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Nonlinear dynamical states of a spatially extended micromagnetic sys-
tem — the Bloch wall -— were analyzed by means of spatio-temporal dia-
grams and power spectral analysis in the spatial frequency domain. The
system studied exhibits chaotic dynamics with propagating coherent spa-
tial structures — Bloch lines — which have soliton properties. Although
it is spatially extended only temporal chaos occurs. The symptoms of
this type of chaos (spalially complex patterns changing violently with the
time) in such a spatially extended system should not be confused with
chaos in the space and the time simultaneously. The system is not spa-
tially chaotic due to the existence in it of coherent spatial structures with
a fixed length scale (kink solitons). In particular, the spatio-temporal di-
agrams certainly look complicated enough but spatial power spectra show
only a low number of modes at a given time.

PACS numbers: 05.45. +b, 75.10. Hk, 75.60. Ch

1. Introduction

Deterministic chaotic dynamics is a fast growing field of research. One
of the outstanding features of this field is the universality of the nonlinear
phenomena seen in various systems. Thus, physically completely different
systems may reach the state of chaotic dynamics by the same route (e.g.
the period doubling route, intermittency or the Ruelle-Takens route [1] to
name but three). The same universality allows the use of a number of very
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potent tools of analysis in various systems having a very different physics.
Liapunov exponents, fractal dimensions, return maps and f(a) curves have
now been accepted as standard, although sometimes difficult, tools [2].

Most of the mentioned tools were initially devised and tested for dis-
crete time systems (maps) or for systems described by ordinary differential
equations. Spatially extended systems — the models for which have to be
described by partial differential equations — may have a higher complex-
ity. Specifically, it is not quite straightforward whether the Takens delay
time phase trajectory reconstruction method [3] based on a single time se-
ries taken from an arbitrarily chosen spatial location within the system is
always applicable to such systems. Recently, a number of authors have fo-
cussed attention on the phenomenon of spatial intermittency [4], in which
some parts of the systems exhibit laminar regions and other parts exhibit
turbulent behavior. For such systems, taking data for delay time recon-
struction from different region should yield different results (see e.g. [5]). It
has been also demonstrated [6] that information about a local perturbation
flows through a spatially extended system with a certain propagation ve-
locity and that the correlation between points of spatially extended system
may decay with distance [7].

In this context, it has become increasingly important to understand
which dynamical states of spatially extended nonlinear systems are spa-
tially homogeneous and exhibit chaos in the time domain only. Opposed to
these states would be such which display spatio-temporal chaos. In most of
the research done on this aspect, connected maps were used [8] as models
for spatially extended systems. Kaneko has developed a group of tools —
spatio-temporal diagrams and the associated quantitative measures [9] —
specifically in order to discern spatio-temporal chaos from chaos only in the
time domain. Some of these tools have been applied to a partial differential
system by Kosinski [10].

We have analyzed a spatially extended micromagnetic system — a mag-
netic domain wall of the Bloch type (Fig. 1). This system has been studied
in the past in several contexts [11] and is described by a pair of nonlin-
ear partial differential equations which can be derived from the Landau-
Lifshitz—Gilbert equation [14]. Although the Bloch wall — by the textbook
definition — has a finite width but is infinite along its surface, in the model
which we are studying it is finite in one direction (its height) as if it were
confined by the surfaces of a thin film [12]. The Bloch wall, when moving in
a constant drive field larger than a critical magnitude (the Walker field [12]),
has a large sensitivity to initial conditions and kink-soliton like structures
(Bloch lines — Fig. 1) propagate along it [11-13]. We show that, because of
the solitary wave like properties of the kinks, the complex patterns observed
in the spatio-temporal diagrams are misleading and are only the effect of
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temporal chaos in a spatially extended system. Power spectral analysis in

the spatial domain shows that the structure is quasi-periodic in space (low
number of modes). How generic is this property is also discussed.

