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The symmetry decomposition of the Frobenius-Perron operator and
the associated Zeta functions is worked out for the case of reflection-
symmetric 1-d maps.
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1. Introduction

The symmetry decomposition of linear operators is an important and
well known method in quantum mechanics. What is less well appreciated is
that similar considerations apply to the case of classical evolution equations,
such as the Liouville equation or the Frobenius Perron equation. As soon
as matrix representations of these operators are used, one is again in the
framework familiar from quantum mechanics and the same mathematical
methods can be applied. The purpose of these notes is to discuss in some
detail how the symmetry decomposition can be achieved on the level of
periodic orbit theory. The relevant trace formulas have been discussed in
[1] for flows and [2] for maps.

The key to the problem lies in the observation that the symmetries of the
equations of motion are reflected in the periodic orbits as well. Operating
with a symmetry on an orbit either reproduces the orbit (so-called symmet-
ric orbit) or yields a new one of the same shape (non-symmetric orbit). A
symmetric orbit may be decomposed further into irreducible segments such
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that the properties of the full orbit (periods, actions, instabilities, Maslov
phases eic.) can be obtained from the properties of the segments. Thus the
desymmetrization of trace formulas builts on a desymmetrization of periodic
orbits.

The general principles of this symmetry decomposition have been dis-
cussed by Cvitanovié¢ and Eckhardt [3], Lauritzen [4] and Robbins [5], par-
ticular examples have been given by Gutzwiller [6] and Hénig and Wintgen
{7). Here the case of 1-d maps will be worked out in detail. The merits
of this calculation and the example are that it can be carried out all the
way to the end without numerical computations. In addition, the effect of
boundary orbits, i.e., fixed points invariant under symmetries, comes out
rather clearly.

The outline of the paper is as follows. In the next section, the trace
formula for 1-d maps is derived. The symmetry decomposition is given in
Section 3. Then the full spectrum and the symmetry reduced spectra of an
example are worked out in Sections 4 and 5. Some concluding remarks are
collected in Section 6.

2. Spectra of 1-d maps

Consider a 1-d map 2,41 = f(z,) on an interval I. The time evolution
of a function p(z) on I over k steps is described by the Frobenius—Perron
equation

prily) = / Li(y, 2)on(z) dz (1)

with the kernel

Lily,2) =6 (3~ 19 (2)) (2)

where f(¥) denotes the k’th iterate of the map. The kernel of the one step
propagator will often be written £, without the index. Suppose that £ has
at least formally a decomposition into eigenvalues A, and projections onto
eigendistributions P,. Then

tr Ly = /dz Lu(z,z) = 3 AL, (3)
I v
The Laplace transform

()= Y L= 3 Yo (o0 = )Y e (4)

k=1 v k=1
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thus has poles at the values z = 1/A,, the inverses of the eigenvalues. It is
related to the Fredholm determinant Z(z) = det(1 — z£) = [[(1 — zA,) by

N(z) = ——z-éa;an(z). (5)

Periodic orbits enter through the evaluation of

trly = /dm&(z - f(k)(:c)) . (6)
I

Obviously, the integral picks up a contribution from every point zp which
returns after k iterations, t.e., is periodic with period k. Denote the set of
all such points by Fiz(k). Undoing the é-function one finds a weight for
each such point of the form 1/|1 — D f(¥)(zp)|, where D f(*¥) denotes the
derivative of the k-th iterate of f at zp. Thus

trLy = Z L (7)

zpEFiz(k) |1 - Df(k)(zp)l

and

o0 Zk
=2, 2 TTHG R

k=1zp€Fiz(k)

The primitive period of an orbit is that number n, for which f(”P)(wp) =zp
but f(¥)(zp) # zp for all k < n,. Primitive periodic orbits will be labelled
by p. A primitive periodic orbit of period n, has n, different points in phase
space, but all points have the same derivative A, := Df("P)(:cp). The
sums in the above expression for f2(z) also extend over multiple traversals
of primitive periodic orbits (i.e., & = rnp, * > 1); they have n, different
points and derivatives A7. Therefore, one can replace the sums in (8) by
sums over all primitive periodic orbits p and their multiple traversals r,

2(z) = Z Z np]_lz—p—A;‘,l . (9)

P r=1
Using
w «
11— AD|7Y = 4|77 (1 = A;7) T = (47T AT (10)
=0
and the abbreviation
e 's)
ty = Zo—ty = npty (1)

|4p] 0z 7~
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one finds

il N\ T
>y (27145172 457)
=1

"ptpA;j

0 1- tPAI-’.]

