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The probabilistic approach provides a useful tool for understanding
the nature of dynamics of cellular automata. It allows not only clarifica-
tion of different results of the evolution but also gives explanation to the
physical meaning of the rules.

PACS numbers: 05.40.4j, 05.50.4-q

Cellular automata (CA) are widely known not only as being the micro-
dynamical models for complex nonlinear dynamical systems[1, 2], but also
as systems providing possibility to describe properties of some equilibrium
statistical systems[3, 4]. These are reasons why an improved understand-
ing of the statistical properties of cellular automaton time evolution would
be desirable. A classification of cellular automaton rules according to their
dynamical properties could be useful not only for the design of CA rules
for particular purposes, but also this could result in approximation schemes
applicable to CA rules of physical interest, such as lattice gasses.

The probabilistic approach, presented in [3, 4], gives us a useful tool
and, moreover, makes possible to improve our theoretical understanding of
these very simple extended dynamical systems. Especially, it allowed us
to explain the following features of the homogeneous and symmetric CA
observed in computer simulations [5]:

— the possibility of a rule to lead to the stable pattern of a lattice;
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— the process of vanishing of some neighbourhoods and creating patterns
from one particular configuration only in the process of getting the
stabilization;

— the time (number of evolution steps) necessary to get the pattern sta-
bilization;

— the independence of the boundary conditions for almost all rules.

This article will focus in the time evolution of the perturbated CA.
Since the probabilistic approach is useful in the description of perturbation
we worked with, the introductory section will review its results and explain
above enumerated properties. The influence of perturbations to the evolu-
tion of CA is discussed in Section 2. The distance between perturbated and
purely deterministic dynamics is established in terms of probability distri-
bution of configurations on a lattice. Our considerations are illustrated by
results of computer experiments. Moreover, since relation established be-
tween d-dimensional probabilistic cellular automata (PCA) which includes
deterministic cellular automata (CA) as a special limit, and equilibrium sta-
tistical models (ESM) in (d + 1)-dimensional spin systems [6], we present
hints to some (d + 1)-dimensional spin ESM — Section 3.

1. Probabilistic approach to CA

Let us consider a square periodic lattice, L x L, denoted by [o], where
each site is occupied by a two-level subsystem — spin. Let us also assume
that the initial state of any spin is set randomly with probability !/, to get
any of two possible states.

By neighbourhood @;(t) = (E;(t), Ni(t), Wi(t), Si(t)), at time t of any
i-th spin on the lattice we mean the sequence of four spin’s states corre-
sponding to the states of four nearest neighbours of the i-th spin. The
letters in the introduced notation are chosen to follow the geographic direc-
tions on a map (in the anticlockwise direction).

A rule on a square lattice is defined by conditional probabilities P;(0;|0;)
describing the probability to find at i-th lattice site a spin in o; state at
next time step, while @; is its present neighbourhood. Generally, as being
probabilities they have the property:

Pi(-0i|0;) =1 - Pi(0i]|0;), (1.1)

The dynamics is called deterministic if a rule takes its values with prob-
ability 1 [3, 4]. Hence, in case of deterministic CA, the initial state of a
lattice is the only source of randomness.

If the probabilities defined above do not depend on a lattice site, a rule
(and CA) is called homogeneous.
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Furthermore, let us restrict ourselves to up-down symmetric rules. It
means that only PCA satisfying the following condition are to be considered:

P(0i|0i) = P(-0i| - 05), (1.2)
where —0;(t) = (—Ei(t), — Ni(t), —W;(¢t), — Si()).

So, the number of independent conditional probabilities reduces to
eight. Let us identify them by the following notation:

6o = (-1,-1,-1,-1), 6; =(1,-1,-1,-1),

6, = (-1,1,-1,-1), 03 = (-1,-1,1,-1),

84 = (-1,-1,-1,1), 65 = (1,1,-1,-1),

06 = (1,-1,1,—-1), 6z = (1,-1,-1,1). (1.3)

Other configurations — up-down symmetric to #;, ¢ = 0,...,7 are num-
bered as follows: for i = 8,...,15, 6; = —015_;.
Let us identify the eight generated conditional probabilities by :

a; = P(1/6;) for i=0,...,7. (1.4)

Then any P satisfying both conditions (1.1) and (1.2) can be written in the
following way:

P(0i]0;) = 3 [1 + 0:h(0;)) (1.5)

with
h(0;) =FE;wg + Niwn + Wiww + Siws

+ Ei(Eiwgg + Niwgn + Wiwvpw + Siwgs)
for ©@; € {0p,...,67}. If —=@; € {by,...,07} then h(O;) = — h(-0;).