2. Equations of motion

The equations of motion of the Bloch wall are [12, 15]:

: . 240%¢ :
g=v4 [27rM sin(2¢) — W] + adp
. 24 9% i
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g(z,t) is the position of wall, ¢(z,t) is the azimuthal angle between mag-
netization and the wall surface, H, the spatially uniform and constant in
time drive field, « is the phenomenological damping constant, v is the gy-
romagnetic ratio, 47 M is the saturation magnetization, A is the exchange
constant, 74 is the Bloch wall width.

Only numerical solutions of these equations are possible [12]. Because
using the Fast Fourrier Transform algorithm properly requires a large num-
ber of spatial grid points — the full implicit scheme (for details see [16])
devised by Kosinski was used with 460 spatial grid points and an 0.2 ns
time step.

3. Dynamical properties of the Bloch wall

The Bloch wall in a thin film of magnetic material with uniaxial per-
pendicular anisotropy (Fig. 1) has the following properties {11-13]:

— The dynamical mode of the motion of the wall depends on the magni-
tude of the drive field H,,

— for H, greater than the Walker critical field H,, (a characteristic of the
magnetic material [15]) the specific mode of motion of the wall depends
on a combination of the drive field magnitude and of the height A of
the wall:

— for a given value of the drive (here: set to 12 Oe i.e. 1.08 Oe above the
critical field H,,), depending on the value of the height h of the wall,
periodic or chaotic states of the wall with coherent spatial structures
— Bloch lines (Fig. 1) — occur (see also [11-13]).

For the purpose of this study the following states were analyzed:

— a periodic state at h = 3 um

— chaotic states at h = 3.5, 5, 6, 12, 20, 30, and 40 pm.
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Fig. 1. The Bloch wall with a single horizontal Bloch line between two magnetic
domains in thin filin of a magnetic material with uniaxial perpendicular anisotropy.

The periodic state and the first three chaotic states have been studied pre-
viously {12, 14]. The states for larger wall height h were analyzed for the
first time.

One or several coherent spatial structures — Bloch lines (Fig. 1) are
present in the wall during the motion of the Bloch wall in any one of the
states studied. Their number depends on the state but is, in general, greater
when height of the wall is increased. Soliton properties of the coherent
spatial structures of the Bloch wall [13] are an important feature of the
system.

4. Spatio-temporal diagrams

The spatio-temporal diagrams were obtained by switching the pixel
on when the difference between the value of the variable plotted and the
spatial average of this variable at the given time was larger than a threshold
value (0.1 — white, 1E-7 — gray) and positive. Every second spatial grid
point was plotted (230 points for each variable) every time step (0.2 ns).
This allowed the plotting of the spatio-temporal diagrams for both variables
¢(z,t) and g(z,t) on the top and bottom, respectively, of a single screen of
EGA 640x480 resolution.

5. Power spectral analysis

After the transients had died out, data for the spatial power spectra
were stored every 5 ns for 500 ns. The spectra were calculated using the
FFT algorithm with 460 data points padded on the right with zeroes up to
512. A Blackmann-Harris 3-rd order window was used to enhance spectral
resolution by lowering the power at the side lobes. With the number of
points available, the bandwidth was large enough so that no anti-aliasing
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was needed. On the other hand, the spatial frequency resolution Af is
proportional to the reciprocal of the height of the wall . This created a
problem with the states for which A was small (less than 20 pm) which was
partially offset by the fact that the shape of the wall for these states was
simpler (less modes in the spectrum).

It is reasonable to suppose that the means of the flow of information
about the Bloch lines propagating along ¢(z,t) is the vibrations of the wall
shape g(z,t). Only power spectra for ¢(z,t) will be discussed here.

