretation of the multiplicative noise
equations. In general, the study of these type of equations would have rele-
vance in domain growth in phase separation dynamics [7], pattern formation
(5, 8], polymers [9], etc.

Here, we consider a system of two components, like a binary liquid or
alloy, which could undergo phase separation [7]. The system is suddenly
quenched from a one-phase region inside its coexistence region. Then, the
homogeneous region becomes unstable and domains of the new stable phases
start growing. This mechanism is called spinodal decomposition. The deter-
ministic evolution of such a system was studied when a variable dependent
diffusion coefficient was taken into account [10]. This assumption has been
considered to model deep quenching [11] or to take into account the pres-
ence of an external field, like gravity [8]. We find that the assumption of a
concentration dependent diffusion coefficient implies multiplicative thermal
fluctuations.

In Section 2, we present the models that we are interested. Section 3 is
devoted to the coarse-grained procedure to derive Langevin equations with
multiplicative internal noise. In Section 4 the derivation of the numerical
algorithm to simulate these equation is presented. In Section 5, we present
the study of domain growth in spinodal decomposition with emphasis in
the multiplicative noise effects. A summary of conclusions is presented in
Section 6. In the Appendix, technical details of the derivation of a Fokker—
Planck equation from a Langevin equations are presented.

2. A model

In this section we will derive a Ginzburg-Landau type of Langevin
equation with multiplicative noise. This equation will be used in the study of



Langevin Equation with Multiplicative Noise. .. 735

phase separation dynamics of a binary mixture. The concentration variable,
¢(7,t), is a conserved quantity and obeys the following Langevin equation,

Oc(7,7) _ §F  p1 § i ir
5 = VMVE - V(Vac)M—i- Vimé (7, 1), (2.1)
where F|c] is the Ginzburg-Landau free energy functional:
2 A4 (Ve)?
P = [ar-5 + 5+ 0 (2.2)

and M(c) = m?(c) is the concentration dependent diffusion coefficient. The
noise is a d-dimensional vector with a correlation:

(47 m)E(F', ")) = 287 16:;6(F — 7)o(r - '), (2.3)

B~1 is the intensity of the gaussian white noise. A common assumption
regarding the dependence of M on the concentration has been obtained by
phenomenological arguments [12]. That is:

M(c) =1-ac?, (2.4)

where a is a parameter related to temperature.

When M is independent of the field variable we obtain the usual model
B of phase separation dynamics with additive noise [7]. When M does de-
pend on the field variable, apart from the multiplicative noise term, we find
a spurious term, the second term on the right-hand side (r.h.s.) of Eq. (2.1),
of stochastic origin. This spurious term ensures the evolution of the system
to the correct equilibriuin solution, in terms of the Boltzmann expression
with the energy functional (2.2). We show that both terms of stochastic ori-
gin give new relevant contributions even in a linear stability analysis, that is
to the standard Cahn-Hilliard—Cook theory. However, nonlinear effects of
such models are difficult to study analytically. The numerical results indi-
cate that the multiplicative noise induces a delay in the short time behavior
of the domain growth dynamics, in accordance with the linear analysis. We
also study the correlation and structure functions, and the domain growth
effective exponents for large times.

3. A coarse-grained derivation

In the standard coarse-grained procedure {6], one divides the lattice into
regular cells of volume Az? containing N sites and defines the concentration
of the binary mixture at the cell a, ¢y by:

1
Ca = Nzak, (3.1)

kex
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where o3 = 1, —1 indicates a site occupied by a particle A and B, respec-
tively. Then, it is assumed that a markovian master equation is obeyed by
the probability P({c},t) of the configuration of cells, {c} = {c1,¢2,...},

8.P({c}t) =
S (W({ey™ = (P}, t) - W({e} — {}*)P({c},1)) , (3.2)

aie

the indexes a and 7 numerate the cells and their nearest neighbors in the pos-
itive direction, respectively. W({c}** — {c}) is the transition probability
between the initial configuration {e}®* = {c1,¢2,...,Ca — € Cai + € ...}
and the final one {c} = {¢3,¢2,...,Ca)Catis---}. € is the concentration in-
terchanged in an elementary step of the evolution.