The parameters {w} are related to {ag,..., a7} through the relations:

4 7
1
wE=§(ao—Eai+Zai),
i=1 i=5
wN =%(—ao—al+a2 +¢15),
5 i 9
4 7
WEE=%(—GO“GI+Zai+zai—2),
=2 i=5
W EN :%(ag—al—az +€ls)
EW 3
ES 1
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and the indexes in two expressions represent three different coefficients (they
ought to be read horizontally).

The eight configurations enumerated in (1.3), can be grouped in 3 sep-
arated sets: A = {6}, B = {61,...,04}, C = {0s,...,67}. Notice, that it
is useful to consider any rule separately on configurations belonging to the
same subdomain — suitable A- B- or C-action. For example, the rule with
property r(6;) = —1, r(6;) = —1, r(63) = —1, r(04) = 1 can be seen as the
shift of the southern neighbour (§;) of a (i-th) spin , if only B-subdomain
happens. If the opposite values are taken, as the next example, the B-action
can be seen as an anti shift from South (~S5;). (See (7, 8] for details of this
approach).

The results of our computer simulations {7-9] prove that actions under-
taken over B-subdomain are dominating over the evolution. It means that
neighbourhoods, on which a rule contradicts B-action, are eliminated from
the pattern during the evolution process. If the elimination process goes
successfully, a rule stabilizes on a newly created pattern almost always as a
translation. If a strong disagreement between actions occurs, the stabiliza-
tion is not reached. But a kind of a pattern stabilization is reached anyway.
It can be described by macroscopic functions: magnetization — the total
sum of all spins of a lattice, is almost fixed or activity — the number of
spins.changing theirs states at time steps, varies around a fixed value.

The evolution of automata can be expressed in terms of probability dis-
tribution D; it means by the probability of the occurrence of a configuration
§; on a lattice [o]:

D ([0)) () = "292") i=0,...,15, (1.6)

with n(6;) the total number of 8; neighbourhoods in a pattern of a lattice.
Notice, that the probability distribution D enables to restore all properties
of the magnetization [9].

If ag,...,a7 (1.4) take only two values 0 or 1 (deterministic case), then
h function takes also only two values —1 or 1. The dependance on neigh-
bourhoods of h function for deterministic rules is presented in details in [5].
The probability distributions of neighbourhoods, found analytically in [5]
thanks to h function properties, are in a very good agreement with results
obtained in simulations.

Remembering that deterministic rules usually stabilize on patterns,
where their final dynamics reduces to the simpler one, often a shift, one
can rewrite h(@;) in more appropriate form as follows:

h(0;) = ho(0;) + ha(0:), (1.7)
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where ho(@;) is a part responsible for the final shift stabilization, and

ha(©;) points on configurations which have to be eliminated before get-

ting the stabilization.

Hence, one can define the full stabilization by means CA after many
time steps with a pattern with the property: ha(@;) = 0 for all nodes
i=1,...,L%

We have found the following types of ho(0;): Si, —S5;, —N;S;, —W;5i,
~1, 1 and the following components of ha (0;): £3(1 + E;)(1+ N;) for 05,
+1(1+ E))(1 + W;) for 8, £3(1+ E;)(1+ S;) for 67, £3(1 - E;)(—E:i + N;
+ W; + 5;) for 8g. The particular role of E; neighbour comes from the fact
that this neighbour has been taken as a starting point for any comparison.

