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An elementary account of Fefferman’s analysis of the quantum elec-
tron-proton system is presented. Assuming an optimal form of the stabil-
ity of matter lower bound, it is shown that in an appropriate low density
and low temperature limit, the electron-proton system behaves as a free
gas of hydrogen atoms.
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1. Introduction

In these lectures, I will report on a beautiful piece of work by Fefferman
[1, 2] concerning our basic understanding of the atomic and molecular con-
stitution matter in the framework of non relativistic equilibrium quantum
statistical mechanics.

But what is to be understood? After all, it is an evident and unques-
tionable fact of everyday life that matter under usual conditions! is made
of atoms and molecules. Moreover, we have all been taught that one of
the main successes of quantum mechanics is precisely to predict accurately
atomic and molecular binding energies. For a gentle start, let me remind
you of the hydrogen atom Hamiltonian (one electron of charge e and mass

* Presented at the V Symposium on Statistical Physics, Zakopane, Poland,
September 21-30, 1992,
A French version of this text can be found in Note di matematica e fisica,
CERFIM, Locarno (Switzerland)

1 By usual conditions, we mean that typical energies are in a range where nuclear
reactions and relativistic effects can be neglected.
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me and one proton of charge —e and mass m,) written in a coordinate frame
where the center of mass is at rest

2 2
_ e (1.1)
2m |z

In (1.1), |p>/2m is the relative kinetic energy (m is the reduced mass)

and —e?/|r| is the Coulomb potential energy of the proton and electron at
distance |r|.
The energy spectrum determined by the stationary Schrédinger equa-
tion
h? e?
—-—AY(r) - =¥%(r)=EY¥ 1.2
am A~ 1 (r) (r) (1.2)
can be divided in two parts. The negative eigenvalues correspond to bound
states. In particular to the lowest one, Eg = —1/>(e%/ap), corresponds the
well known exponentially decaying ground state wave function

fo(e) = ——exp (~ 2 ) (13)

(87ra%) 20y

where ag = h?/me? is the Bohr radius. On the other hand, the non nor-
malizable solutions of (1.2) with positive E describe ionized states where
the electron and the proton are dissociated.

Is the very existence of the ground state wave function (1.3) sufficient
to justify the formation of atoms in condensed matter? It is far to be
the case. In fact, most of the time, we observe atoms and molecules in
phases (gas and liquids) which have a non vanishing temperature. The
center of mass of the atom has always some kinetic energy and undergoes
collisions with other atoms. Under these conditions, taking the principles of
equilibrium statistical mechanics for granted, the Gibbs prescription applied
to our hydrogen atom tells us that the probability p(E) to find the atom in
a state of energy E at inverse temperature 8 = (kpT)~! (kg = Boltzmann
constant) is

p(E) = 1e_ﬁE Z = Ze_'aE. (1.4)
E

The sum in Z runs over all possibles energies of the electron-proton system.

Then we can ask the question: what is the probability for a proton and
an electron confined in a region 2 of volume |f2| to form an hydrogen atom?
The main observation is that the contribution of the ionized states to Z is
of the order |2{. Indeed, taking {2 a cube of side L with periodic boundary

conditions and assuming for simplicity that ionized states are strict plane
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waves? with wave numbers k = 27 /L, the contribution to Z of the positive
energy states is of the order

2 2
> ot S (65

E>0 k

1 B2|k|2 1) _

1/2
where A = (27rﬁh2/m) is the thermal wave length. Thus, according to
(1.4), the probability to find the hydrogen atom in its ground state is

3

p(Ep) ~ Ii\f—)—‘e'ﬁEO. (1.6)

Since A = 10710 cm, this probability is extremely small if {2 is macroscopic.
In other words, at fixed non zero temperature, an electron and a proton in
a macroscopic volume {2 have no chance to form a bound state. This is
an entropic effect: the number of configurations where to two charges are
dissociated becomes infinitely large.