6. Results
6.1. Periodic states

The Bloch wall moving in a constant drive field is known to exhibit a
sequence of periodic states — with the height of the wall as control parame-
ter — which ends with a transition to chaos with isolated periodic windows

VYV
AAAAAN/

Fig. 2. Spatio-temporal diagram for ¢(z,t) (upper part) and q(z,t) (lower part) for
the periodic attractor at h = 3.0 um for the time from 500 ns to 1011 ns. Position 2z
is vertical and the time flows along the horizontal direction. Note that the dividing
line in the middle of the graph is horizontal.

The spatio-temporal diagram for the state at wall height A = 3.0 um
(the last periodic state at the drive field H, = 12 Oe before chaotic motion
sets in [12, 14]) is shown in Fig. 2. It can be seen that the spatio-temporal
pattern repeats itself regularly in time with all details of shape.

Spatial power spectral analysis for such a small height of the wall is
difficult. Only a small part of a single period of the shape of the wall
vibration is available to the FFT algorithm. Fig. 3 depicts eight typical
examples of the spatial power spectra calculated for different values of time.
Fig. 4 depicts a three-dimensional image of such power spectra for the time
range 500-1000 ns calculated every 5 ns. From both of these figures it
can be seen that individual spectra are harmonic with a single frequency
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Fig. 3. Spatial power spectral density for eight values of the time calculated for
the periodic attractor at A = 3.0 pm.

Fig. 4. Three-dimensional image of the spatial power spectra for the periodic
attractor at A = 3.0 um and for the time from 500 to 1000 ns.

dominating and that — although different for different time — they repeat
periodically with the time.

6.2. Chaotic attractors

For comparison with the periodic states, the first chaotic state (for
h = 3.5 pum) above the critical height at A = 3.0 um was analyzed. The
spatio-temporal diagram for this case is seen in Fig. 5. The eight examples
of the power spectra are shown in Fig. 6 and the three-dimensional image
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Fig. 5. Spatio-temporal diagram for ¢(z,t) (upper part and g¢(z,t) (lower part) for
h = 3.5 um for the time from 500 ns to 1011 ns. Position z is vertical and the time
flows along the horizontal direction.
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Fig. 6. Spatial power spectral density for eight values of the time calculated for
the chaotic attractor at h = 3.5 um.

wall slze 3.5 microns Ll

Fig. 7. Three-dimensional image of the spatial power spectra for the chaotic at-
tractor at h = 3.5 pum and for the time from 500 to 1000 ns.
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of the spectra calculated every 5 ns for the time range 500-1000 ns is shown
in Fig. 7. Again the structure of the power spectra is harmonic with a single
frequency dominating but in this the chaotic case there is no periodicity in
the time. It was concluded then that this is the case of purely temporal
chaos and that the very complexity of the spatio-temporal diagrams found
for this state (and of the phase portraits — see Ref. [12, 14]) is just the
result of a time average.

We calculated the spacial power spectra for other chaotic states (at
h = 4.5 ym, 5.0 um, 5.5 um and 6.0 um — discussed in our previous work
[5, 12, 14]). All had the same feature in common: the structure of the
spectra was harmonic and the bandwidth was limited. Characteristically,
the modes represented in individual spatial spectra were different at different
time. Again it was concluded that these are cases of temporal chaos. Note,

that the attractor at A = 5.0 has been found to be spatially nonuniform
[5, 14).
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Fig. 8. Domain wall structure ¢(z,t) and wall shape g(z,¢) in a frame moving with
the spatially averaged wall position g(t) for h = 40 pum shown every 20 ns. The
time range is from 2000 ns to 2450 ns. A is the Bloch wall width parameter.

The Bloch line width i.e. the width of the coherent spatial structures
generated in the wall is of the order of 0.3 um. Thus the aspect ratio for
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Fig. 9. Phase portrait for the midplane point in the wall for A = 40 um. The time
range is 2000 ns to 3000 ns.