We consider situations for which the system evolves to an equilibrium
state and the detailed balance condition is fulfilled:

W({e}* = {}) _ _Pu({e))
W({eh = (1) ~ Pu({e}=)”

The steady state distribution, Ps({c}), is expressed in terms of a coarse-
grained free energy F({c}):

(3.3)

Py ({c}) ~ e AFUD, (3.4)

Then, we write for the transition probabilities [14]

W({c}* = {c}) = M({c}*, {c})e# ¥,

ﬁAP

W({c} = {c}*") = M({c},{c}*")e P+

which, in this way, are compatible with Eq. (3.3), provided M is symmetric
by interchange of the initial and final states. In the usual derivation of
the field model, with constant diffusion coefficient and additive noise, no
dependence of M on the configurations is considered, and it is assumed
that M({c}*, {c}) = P(¢), where P(¢) is a sharp function around ¢ = 0.
The generalization that we present here will give us a model with a variable
dependent diffusion coefficient and a multiplicative noise. By assuming that
¢ is a small quantity, we can expand the different terms of the right hand
side of Eq. (3.2) in power series of e:

(3.5)

2 2 2
0 o1 KaF £ 6(5) KAF + L (5) (KaiF) -, (36)

P({c}*,t) = (1 + eKai + 2 K2, ---) P({c},t), (3.7)
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€

MU (o) = P (14 5K+ 1(5) K2 ) MU, 09)

where the operator K; is given by

0 0

Kyi= ——— —
T Gcari  Oca

(3.9)

and in (3.8) we have made use of the symmetry condition on M ({c}*¢, {c}).
By substituting Eqs (3.5)-(3.8) into Eq. (3.2) we get to the lowest order:

3P(§;’}, t) =T ; KoiMa; ((KaiF) + ﬂ_lKai) P({C}, t) , (3.10)

where I' = (¢2)3/2 and (€?) is the second moment of P(¢). Eq. (3.10) can
be written in more useful form (see Appendix for details),

N RS CTI CLEP
ot = —Az Faca(vL)aﬁMﬁ,(VR)ﬁa{aca+,3 oo P, (3.11)

where V’i and Vt}i are the left and right discrete versions of the gradient
operators, Eq. (A.1). Summation over indexes is understood.

The Langevin equation, in the Stratonovich interpretation, associated
with the Fokker-Planck Eq. (3.11) is given by

or
dco

r_ i i OMg; i i
— =BT AZH(VE)ap(VR)go =22 + (Vi )apmpibs(t), (3.12)
2 dcg

o =PAZ%(VE)agMpi(Vi)s0

where E;,(t) is a gaussian white noise of zero mean and correlation

(EL(EL(E)) = 2027 TR 5;56,p8(t - t') (3.13)

and mg; is defined by

Mgi({c}) = (mpi({e}))’. (3.14)

The way to prove that the Langevin Eq. (3.12) corresponds to the
Fokker-Planck Eq. (3.11) is to derive the latter from the former. In Ap-
pendix we presents the details of this derivation.

At this point, Eqs (3.11) and (3.12) are formal and general equations in
which the expressions of My;({c}) need to be specified for each particular
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model. Furthermore, these equations are given in terms of the cell variables
and we are also interested in finding the corresponding equations in the
continuous spatial limit. Then, we need to make some assumptions on
the form of Myi({c}). In general, Myi({c}) is a function that depends on
the concentration values of all the lattice points of a given configuration.
In the continuous spatial limit, this gives rise to a functional expression
of M(c). In order to obtain a local mobility function M(c) like the one
considered in the macroscopic model, [11-13] given by Eq. (2.4), we take into
account that the transition probabilities, Eq. (3.5), only involve interchanges
of matter between nearest neighbour cells a, a + 7 at each elementary step.
Then, we restrict ourselves to functions My;({c}) that only depend on the
concentration values of the cells a, a 41 and on a limited number, n, of cells
in the vicinity of a and a + 7. Therefore, we propose the following simple
generic expression of My;({c}):

Mai =Y Qipf(cp), (3.15)
B

where f(cg) is a function of only one variable cg and the matrix elements
“;ﬁ are different from zero only when the index corresponds to a, a + ¢
or the n cells in the vicinity of this couple. By taking into account the

normalization condition:
Z Qip=1, (3.16)

we obtain that the continuous limit of My;({c}) is given by M(c) = f(c).