What is the reason for this apparent paradox? It is due to the fact that
we have considered only a single electron and a single proton in the region
f2. But to reach the thermal equilibrium distribution (1.4), it is necessary
that our two charges can exchange energy by collision with other particles,
hence to deal with a system of charges with non vanishing density. The
number of electrons IV and of protons M must be extensive

N = pelf2], M = pp|f2]. (1.7)

To ensure global neutrality we take equal electronic and protonic densities
Pe = pp = pa. Then an electron-proton pair has a finite effective volume
1/pa and (1.6) does not apply any more: the probability to observe a bound
state does not have to be very small in a macroscopic volume. The conclu-
sion is that atoms can form only if there is a non vanishing density of them,
and only if they have (at least weak) mutual interactions. One must there-
fore face the difficult problem that a demonstration of the atomic nature of
matter cannot be brought in a first elementary course on quantum mechan-
ics, but necessarily involves the study of the many-body situation. Several
aspects of these questions are very well discussed in Chap. 3 of Ref. [3].

2 Coulombic extended states are plane waves with a logarithmic correction. This
does not change the conclusion (1.5).
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2. Elements in the statistical mechanics of protons and electrons
2.1. The Hamiltonian

As we have just concluded, we are led to consider the Hamiltonian H I{l) M
of N electrons and M protons in a region 2. For brevity, we denote

(3.. zz»---ag:;N),
(g 3y2a°'-,y_M)$ (2‘1)

the coordinates z;, 1 =1,..., N, Y j=1,...,M, of the electrons and of
the protons and

N M
Ay = ZAEi ’ Ay = E Aﬂj (2.2)
i=1 j=1
the corresponding Laplacians. Then
 K? h?
o _ _ -
Hym = 2meA¢‘ ' 2mpAy
+Z Z —yl Z| e
1<k 1,<k Zk Z; 2k

where the first two terms are the kinetic energy of the particles, and the
three last ones are the repulsive (attractive) Coulomb potentials between
charges of the same (opposite) charges. For each value of N and M we have
the stationary Schrédinger equation

HI@MwI{f)Ma(z’y): EﬁMaWﬁMa(m’y)' (2'4)

The index a represents all the quantum numbers necessary for the labelling
of the energies E{\),Ma and eigenfunctions !FﬁMa(z,y). Since the Fermi
statistics applies to the electrons and to the protons separately, we only
keep solutions of (2.4) that are antisymmetric® under the permutations of
the z; and of the y;. Moreover, since the particles are confined in 2, we
impose Dirichlet conditions on the boundary 82 of 2, i.e. the wave function
vanishes if anyone of ‘its arguments belongs to 02. The wave functions
wf, (z,y) are normalized to one in £2.

3 The antisymmetry applies to the simultaneous exchange of the configurational
and spin variables. Aside from the application of the Pauli principle, the spins
will play no other role in the sequel, and we shall not indicate them.
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2.2. The grand canonical ensemble

The whole statistical mechanical discussion will take place within the
grand canonical ensemble. In this ensemble, the probability density to find
N electrons at z and M protons at y in §2 is defined by

Bu(N+M)
m > exp [~BEfma] 128 malz, )1, (2.5)
where
Z(p,5,02) =1+ Z exp [Bu(N + M) Zexp {_ﬂE}(\I?Ma] (2.6)

N,M a
(N,M)#(0,0)

is the grand-partition function. In (2.5) and (2.6) y is the chemical potential
associated to the total particle density |f2|"1(N + M) (see the remark after
equation (2.17)). In particular, integrating (2.5) over all positions z, y of the
charges in {2 gives the probability pnas(p, 3, £2) to find exactly N electrons
and M protons anywhere in 2

Bu(N+M)
pNM(ausﬁ’ 'Q) = eZ(p B ,Q) Zexp[ ﬁEgMcx}
_ Z(ﬂ,ﬁyN’Msn)
Z(u,B,02)

where we have introduced the canonical partition function (up to the factor
exp[Bp(N + M)))

(2.7)

Z(p, B, N, M, ) = PHN+M) Zexp [—ﬂEﬁMQ] . (2.8)
o

As usual, the density p(u, 3, £2) and the pressure P(u, 8, 12) at fixed chemical
potential yu are given by

(N+M)y 1 .,0
p(p B, ) = ~—— IRl alnz(u,ﬂ,ﬁ), (2.9)

and
P(u,B,0)=p"" I—Q—'an(/t,ﬂ, 7). (2.10)