Now it is easy to verify the following conclusions:

The stabilization of any rule is possible:

— if the number of configurations that have to be eliminated is smaller
than the number of configurations supporting the main dynamics; ex-
ample: §;+ %(1+Ei)(1+N,-) stabilizes very quickly after the elimination
of @5-configurations from a pattern, while a rule

- Si+ (14 E)(1L+ Ni) + (1 + Ei)(1 + W))
+IA+ EN+S:)+ 31 - E)(=Ei + Ni + Wi + 5;)

never reaches stabilization;

— if one favourizable by B-action configuration is not eliminated by ha
part; example: —N;S; + 3(1 + E;)(1 + N;) stabilizes in no more than

100 steps when lattice size L=44 is considered, while —N;§; + %(1 +

E;)(1 4+ W;) never reaches stabilization.

At the end of this introduction we must mention the existence of the
.strong discrepancy between analytically found solutions for probability dis-
tribution of neighbourhoods and their values found in computer experiments
for rules of the following class: (s, s) — ¢ denotes any of the rule from the
set {—1,—N;S;,—W;S;}; s means shift from South if C-domain happens.
The source of it lies in the fact that the probability distributions for these
rules obtained according to some iteration procedure, briefly described in
[5], varying in time, pass a local extremum, Fig. 1, while in the case of other
rules, it does not happen. The periodic or helical boundary conditions,
added to a rule simulated in a computer, fix the stabilization at this local
extremum.
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DISTRIBUTION OF NEIGHBOURHOODS DEP&»%ASJCE ON TIME
resuits of recurrential procedure for (}—1.s} —type rule

= D(X0) == «D(X1) =-++ D(X3) == D(X3)
== D(X4) ==+D)5) = =D()}6) -~ D7)

e

Fig. 1. The dependence on time of probability distribution of neighbourhoods
found analytically according to the iteration procedure for the rule of a {—1}-type.
This procedure concerns an unbounded lattice — a lattice with evolution spread-
ing without any constrains. The computer simulated CA, where to a rule some
boundary conditions are added, reach the full stabilization at patterns propertied
with values at the local maximum of D()(0).

2. Perturbations of deterministic dynamics

a) uniformly perturbated dynamics
The simplest and very often used perturbation of deterministic dynam-
ics has been considered in the following form:

h(6:) = (1 - 26)hp(63), (2.1)

where Ap(©;) denotes any deterministic function: |hp(0;)| = 1. (2.1)
means that the probability that any chosen symmetric and homogeneous
rule acts is 1 — ¢, while the probability that any other rule is active is .

It is interesting to ask whether, and if yes how, the value of perturba-
tion € influence getting the stationarity for given CA. One can evaluate the
efficiency of a rule by time needed by a e-perturbated rule to recover its
deterministic properties such as probability distribution of configurations
of a lattice. According to this criterion, stabilizing rules can be divided
in two groups. Again, the division follows B-action properties. One can
approximately describe the mean time dependence as:

(i) case {—1,—N;8;,—~W;5;} classes of stabilizing rules

1

() = are+ P’
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(ii) case {S;, —S;} classes of stabilizing rules

02

(T) = exp{—(aze+ B2)}.

STABLIZATION TME DEPENDANCE ON PERTURBATION

0161

01—

-t 1/ <T>
== f(x) = -0.030 * x - 0.018

Fig. 2.a. Efficiency of the rule of a {—1}-type (cases —NS, —-WS are similar).
At € > 0.6 the perturbation was too strong to reconstruct deterministic rule’s
properties in time shorter than 12,000 steps. (L=44)

STABILIZATION TIME DEPENDANCE ON PERTURBATION
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Fig. 2.b. Efficiency of the rule of S-type.(case —S is similar). At € > 0.4 the
perturbation was too strong to reconstruct deterministic rule’s properties in time
shorter than 12,000 steps. (L=44)

When the lattice size L = 44 is considered the values of parameters are
as in Fig. 2.a and Fig. 2.b, suitable. In case of {—1} rules, the STD-errors
of obtained results are about 50%, but in all other cases the STD-errors
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are much smaller and do not exceed 10%. In our computer observation we
restricted ourselves to 12 000 steps. So, the further dependance has not
been found.

b) kicked dynamics

The following evolution can be considered as another type of pertur-
bated dynamics: a deterministic rule is perturbated only on one configura-
tion. So

a;=0 or 1 if i#j and a;=ce. (2.2)