To simplify the model, we take that Q,m = :m,H Qo and, we can see

that Qg is of order n~1/¢, Then the transition probabilities, Eq. (3.5), only
depend on the concentration values of cells that are closer than a distance
of the order of n}?/¢Az. Then, to characterize the size of this region, we
define a new parameter R by [14]:

R = AzQ;'¢, (3.17)

which is precisely of the order of n1/¢Az and represents the mesoscopic
length scale of the model.

An explicit example of Myi({c}), Eq. (3.15), which corresponds to
Eq. (2.4) in the continuous limit, is given by:

Mai({c}) = Qo{(1 —acl) + (1 —ack )} + Qo Y (1 -acj), (3.18)
B

which depends.on ¢, ¢o+: and on all the nearest neighbors g of this couple.
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The dynamics represented by Eq. (3.10) or Eqs (3.11)-(3.12) involves
not only the function M,; but also derivatives in terms of the operator K;,
Eq. (3.9), like Ko;My;. The result of the action of K4; on the mobility
Eq. (3.15), or, in particular, on the example given by Eq. (3.18), could be
written as:

1

1 Mo 1 df (cp)
Agpd+1 .

————— = — i
*P Azd dcg Ra(VR)as deg

Kachn = (V}.z) (3.19)

Now, the statistical properties of the mesoscopic model considered in
this paragraph are completely specified by Egs (3.15) and (3.19) and the
corresponding Fokker-Planck or Langevin equations, Eqs (3.11) or (3.12),
respectively.

At this point, it would be of interest to give a version of this mesoscopic
model in the continuous spatial limit, as is in Eqs (2.1)—(2.4). Then, to write
Eq. (3.19) in the continuous limit, we make the following identification:

1 5 ariey_ Lo d(e)
A:cd'“KmMm_*V&M() Rd de ’

(3.20)

where M (c) is the continuous limit of Eq. (3.15), M(c) = f(¢). It is inter-
esting to notice that Eq. (3.20) involves the mesoscopic parameter R and
it could be considered as a definition of the functional derivative of M(c),
which otherwise would be ill-defined. This would be a reminiscence of the
fact that a characteristic mesoscopic parameter R is required in the complete
specification of the model.

Now, for the generic form of My;, Eq. (3.15), we can write the Fokker—
Planck Eq. (3.11) in the continuous limit:

0P [ F |,y 8
or /d S Y [6 GRENTCI RA

where the new time scale is
T =tI'Az?te, (3.22)

Analogously, Eq. (2.1) is the continuous Langevin equation correspond-
ing to the Fokker-Planck Eq. (3.21).

From the Fokker-Planck or the Langevin, Eqs (3.11) and (3.12), respec-
tively, it is possible to derive the equation for the moments. For example,
at the continuous limit the first moment obeys the following equation (see
Appendix):

(7, 7)) §F _ )
= = V(MY =) - TIV(V M), (3.23)
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where the functional derivative included in the last term is evaluated in
accordance with the prescription given by Eq. (3.20).

The most interesting aspect of the Langevin equation with multiplica-
tive noise is the presence of terms like the last one in Eq. (3.23). In Section
5 we will see its effects.

4. The numerical algorithm

In order to incorporate cases like Eq. (2.1) in a general formalism, we
write a general Langevin field equation with multiplicative noise in the fol-
lowing discrete form

Pu(t) = vu(¥) + Gual($)ealt), (4.1)
where we have used now the notation v¥,(t) = ¢(¥,,t). Eq. (4.1) is a set of
coupled stochastic differential equations for the variables 1,(t), defined in
a d-dimensional lattice of total volume V and cubic cells of volume AV =
(Az)%. The noise £4(t) has the gaussian white-noise correlation

(Ea(t)Eg(t')) = 2D84p6(t — t'), (4.2)

where the intensity of the discrete noise is now D = 7 Az"9. g,,(¢) is
the multiplicative function that couples the variable to the noise. This the
standard procedure as far as the relevant lengths of our system are between
Az and V1/4, Then, the problem is to integrate a finite number of coupled
multiplicative Langevin equations.