Let us recall an important factorization property of the grand-partition
function. If one can decompose 2 = {2; U f22 into the disjoint union of two
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subdomains such that the particles in {2, do not interact with the particles
in {25, then

Z(#,ﬂsﬂ): Z(#,,B,.Q])Z(/J,,B,ﬂz)- (2’11)

2.8. The stability of matter

The stability of matter property is the statement that the energy per
particle in the Coulomb system is bounded from below, i.e. there exists a
constant C < oo such that

(¥, HNm¥)
—T T LS .
anM,sIr N+M ~ ¢ (2.12)

where the infimum is taken over all normalizable antisymmetric wave func-
tions ¥ and all N, M = 0,1,2...* This property was first established in [4]
and we refer to [5] for a recent and complete discussion. In the following
considerations, the numerical value of the lower bound (2.12) will play an
important role. Consider for simplicity the neutral case N = M and the
infimum of the energy per electron-proton pair E,

. (9, HNND)
E. = jnf 2N (2.13)

It is presently proven (5] that, in unit of the ground state energy |Eg| of the
hydrogen atom,
E. > -5.6 |Eo|. (2.14)

The constant 5.6 occurring in (2.14) is presumably not optimal and could be
probably lowered to 2 or even less than 2. Indeed, going from a dilute cold
plasma (all charges far apart and at rest) to the ground state of a molecular
hydrogen crystal, the observed gain in binding energy per electron-proton
pair does not exceed 2|Eg| (Fig. 1).

2% . . l >F
Cold Dilute gas Dilute gas All charges far
hydrogen of hydrogen of hydrogen a part at rest
crystal molecules atoms (cold plasma)
Fig. 1.

4 Here Hyps is the Hamiltonian (2.3) in infinite space.
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Fefferman’s analysis will require a more refined formulation of the sta-
bility of matter bound which is stated in the following form for electrons
and protons:

There exists a constant K, 0 < K < |Eg|, such that

(&, Hnp®) > —K(N + M - 1), (N,M)#(0,0)and (1,1). (2.15)

The important point in the assumption (2.15) is the strict inequality
K < |Ep| for all cases except of course for the hydrogen atom®. This is
not yet proven but compatible with all calculated or measured binding en-
ergies. For instance we obtain from (2.15) that E, > —-2K > —2|Ey}, an
inequality which is likely true as discussed above. Consider also the ground
state energy E,2 of the hydrogen molecule (taking the spins into account).
Then (2.15) implies E;2 > —3K > —3|Ey| or equivalently

|E22 — 2Eo| < |Eq], (2.16)
i.e. the binding energy gained by the formation of an hydrogen molecule is
less than the binding energy of the atom itself, a well known fact. From
now on, we shall adopt (2.15) as a plausible assumption.

2.4. The thermodynamic limit

The possibility to describe bulk matter by thermodynamic laws requires
the existence of the thermodynamic limit

nl'igwp(ﬂ,ﬂ,ﬂ) = p(1, B)
liITl P(F”ﬂ’ 'Q) = P(ﬂ,ﬁ) * (2‘17)

|£2|—o0

The proof of the existence of these limits is the content of the Lieb—Lebowitz
theorem [5, 6]. We note that we could have introduced two different chemical
potentials y. and pp for the electrons and the protons. Writing

beN + ppM = (ﬁ_g_/.‘.z) (N + M) + (%) (N - M),
it is the conclusion of the theorem that the thermodynamic functions depend
only on g = (e + pp)/2. This implies neutrality on average (i.e. pe = pp
in the bulk).