Let us introduce a Bernoulli stochastic variable £ acting on j-th partic-
ular configuration, with distribution determined by the following condition:

fK _ | 1 with probability ex
J 7 1 0 with probability 1 — eg
if only 6; happens.
Moreover, let us consider the following products of zeros and ones for
identification of any neighbourhood on a square lattice [10]): to any K =

0,...,4 and any set {i3,...,ix} of i;, = 1,...,4 we consider
K . : .
Q¥ (@si1,.. i) =[] 3(1-0}) ][I 30+4i),
=1 k#1,... K

where ©; = (U{, 0:";, aé, a,i) and prim on the product indicates that only dis-
tinct (distinct from each other and the 7;,...,7x) 7; values are considered.

One can see that for given O;: Y, Eihm,ix QX(0i41,...,ix) =1
only for one set of 7;’s: each i) points on the neighbour in @; that is in
down state: —1, and there are not any other neighbours being in this state.

Let us consider the shift dynamics S; perturbated on 64 configuration
by random shift of the North neighbour instead of southern one. So,the
dynamics (2.2) can be rewritten in a microdynamical form:

oi=y Y QX(Osir,...,ik)(1 - Ef)Si + Ef NiQI (04544, 45),
K ij,...,1g

(2.3)
where the set {il, ey ij} points on §; configuration. Varying j one can ob-
serve the influence of the particular configuration “kicked” by North neigh-
bour instead of simple shift from South dynamics. Moreover, varying the
neighbour kicking the j-th configuration, one can find out the role played
by particular neighbours. Additionally, one can consider kicking process on
more than one configuration. Since we are interested in symmetric rules
only, we restricted our considerations to the case when both configurations
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of a pair of symimetric configurations are kicked with the same probability.
Results of our observation are collected in Table I. It is easy to see that
kicked dynamics recovers patterns matching with some deterministic CA —
particularly, the possibility of reaching the full stabilization.

TABLE 1

The characteristic features of the probability distribution of neighbourhoods
D([¢])(3) = D; obtained after 500 steps of time according to the shift evolution
(2.3) symmetrically kicked with ex = } from E and N directions.(W-case, due to
the mirror symmetry, can be easily found).

Kicked conf 6, 6, 6 6, A O B 67
Kicking nghb

E D1.‘=% Do:%— D5=0D6=0

N Ds:% Do:% D5=0 D-,:O

B-domain is kicked

-

E DOZD7=‘;‘ D;:...:Dq:

L
16

C-domain is kicked

~

N D0=D1=D3=D5=%

DISTRIBUTION OF NEIGHBOURHOODS AFTER 100 STEPS

== D(X0)
o=  D(X4)
—— STD—range

Fig. 3. Efficiency of the kicked shift type rule. The results of a single experiment
are scattered in a large interval ( STD — error ). This basic feature of {—1}-rule
is noticeable since ex ~ 0.05.
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Since the pure deterministic rule of a {—1}—type stabilizes in about
100 steps when the size of lattice is L==44, one can compare the probabil-
ity distribution of the crucial configuration 8, after 100 steps against the
"kicking” perturbation (Fig. 3). It is easy to see that even at very small
€K, €x =~ 0.05, the process of the formation of a suitable pattern is to be
started.

3. ESM arising from perturbated dynamics

It has been proved [6] that stationary (or cyclic) d-dimensional PCA
provide some (d+1)-dimensional Equilibrium Statistical Model (ESM). Cor-
responding to (2.1) PCA, single-site Hamiltonian of 3-dimensional system
can be formally expressed in the form:

H(Uiv 02) = —ﬂaihD(@i) + thOShﬂ,
2 €

If hp is in the form of (1.5) then one can divide above Hamiltonian into
three parts of interactions:
i) energy in any external field energy Hy = —f0;wgE
1) two-body interactions: H; = fo; 3 w;o;
i=E; ,N;,W;,S;
i11) three- body interactions: Hs = fo;F; > WE;O;
J=N; W, 5;

Stationarity in case PCA means that there exists a probabilistic mea-
sure pu defined on a space of all possible lattice states, such that the dynam-
ics of PCA does not influence it. For any rule, let us consider a measure
concentrated on such states of a lattice that the distribution of neighbours
D (1.6) reflects the properties of patterns obtained in fully deterministic
dynamics. According to (1.7) for any stationary PCA considered we can
formally associate a 3-dimensional ESM with interactions described by fol-
lowing Hamiltonian:

H(o;,0;) = Incoshf — Bo; (ho(O:) + ha(0Oi))

Hence, any fully stable state of PCA being of a shift type (case hg = £5;)
corresponds to ESM with only two-body stable interactions: +0;5;. Other
types of interactions appear as the influence of noise — somewhat analogous
to temperature.