The algorithm for one variable Langevin equations with multiplicative
noise can be easily generalized to the multivariable case, Eq. (4.1), when
either g, is constant (additive noise) or it is diagonal. When g, is nei-
ther constant nor diagonal (as in Eq. (2.1) for a conserved variable) some
problems appear that should be studied carefully [15].

We will shortly review now the standard derivation of the algorithm
and the problems involved in it, and then we will consider our proposal for
the resolution of the problem.

The numerical algorithm is obtained from the formal integration of
Eq. (4.1) during a time step A:

Vult+ 8) = 00+ [ )+ g (BNl (43)
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In the standard procedure, one expands the arguments of the integrals
in Eq. (4.3)

dv
v (') =wvu(t)+ =£ P, () — ¥, (t 4.4
() (t) MUM( (") = u(1)) + (4.4)
Gua(t') = gualt) + %‘)‘j o (o (t')y = Pu(t)) +--- . (4.5)

By taking into account that, to the lowest order, we have:

t+A4

Yult + A) — %u(t) = gual(¥(t)) / £a(t')dt' + o(A) (4.6)

i

and then, substituting Eqs (4.4)—(4.6) into Eq. (4.3) one gets an algorithm
valid to first order in A:

¢u(t + A) :d}y(t) + ’U”(d)(t))A + gua("/)(t))Xa(t)

Ooua| g s(p(0)Yaglt) + (A7), (47)

+
0%y Ly

where

t+A4

Xalt) = / £alt')d (4.8)

+

Yap(t) = /fa(t )dt' /g (¢'")de" . (4.9)

t

Xa(t) is a gaussian random variable of order A!/? with zero mean and
variance 2D A. It can be simulated easily as:

= V2D Ap,, (4.10)

where 7, are gaussian random numbers of zero mean and variance equal to
one. However, Y,g(t) is a non-gaussian process of order A. Its statistical
properties can be calculated, but there is no way to simulate it exactly [25,
26]. A possible strategy consists in separating Y,g(t) in two parts (27, 28]

Yaﬁ(t) = %Saﬁ(t) + %Aaﬁ(t)’ (4.11)
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where S, 5(t) is the symmetric part of the integral (4.9)

t+ A

t+ A
Sap(t) =Yop + Ygo = / Ea(t')dt! / Ep(t")dt" = Xa(t)Xp(t), (4.12)
' t t

which can be simulated using Eq. (4.10). A,g(t) is the antisymmetric part
of Eq. (3.7) and some kind of approximation should be done to simulate it
(27, 28].

Here, we take a different attitude. We do not try to follow the pre-
vious procedures to simulate A,g but to use from the very beginning the
interpretation of the stochastic integral implicit in Eq. (4.3)}. This type
of equation was obtained in Section 2 in the context of the Stratonovich
interpretation. The prescription stablishes that a stochastic integral, like
the one that appears in Eq. (4.3), should be interpret as (17, 20]

t+4 . A t+A4
/ dt' gua(Y(t))éa(t') = gua (w( )t ‘é’(““ )> / di'€a(t') + o(4%/?)
i t (4.13)
and now g, is expanded as
g (LR gm0+ 520 () X (1) +0(4).
(4.14)

Substituting now Eqgs. (4.13-14) into Eq. (4.3) we get up to first order in A:

Yu(t+A4) = Pu(t) + vu(v(t) A + gualv(t))Xal(t)

42 00ua W) () X a0 Xp(0) + 0(8%/2) . (415)
Yy

The fact that the algorithm could now be given in terms of only sym-
metric processes S, does not mean that the antisymmetric term A,z in
Eq. (4.11) is zero in the Stratonovich interpretation. Eq. (4.15) is an alterna-
tive equation of Eq. (4.7), both containing the same statistical information,
but they could not be compared term by term.