5 For N =M =0, we set Hgg = 0.
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3. Fefferman’s theorem

Assume that we would be able to evaluate the thermodynamic functions.
How do we recognize that we are in presence of an ensemble of hydrogen
atoms rather than dissociated electrons and protons? In order to make our
goal explicit, let me adopt for a moment the view point of the chemist. When
a chemist describes a gas of hydrogen atoms, he considers that the atoms
are performed entities. In the most elementary description, the energy of
a performed atom consists of the kinetic energy |P|?/2m of its center of
mass (7 = me + mp) and of the binding energy Ej of the ground state;
moreover, the atoms are independent point particles. In this simplified
model the Hamiltonian of the atoms is

Hatom _ Z l-——tlz . (3.1)

Treating the motion of the center of mass as a classical degree of freedom,
the corresponding classical grand-partition function is

oo eZﬁpN
Zatom(ﬂ'aﬁa 'Q) = Z NIR3N
N=0 :
X /d__l /d_N/d_l- /da:Nexp[ ,BH“"“‘]
n n
co ezﬂ"N i 3N/2 B
= N! (ngh) [INem BN 5
N=0 )
= exp(pa|f2]), (3.2)
with 32
m _ -
Pa = (%ﬂh) e P(Eo—2p) (3.3)

Obviously, in this model, the pressure is P = B~ 1p,, i.e. obeys the law
of a perfect gas of atoms with density p,. Note here that we have kept
the factor 2 in exp(28xN) by analogy with (2.6) when N = M, so that
the total number density (electrons and protons) is p = 2p, giving as well
P=p"1p/2.

To show the existence of an atomic phase, one is therefore led to ask
the question: does there exist a density and temperature regime such that
the full partition function (2.6) is close to (3.2)? Such a regime can only
occur at very low temperatures and densities. If the temperature is not
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sufficiently low, atoms would have appreciable probabilities to be in excited
or even ionized states. If the density is not small, the state of the gas
would have no reasons to be perfect. When 8 > 1, a low density regime
is obtained as soon as g is kept fixed and negative since then all factors
exp[Bi(N + M)] (N + M # 0) are small. With these motivations in mind,
we can state the thermodynamical version of Fefferman’s theorem.

Theorem

Assume that the stability condition (2.15) holds (with X < |Ey|). Then,
there exists an interval [ug, u2}(Fo < p1 < p2 < 0) such that if

(i) p € {p1, p2]

(1) B and |f2| are sufficiently large,

one has

Z(n, B, 12) = exp[pa| 2|(1 + O(871))]. (34)

The region of the u—T phase diagram where (3.4) is valid is shown in Fig. 2.
Comparing (3.4) with (3.2), one should appreciate that the highly nontrivial
part of the theorem lies in the control of the correction O(8~!) in (3.4).
This correction contains all the residual effects due to thermal excitation
and interactions between atoms when the temperature and density are not
strictly equal to zero.

—t—

Fig. 2.

A more refined statement on typical configurations of charges can also
be found in [1]. It is shown that the distribution (2.5), under the conditions
(i) and (ii) of the theorem, is concentrated on electron-proton pairs having
extensions distributed according to the ground state wave function (1.3) of
the hydrogen atom.

4. Qualitative ideas for the proof

We describe some of the main ideas of the proof. If these ideas have
a simple and intuitive content, needless to say that the full power of the
mathematical analysis presented in [1] is necessary to put them at work.
The main line of attack is to perform a configurational analysis of the system
(instead of trying to solve the complicated eigenvalue equations (2.4)).
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Assume that the typical configurations of the charges are indeed those of
a dilute gas of hydrogen atoms. Such configurations will be mainly formed of
pairs (z;,y;), the extension |z; — y;| of a pair being of the order of the Bohr

radius ap, whereas two different pairs are at distance pa 1/3 (ap < pa 1/3)
If we set at random in this configuration a ball of radius R with
ap € R K Pa—l/a ) (4'1)

we will observe that the ball is empty most of the time, but if it con-
tains something, it is exactly one hydrogen atom, except in rare occasions
(see Fig. 3). The idea is then to approximately decompose the total value
f2 = U B; into an union of sub domains (a collection of balls with radii

£
satisfying (4.1)) and to solve the two following problems.

Problem 1

Determine the size of the balls B;, the temperature T' and the chemical
potential g such that the partition function Z(g, 8, B;) for a single ball is
that of a system having at most one hydrogen atom in B;.

Problem 2
Show that the residual interaction between the different balls B; is negligible
so that by (2.11)

Z(pn, B, 92) = HZﬂﬂ, : (4.2)

Thus is we can explicitly evaluate Z(u, 8, B;) in the simpler situation of
problem 1, (4.2) will give access to the full partition function.