Fig. 10. Spatio-temporal diagram for ¢(z,1) (upper part} and ¢(z,t) (lower part)
for h = 40 um for the time from 2000 ns to 2511 ns. Position z is vertical and the
time flows along the horizontal direction.

the A = 6.0 um is 20. In search of a truly spatially chaotic state we decided
to increase the aspect ratio as much as possible. The largest height of the
wall acceptable by our software (numerical accuracy) and by our hardware
(memory limitations) was 40 pm (aspect ratio about 130). Fig. 8 depicts
the time evolution of the structure ¢(z,t) and of the shape of the wall ¢(z, )
(in a moving frame) for this case — after the transient has died out. The
phase portrait of the midplane point of the wall may be seen in Fig. 9; this
phase portrait reflects twice the evolution time range seen in Fig. 8. The
spatio-temporal diagram for this attractor is seen in Fig. 10.
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Fig: 11. Three-dimensional image of the spatial power spectra for the chaotic
attractor at h = 40 um and for the time from 2000 to 2500 ns.
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Fig. 12. Four examples of spatial power spectra for the attractor at A = 40 um
and the time ¢ = 2000 ns (a), ¢ = 2040 ns (b), ¢ = 2045 ns (c) and ¢ = 2080 ns
(d). Basic modes marked by down arrows and linear combinations of modes by

up arrows. Vertical dashed line indicates multiples of the spatial frequency of the
strongest mode.

The complicated, nonperiodic pattern with small features appearing ran-
domly and irregularly in time qualifies this state as a good candidate for
spatio-temporal chaos. Indeed, the three-dimensional image of the spatial
power spectra is certainly complicated (Fig. 11). However, careful analysis
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of spatial power spectra for individual times shows that the state of the
wall is still spatially quasiperiodic. Fig. 12 depicts several typical examples
of spatial power spectra; it can be seen that the number of different modes
present in the wall shape is low (not more than 6 — down arrows in Fig. 12)
and that the complicated structure of the spectrum is due to a large number
of harmonics of the basic modes and also to occasional linear combinations
of the basic modes (up arrow in Fig. 12a).

The width of the Bloch line is proportional to the square root of the
exchange constant. Consequently, one other way of changing the aspect
ratio is to reduce this parameter. We analyze the dynamics of the Bloch
wall of our model with the exchange constant reduced ten times (aspect
ratio 410).

@(z,t) [rad]

Fig. 13. Domain wall structure ¢(z,t) and wall shape ¢(z,t) in a frame moving
with the spatially averaged wall position g(t) for the transient preceding the chaotic
attractor at h = 40 pm and the tenfold reduced exchange constant — shown every
50 ns. The time range is from 250 ns to 750 ns. A is the Bloch wall width
parameter.

During the transient phase the system behaves initially as if a kind of
spatially chaotic state was reached. The time evolution of the structure
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Fig. 14. Spatio-temporal diagram for ¢(z,t) (upper part) and g(z,t) (lower part)
for the transient preceding the chaotic attractor at A = 40 ym and tenfold reduced
exchange constant — for the time from 251 ns to 762 ns. Position z is vertical and
the time flows along the horizontal direction.
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Fig. 15. Four examples of spatial power spectra for the transient preceding the
attractor at h = 40 um and the tenfold reduced exchange constant. The time
t = 260 ns (a), t = 305 ns (b), t = 450 ns (c) and t = 750 ns (d). Basic modes
marked by down arrows and linear combinations of modes by up arrows. Vertical
dashed line indicates multiples of the spatial frequency of the strongest mode.