(—z-c%) In (1 —z,,A;i)
) lnI;I ﬁ (1 —tp Ay )

i=

- (_zaﬂz) In2(z) = —zZZ'((zz)) . (12)

Comparing with Eq. (5) for the Fredholm determinant one concludes that
Z(z) has two representations: one involving the eigenvalues of the operator
in the form of a Fredholm determinant det (1 — zL£) [8], the other involving
the periodic orbits in a form reminiscent of the Selberg Zeta functions in the
theory of geodesic motion on surfaces of constant negative curvature [9, 10]:

Z(z):Hl—zA)_HH(l—t,, ). (13)

j=0 p

Nk

L
1l
=3
3

2

i
/‘\vM ~[~] wsM
18 1[V]8

.
o 1

Q
N
o

Thus the inverse eigenvalues can be computed as the zeros of the infinite
product over perlodlc orbits. It often is convenient to separate the j-product
and to consider Z(z H C as a product of dynamical zeta functions

C; = Hp(l —tp Ay’ ) An explicitly computable example will be given in
Sect. 4. We now turn to the symmetry decomposition.

3. Symmetry reduction

Let g denote a reflection, i.e., g(¢) = —=z. Suppose that the function f
acts on a symmetric interval, gI = I, and satisfies f(—z) = — f(z). Then ¢
is a symmetry of the map in the sense that if {z,} is one trajectory, then
{gzn} is another one since

9Zn+1 = gf(zn) = flgzn). (14)

It is thus possible to restrict the dynamics to one half of the original interval.
Every time a trajectory leaves this interval, it can be mapped back using g.
This interval is an example of a fundamental domain [3).
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The reflection g together with the identity e form a two element group
which has as irreducible representations a symmetric and a antisymmetric
one, denoted by indices + and —. The corresponding projections

(e+9), (15)
(e—g) (16)

are a decomposition of unity, e = Py + P_. The decomposition of the
evolution kernel £ is given by

Py =
P_ =

[T ST

elLe = (P+ + P_..),C(P_f. + P_)
= P+£P+ 4+ P_LP_
= Ly + L-. (17)
The last equation defines the evolution operators restricted to the symmetric
and antisymmetric subspaces; terms with mixed projectors (P LP_ and

Py LP_) vanish. For the symmetric subspaces one now finds with equations
(15) and (17),

Li4(v,2) = 1 (Lr(y,z) + Ly, 92) + Li(9y,2) + Li(gy,92)), (18)

which with the explicit form of £, Eq. (2), becomes

Lt (3:2) =1 (8(y - FR(2) + 6y + 1P(2)
+8(-y - fP@) +6(-y+ fBE)) . (19)

The two middle terms and the first and last terms coincide, so that the
terms relevant for the trace in the symmetric subspace become

Lit(2,2) = } (82 = 10(2) + 6(2 + fB(=))) . (20)

Similarly, in the antisymmetric subspace, one finds

Li—(2,2) = } (8(z ~ P(2)) - 6(z + P (2))) . (21)

To determine the spectrum in the subspaces, one again computes the
Laplace transforms {2, _ and evaluates traces using periodic orbits. Be-
cause of the presence of the second term, it is useful to distinguish three
cases.

Non-symmetric cycles: For non-symmetric orbits, the sets of points
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{gzp} = 0. Thus g generates a second orbit with the same number of
points and the same stability properties. Both orbits only contribute to
the first term in (20), (21), and their being two of them cancels the /.
Thus, if {a} labels one representative from these non-symmetric orbits, their
contributions to f24 _(z) are

> E 2na = (—z%) nJ] ﬁ (‘ - z"“!AaI_]A;j) . (22)
a j=0

a r=1

Symmetric cycles: Operating with g on the set of points of a symmet-
ric orbit reproduces the set. Periods for symmetric orbits are always even
(2n,) and they satisfy f(™)(zp) = gzp for all points of the trajectory.
These orbits contribute to the trace through §(z — f(*¥)(z)) for even traver-
sals, k = 2rn,, and through 6(:c+f(k)(:c)) for odd traversals, k = (2r—1)n,.
The number of phase space points is always 2n,, since the trace is to be
computed over the full phase space. Let A; denote the Lyapunov exponent
computed for a segment of length n,. The sign difference in the § —functions
for even and odd traversals can easily be incorporated by defining an effec-
tive A; = —A,. Then the contribution of symmetric orbits to £24(z) can be
computed as follows (with ¢, as defined in Eq. (11)):

znar

21'11., z(2r 1)n,

22227‘3 Azrl 222 n, + AT

s r=1 s r=1

=5 i i ne (1 + tS/;;J) (tﬁA.:zj)r

s r=1 j=0

(L)l L (-ei) ()

From an analogous calculation for the antisymmetric subspace, one finds
for the contribution of symmetric orbits
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o z(?r 1)n,

%;;2" - Azrl ;; A2r T
(—z—)lnnl;_[ (1+6477) . (20)