=+
+—
T+ —_
()R
:ls-t) +/ _ + —
- +
Fig. 3.

Towards a solution of problem 1

According to (2.7), to solve problem 1, one must be able to find p, 3
and the radius R of a ball B such that

pOO(/"IBaB)>>pll(l‘,:B,B)>>pNM(/‘,,BaB)a (43)
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for all (N M) different from (0,0) and (1,1). This means that if B is not
void, it is much more probable to find an electron-proton pair in it than any
other charge configuration.

Denote Enp = igf EII\BIMa the ground state energy of the Hamilto-

nian HE,, (2.3) for the ball B. Since B will eventually be very large,
up to a small correction, we can as well take Epnpr equal to the infimum
of the spectrum of Hpyps in the infinite space. Then one has Fyp = 0
and Fj9 = Eg7 = 0 since the energy of a single charge is purely kinetic,
moreover E1; = Ey (the ground state energy of the hydrogen atom), and
in general Enps < 0. It is clear that at low temperature and for a large
ball, the dominant statistical weight in the sum (2.7) will essentially be
exp(—BENp), and therefore,

pNm(u,B,B) = Z(T%,—B—)GXP[-;B(ENm-ﬂ(N+M))}, B>1. (4.4)

Thus to obtain the inequalities (4.3), one must be able to find values of u
such that
Enp—-p(N+M)>E;—2u>0, (4.5)

for all (N, M) different from (0,0) and (1,1).
Let us examine some implications of (4.5). If (¥, M) = (1,0) (a single
electron), E19 = 0 in (4.5) implies

Ey<pu<0. (4.6)
If (N,M) = (2,2) (4.5) gives
p < 3 (E22 — Eo), (4.7)

where E;; is the ground state energy of the hydrogen molecule. One can
find p satisfying (4.6) and (4.7) only if Eg < '(E22 — Eg) or equivalently
if |[E22 — 2Ep| < |Eg|. The latter inequality is known to be true (see the
discussion after (2.16)). Thus (4.6) and (4.7) give lower and upper bounds
on the possible values of u, but one must examine all value of (N, M). In
fact, one can verify that the possibility to satisfy all the inequalities (4.5) for
values of y in an interval [uy, p2}(Eo < p1 < p2 < 0) is precisely guaranteed
by stability of matter bound (2.15). A geometrical interpretation of the
inequalities (4.5) is presented in Fig. 4.

Under these conditions, we can now solve problem 1. According to (2.6)
and (2.8) we write the grand-partition function as a sum on all particle
numbers

Z(u,B,B) =1+ Z(p,8,1,1,B) + > Z(n, B, N, M, B), (4.8)

N,M
(N,M)#(0,0) and (1,1)
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where we have singled out the contribution Z(y,3,1,1, B) of a single elec-
tron-proton pair. As said before (see (4.1)), in order to see the formation of
the atom, the ball B must have an appropriate size: to avoid dissociation,
B should not be too big (see the discussion after (1.6)), but nevertheless
big enough to leave the atomic wave functions almost unperturbed by finite
size and boundary conditions effects. The appropriate choice for R is

2P < R < 1P (4.9)

where ¢; > ¢z > 0 are constants (independent of ), and ¢; is suffi-
ciently small. Since the inverse atomic density is expected to grow like
exp(B(Eo — 2u)) with some y slightly above Eg (see (3.3), (4.6) and (4.7)),
the condition (4.1) will be satisfied by the choice (4.9).

Then one establishes easily that under the constraint (4.9) and for g > 1
that

m

3/2
Z(1, 1,1, B) = (th) e~B(Fo=20) | B|(1 + 0(6~1))

= pal BI(1 + 0(87Y)). (4.10)

Indeed Z(u,p,1,1, B) is the partition function of the two charges problem
with Hamiltonian
2 h? e?