The algorithm (4.15) can present some technical difficulties when one
tries to make the corresponding computer program, so it would be worth to

1 This is neither necessary in the single variable case nor in the multivariable case
when g,,, is diagonal, because for these situations the tensor that multiplies Yy,
in Eq. (4.7) is symmetric, and the antisymmetric term A,, does not appears.
These are the cases in which the standard derivation works.
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simplify it. The idea is to substitute Eq. (4.15) by other algorithm with the
same statistical properties. These properties are contained in the probability
density for the field, P[], so this substitution has to maintain the same
dynamics for P[¢]. The well known Fokker-Planck equation obeyed by
P[¢] corresponding to the stochastic differential equation (4.1)-(4.2) could
be written, in the Stratonovich interpretation [17], as

opP 0 89;141 g 0
. = TTF va P a7 a7 Jpadrva
at atp“(vﬂ- + D awy g ) + Dau}y a¢yg# g

It can be proved [14] that the same Fokker—Planck equation is obtained if
Eq. (4.15) is substituted by the more simple algorithm

P. (4.16)

Dult 4 A) = 90 + (o DL 0,0) A% guaXalt), (417

where we havereplaced the last term in Eq. (4.15) by its mean value. There-
fore both algorithms, of first order in A, are stochastically equivalent in the
sense that they correspond to the same Fokker—Planck equation (4.16). We
call Eq. (4.17) the Minimum Algorithm for Multiplicative Langevin Equa-
tions (MAMLE).

5. Application to domain growth

In this section, the algorithm derived previously is applied to the par-
ticular model described by Egs (2.1)-(2.4). The simulation will take place
in a two dimensional lattice of L x L cells of volume Az2. Then, the Egs
(2.1)~(2.4) have to be expressed in terms of the discrete variables. Following
Section 5, we interpret the continuous model described by Eqs (2.1)-(2.4) in
terms of a family of mesoscopic models which are specified by the discrete
Langevin equation (3.12) and a family of functions mq;i({c}) given in Eqs
(3.15)—(3.18). The noise correlation is given by Eq. (3.13).

As it is explained in Ref. [14], one of the advantages of this interpreta-
tion is that the dynamics obtained from the continuous and discrete models
are equivalent term by term according to the standard rules of functional
calculus. The different models of the family differ in the number of neigh-
bors considered and this introduces a mesoscopic lenght. Here, in order to
consider a simple version for the computer simulation, we have taken only a
dependence on one couple a, a + i. Then, we take the following expression

for Myi(c):
({c}) ( (ccx) + f(ca+1)) . (5-1)
This choice implicitly defines a characteristic mesoscopic length scale,

R = V2Az.



744 J.M. SANCHO ET AL.

Now, the MAMLE is obtained by substituting the particular expressions
of Eqs (2.1)—(2.4) into the general equation (4.17). The explicit calculation
of the third term in the right hand side of Eq. (4.17) is:

g:ua Jrva (Vi)ua% (f'(ca)5au + f'(cati)bart v) (Vi)uamai
= 1(VE) pamai(Vi)aw f'(cn).- (5.2)

With this result, the MAMLE finally is:

cal(m + 4) = eu(7) + (- 3(VD)mLi(Vi)vo (e = & + (V)2c)s
—-2,3—1(V}J)#Vmui(vh)uof,(ca)) A+ (V}J)#ﬁm’thé(T), (53)
where the gaussian numbers X ,(7) are computed from Eq. (4.10).

Now one can obtain the equation of motion for the first moment of the
Fourier transformed variable ¢ (t) in the linear approximation:

aB=1
(ér) = —31k? (k2 142 52 ) (ck) - (5.4)

As the structure function, S(LT, t) gives a better idea of the growth pro-
cess we present also the study of this quantity which is the Fourier transform
of the pair correlation function, G(7,t)

G(7t) = — S (c(F+ 7, t)c(7, 1)) . (5.5)

The evolution of the spherically averaged structure function S(k,t) in the
linear regime is [15]

4ap?

.d_ — 2 2 bt —-1;2
dtS(k,t)~—k (k -1+ R? )S(k,t)+2ﬂ k

-28" 1ak?