Boundary orbits: These two cases cover all but one orbit of the
system, the fixed point at the origin. It is special, since it sits on the
boundary of the fundamental domain and thus contributes to both §(z —
f*¥)(z)) and 8(z + f(*¥)(2)) at the same time. Taking traces, one finds for
the contribution of a boundary orbit b.o. to £2;(2):

1 o0 27 Py
12 (u By AT A;;.o.l)

r=1 j=0

= (-z%)l ﬁ (1 . |“’A"~'1) . (25)

The contribution to f2_(z) contains the odd j's,

v

g(ll—zAz,o_l T +z;” l)
- (—z—) fj (1- 2140, |-1A“'“+‘) . (26)

0|t

That they contribute only to dynamical zeta functions for certain j is typi-
cal of boundary orbits. In the semiclassical context, Hénig and Wintgen [7]
explained this behaviour with the symmetry properties of harmonic oscilla-
tor wavefunctions, which enter when the motion perpendicular to the orbit
is harmonically approximated. As the preceding calculation shows, it can
also be obtained from straightforward manipulations in the purely classical
case.
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Collecting contributions, one has the following expressions for the sym-
metry reduced zeta functions:

=TI T]C - tats?) TT T2 - t459) T] (2 - 2ldnol 2 45%)
j=0

a j=0 s j=0
(27)
and
Z_(z)= HH(I—taA -")HH(1+t A7) H 1 2|y o | P AT2HY)
a j=0 s j=0
(28)

These equations are the main result of the present section. When put
together, one again finds the zeta function for the full product, Z(z) =
Z(z)Z-(z). In the next sections, we will study an example and work out
all three zeta functions explicitly.

4. An example

Consider the specific one parameter family of piecewise linear bimodal
maps

) —1<z<-s

f(@)={ -Le s<z<s (20)
+ 1-2) s<z<1

with 0 < s < 1 on the interval I = [-1,+1] (see Fig. 1). Since each
one of the three subintervals in the definition of f, is mapped onto the
full interval, one can set up a symbolic coding with an alphabet of three
symbols, say Left, Center and Right, depending on the interval in which
the point comes to lie. Any string of these three letters can be realized as
a trajectory, whence we say the dynamics has a complete ternary coding.
Evidently, there are three fixed points,

zp = -1, AL = >0,
1—s
1
zc= 0, Ac=—;<0,
2
zr = +1, AR=1_S>0. v (30)

Because of the linearity of the map, the derivative A, for any orbit factorizes
into

Ap = ATVAZCARR, (31)
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Fig. 1. The symmetric map for s = 1/2 and two cycles: the symmetric orbit RL
(dashed) and the non-symmetric orbit RRC (dotted).

where ny,, ng and npg are respectively the number of symbols L, C and R
in the symbol string for p.
Consider the dynamical zeta function 1/(; entering in the definition of

the Fredholm determinant. With t, = EAPI‘IA;j the weights associated
with a periodic orbit p, they become

1/¢ = [J(1 - npz?1 45|71 457) (32)
P
=(1 - ztp)(1 - ztc)(1 - ztr)(1 - 2*¢LR)(1 — 2*tLo)(1 - 2°tcR)
(1 - 2*trLr)(1 - 2°trre)(l - 2°tLre) - -
=1-z(t; + tc + tr) — 2°(tLr — tLtR)
— 22 (tro — trte) - 2*(tocr — totr) -+ (33)
When expanded in powers of z, the contributions from all orbits with periods
larger than 1 come in groups which may be interpreted as corrections to the
actual weights of the long orbits as compared to what one extrapolates from
short orbits [11-14). For the linear map (29), one finds, as a consequence of

the factorization (31), that the products in higher orders of z cancel exactly.
The zeta function simply becomes

1/¢=1-z (1Ll 477 + 1407457 +14r 72 457) . (39)
Substituting the data for the fixed points one finds

(o] 141
z..(z)=H[1—Z(2(1;3)J +s"*‘(—l)]’)}, (35)

=0
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from which one can read off the eigenvalues

1-s\"1?
,\u:2( 5 ) 4+ s¥H1(=1)Y (36)
or
do =1, (37)
A = (1-2s —s%)/2, (38)
Az = (1 —3s+ 3s% +35%)/4, (39)

1/z

Fig. 2. The eigenvalues of the map as a function of the parameter s.