Hf = -5l — Tl (4.11)

%ZQm
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with Dirichlet condition on dB. In (4.11), z,w = z — y are the center of
mass and relative coordinates, 7 = m, + mj and m is the relative mass.
The center of mass contribution (kinetic energy) is

X m \3/?
Trp exp [—ﬂ (_ﬁA,)] - (W) IBI(1+O(R™Y).  (4.12)

The contribution of the hydrogen energy spectrum is for 8 > 1

K? e?
e [—ﬂ ( B _)] =e (14 0(e7F).  (413)

“2m [w]|

Since by (4.9) R™! = O(e™<2P), the combination of (4.12) and (4.13) gives
(4.10). All the effects due to the excited states and to the finite size of the
ball are included in the correction term O(8~!) in (4.10).

The next step needed to solve problem 1 consists in showing that the
last term in (4.8) can be neglected in comparison with the two first ones
when p is chosen in [u1, u2] and 8 > 1, leading to

Z(}l,ﬂ,B) =1+ Z(}"IB’LLB) (1 + O(ﬁ—l))
= 1+ palBI (14 0(8™)) (4.14)

Here the stability bound (2.15) is used in a crucial way. First it insures
the existence of an interval [u;, 2] for the chemical potential, as discussed
after (4.6) and (4.7), where the hydrogen atom has the largest statistical
weight among all (non void) charge configurations. Moreover, it enables to
majorize uniformly the terms of the last sum in (4.8) to give (4.14).

Finally, since p,|B| vanishes as § — oo, (choosing ¢; in (4.9) small
enough), we can as well write (4.13) in exponential form

Z(p, B, B) = exp [pa|B| (1+ 0(87Y))] (4.15)

This expression is the same as (3.4) with {2 replaced by B. This difference
is of importance since B in (4.15) is constrained by the condition (4.9), and
is therefore not an independent thermodynamical variable as is the total
volume {2 in the grand-canonical ensemble. To obtain the result of the
theorem, we have to treat the problem 2.

Towards a solution of problem 2

The problem 2 is a real many body one, of much higher technical dif-
ficulty. We shall give a few hints which hardly represent the amount of
mathematical work requested to bring them under control.
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We decompose the total volume {2 into a disjoint union of balls with
radii satisfying the conditions (4.9). For any fixed 3, one chooses 2 large
enough to contain many balls and one writes 2 ~ U B;. The symbol ~

1
means that the covering of {2 is not complete, but that the interstitial
region between the balls is sufficiently small to be eventually neglected. Let
us assume now that we can switch off the Coulomb interaction between
the different balls, introducing an uncorrelated Hamiltonian (relative to the
decomposition 2 ~ U B;) by
1

Hyne = H = Ueor . (4.16)

H is the full Hamiltonian (2.3) and U, is the potential correlation energy
between the balls. U.o; is constructed in the usual way from the two body
potential

xs,(Z; )XB,‘ (z2)

lzy — 24|

,»  xB(z)= {(1): i;ﬁ - (417)

Vcor(@.],fﬁz) = Z
i

Veor(21, Z,) is different from zero only if z; and z, belong to different balls.
By construction, the particles located in different balls do not interact in
Hyne, so the factorization property (2.11) will apply to the grand-canonical
partition function Zync(u, B, £2) associated with Hync, as well as the result
(4.15) of problem 1 for each ball. This leads to (see however the remarks
following (4.26))

Zune(1t, 8, 2) ~ [[ 2(1, B, B:)

~exp [pa 3 1Bl (1+ 0(87Y)) ]

~ exp [pal2] (1 +0(877))] . (4.18)

The goal is to prove that the full partition function Z(u, 3, £2) has the
same behavior (4.18) as 3 becomes large. In other words, the effective corre-
lation energy Ucor (which is temperature dependent through the condition
(4.9) on the radii of the balls) can be neglected when 8 > 1. For this, we
note that Vior(z,,2,) is regular at short distances (in fact it vanishes at
z, = Z, since the balls are disjoint), and coulombic at large distances. This
behavior is similar to that of a Coulomb potential regularized by extended
charges, for instance as

_ ¢r(y,)er(y,)
Veegle22) = [ dy, [y, AEICETAL (4.19)
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where pp(y) represents a smooth charge density supported in B with total

charge equal to 1

er(y) =0, y| > R, / dy pr(y) = 1. (4.20)
ly|<R

The potential energy of N + M charges e; = te interacting by the regular-
ized potential (4.19) satisfies