1
dgq. t). 5.6
n)? / 75(q,t) (5.6)
Irom Egs (5.4) and (5.6) one can see that only the modes with k < k. =
1 — 4af~!/R? are unstable, and they will grow in the early stages of the

evolution. On the contrary, modes with k£ > k. remains stable during the
linear regime. So, one can expect that, for initial times, with a smaller
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Fig. 1. log-log plot of the time evolution of R,(t) for a deterministic system (o)
and for a system with additive noise (o) and with multiplicative noise (A).

number of modes growing, the domain growth would be different than in
the additive noise case a = 0.

A simulation of this system with different values of the parameters has
been performed. We have taken different values of the intensity of the
noise below the critical point, and two values of the constant a. We have
considered a system of 120%x120 points with a spacial mesh Az = 1, a
time step A = 0.025 and periodic boundary conditions. We start from an
homogeneous initial state ¢ = 0, and the system is let to evolve until a time
7 = 20000. Each data results from the statistical average of ten independent
runs.

The results from the simulation show that at very early times, the
domain growth is faster for larger values of the intensity of the noise, and for
smaller values of the parameter a. This indicate that fluctuations facilitate
the phase separation, specially in the additive case (a = 0). For large times,
the situation is quite different. Fig. 1 shows the growth of the relevant length
Ry(t) defined as the smallest value of 7 for which the correlation function
becomes zero.- We present the results for an additive noise (37! = 0.1,
a = 0) and a multiplicative noise (37! = 0.1, @ = 0.5) and we compare
these with the result obtained for the deterministic case (37! = 0, a = 0).
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Fig. 2. Scaled radial correlation function, Eq. (5.7), vs the scaled variable kRy(t)
for the same cases of Fig. 1.

We can see that, as occurs in the deterministic problem [10], an increase in
the parameter a produces a delay in the dynamics. For the additive noise,
the characteristic length is slightly smaller than in the deterministic case,
but it growths with the same !/3 power law. For the case with multiplicative
noise, R, presents a crossover from a !/4 to 13 power law as a function of
time, just as in the deterministic case with a # 0.

In order to treat to see a new aspects coming from the multiplicative
noise, and not due to the presence of a in the deterministic part of Eq. (5.3),
we have explored the possible scaling properties of this model for very large
times. Fig. 2 shows the scaled structure function

s(kRg(t)) = (Rg(t)) 7% S(k, 1), (5.7)

as a function of the scaled variable kR,. For each case, the form of this
function is the same for the different times showed, and it is very similar for
the three cases. Similar results can be obtained for the scaled correlation

function, so we conclude that at late stage, multiplicative noise does not
seem relevant.
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6. Conclusions

In this paper we have presented a derivation of Ginzburg-Landau equa-
tions with multiplicative noise for conserved order parameter with concen-
tration-dependent mobility and multiplicative noise, which could be relevant
in the context of phase separation and domain growth dynamics. This equa-
tion incorporates new terms of stochastic origin that give new contributions
to the evolution of statistical properties. In particular, we have obtained
new contributions to the Cahn-Hilliard—Cook theory. Our derivations of
the Fokker-Planck equations are based on coarse-grained procedures in a
discrete lattice, and the corresponding Langevin equations are obtained by
standard techniques of stochastic processes. A mesoscopic model, which
contains a characteristic mesoscopic length, is introduced. An expression
of the mesoscopic model is also done in the continuous spatial limit. The
presence of a mesoscopic length in the model avoids possible misinterpre-
tations, of, for example, functional derivatives of the mobility function. In
this respect, we would like to remark that the dynamics depend on the char-
acteristics of the particular mesoscopic model and it would be of interest to
dedicate some effort to obtain such models from first principles.

We have also derived a new algorithm of simulation of general multi-
variable Langevin equations with multiplicative noise. This algorithm does
not involve the evaluation of non-gaussian quantities that cannot be simu-
lated exactly. Furthermore, we have also introduced a simplified version of
the algorithm which still reproduces the statistical properties of the original
Langevin equation. We call it the Minimum Algorithm for Multiplicative
Langevin Equations (MAMLE). Both algorithms are specially suitable for
models with a conserved order parameter, since the nontrivial coupling be-
tween the noise and the field made the application of standard algorithms
problematic.