The special interest of many physicists is put to the case hy = -1,
because it provides non-ergodic systems of ESM. In the probability distri-
bution of neighbourhoods description non- ergodicity denotes that Do] for
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any stationary lattice [o] can be non—symmetric with respect to up-down
symmetry: D[o](0) # D[co](15). In the case described the crucial interac-
tions of ESM Hamiltonian reduce to single one: to;. Let us, as example,
study carefully the following PCA: hp(0;) = —1+ 3(1 + E;)(1 + N;). This
property can be rewritten equivalently to the more totalistic form as:

hp(@:) = 3(Ei + Ni + Wi + Si) + 2(EiN; + S:iW;). (3.2)
Notice following properties of (3.2):
— E;+N;+W;+5;,=0 if 0;eC
— E;N;+S5;W; =0 if ©;¢B

— hp =-1 ifO@;€e AUB

The invariant states of deterministic CA dynamics: {[¢]: 0; € A, i =
1,...,L?%}, provide the ESM with couplings between spins of the following

type:
Boi

H(0i,0;) =Incoshf — (Ei + Ni+W; + 5:)

2

Fig. 4. A 3-dimensional lattice corresponding to PCA considered and the interac-
tions between layers t and ¢t + 1 in ESM corresponding to —1-type of rule.

The lattice is formed by stacking square plane lattices. The four corners of each
neighbouring square E, N, W, S determine, up to noise, the spin at the apex of
the pyramid whose base is that square. Both sites at the vertices of each shaded
triangle influence additionally the site at the apex. (three-body interactions). We
omit the index i of the node, but we hope that does not influence legibility of the
picture.

Interactions (3.2) between layers of 3-dimensional system are shown in
Fig. 4. Notice, that the nonlinear part in the second term of (3.2) will
become nonzero only if the first part is zero.
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Kicked dynamics uniformly perturbated also provides ESM: (1 - 2¢)hk,
with hg obtained according to (1.5) with (2.2) properties. In case of the
same rule as considered in (3.2), it means

hx(0:)=(1—ex)Si+ exhp(0;). (3.3)

Since (3.3) provides a competition between two deterministic rules: shift and
{—1}-interactions, the totalistic property of a linear part has been broken
in the corresponding ESM Hamiltonian.

4. Concluding remarks

1. Starting at the random state of a lattice [¢], one can find that there
are deterministic rules forcing the lattice to follow theirs properties if
only the noise parameter is small enough. Kicked dynamics analysis
underlines the influence of the action taken over B-domain to the final
result. Within B-domain one can point on the neighbour of a configura-
tion which is crucial to the stabilization of a pattern. The classification
problem of homogeneous CA, partially solved by looking at the final
pattern properties in [11] , ought to be revised from the above mention
dynamical point of view.

2. Since (3.2), the resulting ESM can be seen as the Toom model [4] on
the 3-dimensional lattice but with square plane lattices in the place of
triangular ones. But the Tooms proof of the existence of a phase tran-
sition, adopted to the model considered, does not work. Our uniformly
perturbated dynamics is still homogeneous and symmetric. Hence, fol-
lowing Tooms’s arguments, starting at the fixed stable configuration
[¢] = 1, the rule of PCA can only flip all spins of a lattice. It means:

1 with probability 1 — %e
—1 with probability %e

(0(0)] = 1 — [o(1)] = {

b

because the result depends only on P(0;,8¢) The deterministic dynam-
ics (3.3) clearly also has [¢] = 1 and [¢] = —1 as invariant states as
well as all combinations of these states. Moreover, homogeneity of the
dynamics is broken by kicks. But kicks do not affect 8y or 815 and,
again, the Toom’s arguments cannot be applied here.
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