Ureg = Z ei€jVieg(z; — Z;)

i<y

% Z e,'eereg(Qi - £j) - (N + M)ezvreg(())
i,j

> —(N + M)e*Vieg(0). (4.21)

The inequality follows from the fact that the potential energy including the
self energies is positive, as seen from the Fourier transform representation

1 1 : ~ 2
Zeiejvreg(zi - EJ‘) = _%_Z/d&}_k_:}_fl Z e; exp(ik - gj)(pR(&), >0.
] - J

(4.22)
Now, because of the normalization (4.20), one has pg(y) = O(R™?) imply-
ing for the self energy

)= [ [ P (1) o ()

ly, — ¥, R
lylsk  lyI<R
(4.23)
where the last inequality follows from (4.9). Taking (4.23) into account in
(4.21) gives

Ureg > -0 (e-czﬁ) (N + M). (4.24)
If we were allowed to replace Ucor by Ureg in (4.16), we would obtain

H — p(N+ M) = Hune + Ureg — (N + M)
2 Hyne — ﬁ(N + M) (425)
with g = p + O(e“cl”@). Up to an exponentially small correction to the
chemical potential, Hy,. would provide a lower bound to the full Hamilto-

nian, and hence, by (2.6) Zync provides an upper bound to the full partition
function

Z(l”vﬂa -Q) < Zunc(ﬁ,ﬂ’ .Q)
=exp [pa| 2| (1 +0(871))] - (4.26)
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Here, p, is again given by (3.3), the difference between p and g being
absorbed in the O(3~1) correction.

Unfortunately, things are much more complex. First, the difference
Uerror = Ucor — Ureg has to be taken into account. Moreover, since the cov-
ering of {2 by the balls is not complete, one must deal with the interstitial
region. Finally the definition (4.16) of Hync is not yet suitable to allow the
use of the factorization property (2.11) and the result (4.15) of the prob-
lem 1. For this, it is necessary that the Laplacians in Hyy,. have Dirichlet
conditions on the boundary of each ball B; leading also to a perturbation
of the kinetic energy. These difficulties are the source of long technical de-
velopments that we cannot report here. For instance, in order to control
Uerror, Fefferman averages on a family of coverings of 2 with balls having
different radii. To avoid that Dirichlet conditions on the balls cause a to
high cost in kinetic energy, one must smooth off the characteristic function
in (4.17) and introduce appropriate decompositions of the unity into sums
of smooth functions. When the full analysis is eventually performed, the
upper bound (4.26) is valid.

The conclusion (3.4) of the theorem follows from a lower bound to
Z(u, B, 12) given by the inequality used by Lieb and Lebowitz in their proof
of the existence of the thermodynamic limit [6]

Z(I'l" ﬂ’ ‘Q) 2z H Zneutral(,u" ﬂv Bt) . (4-27)

Zpeutral(#, B, B;) is defined as in (2.6), but with the summations restricted
to the neutral terms N = M. The results of the problem 1 apply as well as
to Zneutral(p'a B, Bz) so that

Z(p, B, 92) 2 exp [pa| 21(1 + O(871))] (4.28)

The conjunction of the inequalities (4.26) and (4.28) proves the assertion of
the theorem.

5. Extensions and perspectives
5.1. Ionization equilibrium

There exists an interesting situation, called ionization equilibrium,
where a macroscopic fraction of electrons does not bind and remains in
thermal equilibrium with the atoms. In the traditional thermodynamical
treatment of this situation [7], one considers the unbound electrons (e), the
protons (p) and the hydrogen atoms (a) as different chemical species with
number densities pe, pp and ps (pe = pp by neutrality). Then the ionization
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equilibrium phases are characterized by their degree of ionization (the Saha
coefficient) defined by
= —fe_, (5.1)
Pe t+ Pa
Assuming that each species behaves as a perfect gas, one has the simple
equation of state

14+ a
BP = Pet pp +pPa= (—"‘)P, (52)

2
where p = pe + pp + 2p, is the total number density.
Applying the law of mass action to the reaction e + p — a, one obtains the
Saha equation for thermal ionization expressing a in terms of the pressure
and the temperature

2rpn? )/’ o
a(P,T) = 1+ﬁp("ﬁ ) e REo i (5.3)

m

We now come back to our fundamental system of protons and electrons,
without introducing preformed atoms. We know from Fefferman’s theorem
that for g large and p slightly above Eg, the system is a free gas of hydrogen
atoms. For p below Ey and 3 large, the system is a fully ionized plasma.
The ionization equilibrium phases interpolate between these two situations.
More precisely, if the chemical potential approaches — Fy linearly with T in
the u—T phase diagram (see Fig. 4), i.e.