The first six eigenvalues are shown in Fig. 2. The eigenvalue Ag = 1
corresponds to the invariant density, the higher ones determine the decay
of correlations. The gap between 1 and the absolute values of the other
eigenvalues is largest at the crossing of the j = 1 and j = 2 eigenvalues at
s = 1/3 where A\; = A\, = /5. There the slopes of the three segments are +3
and all three intervals have the same size. For s = 0 the map is, except for
a shift and scale change the discontinuous modulo map y,4+1 = 2y mod1l
with a spectrum given by A; = 27,

5. Symmetry decomposition of the example

As mentioned before, the symmetry of the map allows one to reduce the
dynamics to a fundamental domain by mapping points back into it using the
reflection g. If this g is taken as a new symbol in defining trajectories, then
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the symbol L becomes redundant (if the fundamental domain is taken to be
[0,1] no trajectory actually every reaches the left interval). Whenever an
L appears in a symbolic string, one has to reflect and to take into account
that all symbols following are to be reflected as well. It then is best to
introduce a new set of symbols: Let R be replaced by 1, the central region
by 0 and the reflection by 2. Then the translation of any {L,C,R} string
into an {0, 1,2} string proceeds in three steps: first, all C’s are replace by
0’s. Next the string is shifted so as to start with an R; all other L’s and R’s
are studied in relation to this R. Every R is replaced by a 1 until the first L
occurs. Then a 2 is recorded and all subsequent L’s and R’s are exchanged.
Then one continues as described. Alternatively, one can say that 1’s are
denoted for every R following an R and every L following an L; the symbol
2 is recorded only if two symbols (ignoring 0’s) differ, i.e., if an R follows
an L or vice versa. For instance, the string RRCL CLRR is thus mapped
into 11020121.

With this new coding, all symmetric orbits are easily identified: they
have an odd number of 2’s. In the full interval, every symbol 2 indicates a
swing between the two fundamental domains [0, 1] and [—1,0]. A trajectory
with an odd number of 2’s is periodic in the fundamental domain, but not in
the full interval; it has to be traversed twice before returning to the starting
point in the full interval.

The primitive, period one periodic orbits in the fundamental domain
are

1
10:01 AOZ'"_’
s
2
z; =1, Al:l—s’
1+s 2
z2=g3—,,  M=7, (40)

In the full domain, z; and —z, are the two points of the period two orbit
RL.

After these preparations, one can now write out the zeta functions in the
symmetry reduced subspaces. Even and odd ny correspond to symmetric
and non-symmetric orbits, thus A; = —A,. The next step is to include all
powers of Ag in the last term; the odd ones necessarily have to be divided
out again. Then

HH 1 - tyAZ J)H(l_toA—zg (1-toAg %Y

» i ( tA—2]+l)

_ Hj:o Hp(l - tPA;J)
MI520(1 - todg>7*")’

(41)



782 B. ECKHARDT

where in the first case the product over the cycles p is on all strings of 0, 1
and 2 with eigenvalues Ag, A; and A;, without any restriction. As in case
of (33), the product can be calculated, yielding

11 (1 _ znplArlA—i) =1-z2 ([Aol"Ao_j + A7 A77 + !/izl_lfi;j) ;
14

(42)
or, with the data as given above,

M52 [L- = (14 (-19) (157 4 3 (1))

Z(2) = 132, 1+ 252577]

(43)

Note that for odd j the numerator cancels the denominator exactly. Thus
the zeta function in the symmetric subspace becomes entire again:

) 2541
Zi(2) =[] [1 -z (2 (I;S) ’ +szj+1)} . (44)
j=0

The odd subspace is slightly more complicated, since the terms with
an odd number of 2’s in the symbol string for the orbit pick up an overall
sign change in the zeta function. Nevertheless, an expansion like (33) shows
that the grouping of terms survives and that the additional sign only affects
the sign between groups, not within groups, so that the cancellations still
survive. A calculation as in the symmetric subspace then yields

Z-(2) = 1=z (146 457 + 14|70 A7 - 1A 72 A7) (49)

- ﬁ [1—2(2(1;3>2j+2-—52j+2>} . (46)
i=0

Obviously, the full zeta function is the product of the two subspace zeta
functions, Z(z) = Z4(2)Z_(z).

6. Conclusions

The above analysis is admittedly rather tedious and, as far as simple
piecewise linear maps is concerned, much too heavy a machinery. Never-
theless, this sort of calculation is typical for symmetry reductions of zeta
functions as they appear e.g., in semiclassical calculations. The above ex-
ample shows that in the end the complicated looking expressions (27), and
(28) actually give the correct results.
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Because of the way the missing factors from boundary orbits are in-
cluded in Eq. (41) one might worry about the analyticity properties of the
symmetry reduced zeta functions. Presumably the full zeta function as well
as the symmetry reduced ones are entire [8,15]. Then the poles due to
zeros in the denominator have to be cancelled by zeros in the numerator,
as observed in the example (Eq. (44)). In more complicated examples the
positions of these zeros will also be known and can be used to improve the
convergence of cycle expanded zeta functions as in the calculations in [16].

It is a pleasure to thank P. Cvitanovi¢ and S. Grofimann for comments
on the paper.
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