As an application, we have made use of the MAMLE in the integration
of stochastic equations of a concentration field in the context of domain
growth. The simulation of a Ginzburgh-Landau equation with multiplica-
tive noise to study spinodal decomposition has confirmed the role of the
multiplicative noise that is predicted from a linear analysis of the model.
For large times we see that the growth mechanism dominate and the effects
of the multiplicative noise are not relevant.
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tigacién Cientifica y Técnica (Spain) Pro. No. PB90-0030. A.H.M. and
J.M.S. thank NATO for partial support under the Collaborative Research
Grant No. 900328.
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Appendix A

Here we present the mathematical details of the equivalence between
the Fokker-Planck Eq. (3.11) and the Langevin Eq. (3.12). Although the
derivation of the Fokker—Planck equation corresponding to a Langevin equa-
tion is standard, the case of the model derived in Section 3 presents special
aspects owing to the presence of the gradient operators and the dependence
of M on the concentrations of the whole configuration.

To write Eq. (3.10) as Eq. (3.11), we make use of the right and left
discrete gradients, defined by:

. 1
(VR)ag = E(5a+iﬁ —6aB) s
i 1
(Vidag = E(%ﬁ —ba—ip)- (A.1)

Then, the operator K,; can be expressed as

0

Koi = A2(Vy)apg— .
2( R) '3865

(A.2)

Furthermore, to obtain the Langevin equation corresponding to the
Fokker—Planck Eq. (3.10), we write Eq. (3.11) in a more familiar form

aP({C},t) 3 i i BF
— % — = —AzzFE(VL)a[:‘ Mﬁi(va)ﬁa“a“c‘:
8m3i

—ﬂ_lmﬁi(vh)ﬁa ( 8ca ) +ﬂ”lmlgi(v%)ﬁa£;mﬁi} P({C},t), (A3)

where the function m({c}) was defined in Eq. (3.14). In Eq. (A.3) we have
made use of the property (Viz)aﬁ = —(V’i)ﬁa.

In this Fokker—Planck equation the first term is the deterministic drift,
the second term is the “Stratonovich” spurious drift and the last one is
the Stratonovich-like diffusion term. From Eq. (A.3), one can conjecture
that the corresponding Langevin equation is given by Eq. (3.12). This is
a stochastic differential equation in the Stratonovich interpretation, with a
gaussian white noise of zero mean and correlation given by Eq. (3.13).

Now, to prove that the Langevin Eq. (2.12) corresponds to the Fokker-
Planck Eq. (2.11), we derive Eq. (2.11) from Eq. (2.12). According to van
Kampen lemma {20]

P({c},t) = (J] 8(ca(t) = ca)) = (p({c}, 1)) (A.4)
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and averaging the stochastic Liouville equation for p({c},t) we obtain

ap o i\ OF iy O9mpi
_(_97 — AmZPb_c_a(VL)aﬁ {Mﬂz(vR)ﬁag—c—; - ﬂ lmﬁi(VR)ﬂa acd } P
a i 1
~ 7o (Vi)apmai(és(t)r) - (4-9)

Now, the average in Eq. (A.5) is worked out with the aid of Novikov theorem
i - 3 6Ca t
(E5(t)p) = ~A2?p1 P < )

[21]

The response function éc/6€ is obtained from Eq. (3.12):

= (vgi)aﬁmﬂ . (A7)

t=t'

By substituting Eqs (A.6) and (A.7) into Eq. (A.5), we recover the Fokker—
Planck equation (3.11).

Both equations (3.11) and (3.12) can bhe employed indistinctly to derive
the statistical properties of the system. As an example, we obtain the
equation of the first moment. This could be done by averaging the Langevin
equation (3.12) and making use of the Novikov theorem to deal with the
noise term. The result can also be obtained directly from the Fokker-Planck
equation (A.3)

2 ealt) =85 D)5 Ma(Tin)go )

; ., OM,
~BTIrAS(VL)up(VRIpe 5,00 (A8)

where the last term accounts for the fact we have a multiplicative noise.
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