¢(z,t) (Fig. 13) displays high frequency oscillations and the wall shape is
suitably complicated. Also, the spatio-temporal diagram (Fig. 14) is com-
posed of many small and seemingly randomly distributed islands. However,
spatial frequency analysis shows that even in this transient phase the num-
ber of spatial modes is low (Fig. 15 — basic modes marked by down arrows
and linear combinations of basic modes marked by up arrows). Also as time
progresses, the high frequency mode visible in the initial stages of the tran-
sient (Fig. 15a) disappears (Fig. 16). Again, as in all previous chaotic cases
analyzed, the specific modes present in the spectra at different times were
different.
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Fig. 16. Three-dimensional image of the spatial power spectra for the transient pre-

ceding the chaotic attractor at h = 40 um and tenfold reduced exchange constant
— for the time from 250 to 750 ns.
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Fig. 17. Domain wall structure ¢(z,t) and wall shape ¢(z,t) in a frame moving
with the spatially averaged wall position g(¢) for the chaotic attractorat A =40 um
and tenfold reduced exchange constant — shown every 50 ns. The time range is
from 250 ns to 450 ns. A4 is the Bloch wall width parameter.
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Fig. 18. Spatio-temporal diagram for ¢(z,t) (upper part) and ¢(z,t) (lower part)
for h = 40 um and tenfold reduced exchange constant — for the time from 2001 ns
to 2562 ns. Position z is vertical and the time flows along the horizontal direction.

After the transient has died out, the Bloch wall adopts — for the aspect
ratio 410 — a new mode of motion. For all cases studied up to now [11-
14}, the change of the average angle ¢(t) — necessary for the wall to move
(11, 14] — was realized by lateral motion of the Bloch lines. With the
exchange constant decreased tenfold, at the end of the transient phase the
wall structure develops large stacks of Bloch lines of up to 20 7-kinks each
(Fig. 17). The mode of motion is then to grow new pairs of kink-antikink
at the high points of the ¢(z,t) curve and simultaneously annihilate kink-
antikink pairs at the low points of the curve. The over all effect reminds one
visually of a viscous finger flow. The spatio-temporal diagram for this case
is shown in Fig. 18 and seems to indicate that this state is spatio-temporal
chaos. However, spatial frequency analysis seems to show otherwise. The
number of frequency modes in the spectra for individual times is low (less
than six) (Fig. 19) and this time many of the modes are long lived (Fig. 20).

©o 02 Oe 06 08 10 12 14 18 18 20 22 20
frequency 1E-4 /cm

Fig. 19. An example of the spatial power spectrum for the chaotic attractor at
h = 40 pm and tenfold reduced exchange constant — for the time ¢ = 2000 ns.
Basic modes marked by down arrows and linear combinations of modes by up
arrows. Vertical dashed line indicates multiples of the spatial frequency of the
strongest mode.
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Fig. 20. Three-dimensional image of spatial power spectra for the chaotic attractor
at A = 40 pm and tenfold reduced exchange constant — for the time from 2000 to
2500 ns.

7. Discussion and conclusions

We have analyzed the dynamics of a spatially extended dynamical sys-
tem with coherent spatial structures. These structures are in the form of
topologically stable w-kinks or stacks of x-kinks and play a major role in the
dynamical states — both periodic and chaotic. By spatial frequency analy-
sis of the state of the wall at different times, we found the chaotic states —
even for a grossly large aspect ratio of 410 — to be quasiperiodic in space.
The complex patterns observed in spatio-temporal diagrams were found to
be in this sense misleading. We conclude then that the chaotic states found
for our system are the result of temporal chaos alone which coexists with
spatial quasiperiodicity.

The most important difference between our system and those modeled
by coupled maps and also hydrodynamic systems is that in our system the
coherent structures present have a minimum characteristic length scale —
the width of the single n-kink (Bloch line). Thus, the cascade of states with
ever diminishing length scales which leads to a fully developed turbulence in
hydrodynamics is impossible. What is also interesting is that, in our system,
the low number of spatial frequency modes present at a given time seems
to indicate a correlation between the relatively larger number of individual
coherent spatial structures within the wall. It can be surmised that, in other
systems, individual =-kinks may also “communicate” over distances much
exceeding their width. This may happen through e.g. exchange of small
amplitude (linear) vibrations. In such a system — as in ours — chaotic
states would be the result of temporal chaos alone.
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