#(B)=-Eo+of7 +0(87"), —00 < 0 < 00 (5.4)
one shows that Eqs (5.2) and (5.3) hold asymptotically [8]. In particular

BP(u(B),B) _ 1+«

lim = 5.5
5% plulB).B) 2 &5
and the Saha coefficient is related to the slope o in (5.4) by
(memy,)3/4 -1
a= =P e? +1 . (5.6)

(me + mp)3/2

The cases of full binding (a = 0) and full dissociation (a = 1) correspond
to ¢ = o and ¢ = —o00 respectively.
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Fig. 5.
5.2. Nuclet and electrons

Conlon et al. [9] have generalized the low temperature and low den-
sity analysis to the situation where a number of nuclei of arbitrary charges
are present. Consider that we have now s types of particles with charges
€1,...,€s and masses my,...,m, (including the electrons). We denote the
corresponding charge, chemical potential and particle number vectors by

Q = (e1,...,¢s),
®= (/—‘-1,---,/‘3)’

N = (Ny,...,N,), (5.7)

and let Hp be the total coulombic Hamiltonian for the Ny + ... 4+ N,
particles. In the thermodynamic limit the density p(u,3) and the pressure
P(u,p) depend only on the component of u orthogonal to the charge vector
(see the comment following (2.17)). B

We now fix chemical potentials p such that u- @ = 0. The dominant
weight in the grand-canonical sum exp(—~GE,) will correspond to the lowest

eigenvalue of
(HE' - 4-N) ¢ = By, (5.8)

when we let IV vary over all particle numbers of the s species. In (5.8) Hi§!

is the coulomb Hamiltonian Hpy with center of mass removed. We may
find one, or possibly a finite number of degenerate ground states ¢,,..., ¢,
satisfying (5.8). These ground states describe g complexes (atoms, ions
molecules), each of them constituted of AR particles, having masses and

charges
3

MO =Y m.N, QM =Y N, (5.9)

r=1 r=1

and ground states energies E(?) such that

E,=E® - . NO), i=1,...,9. (5.10)
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The theorem of Conlon et al. states that as § — o0, the system behaves
like a mixture of perfect gases of g chemical complexes determined by (5.8),
with charges and masses (5.9)%. Thus, in the region of the u-T phase
diagram corresponding to high dilution and low temperature, we find that
the thermodynamical laws of mixtures of non interacting chemical species
are valid. What kind of chemical species will form for a given u can of course
only be determined by solving (5.8), i.e. by a precise numerical knowledge
of the possible binding energies.

5.3. Beyond the vanishing temperature and vanishing density limit

The theory presented in this lecture provides a rigorous analysis of the
asymptotic behaviour of the quantum Coulomb system as T — 0 and p — 0.
This so called Saha regime is dominated by the energy-entropy balance. If
u is fixed and very negative, the entropy wins: the state of the system is
fully dissociated because of the fast lowering of the density as § — o0. A
progressive increase of p favors higher densities, and the formation of atoms
and chemical complexes becomes possible.

The question arises: what is the structure of the first corrections to
the asymptotic limit (hidden here in the O(3~!) estimates of Fefferman).
A detailed understanding of these corrections involves conceptual problems
(the notion of bound and excited states in a medium with non zero density)
as well as practical ones such as the calculation of the next terms of the low
density expansion of the equation of state. This leads us into the theory
of non ideal plasmas which is of course the subject of an immense physical
literature that we cannot quote here, but exact results are still scarce. In
this direction, we can mention one attempt to formulate the notion of bound
states in the whole range of densities in terms of the spectrum of the reduced
density matrices [10], and a study of the low density equation of state [11].
Many basic questions pertaining to the quantum Coulomb system certainly
deserve still work and clarification.
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