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Using the example of high temperature superconductors, we show that
in the strongly correlated multiband Hubbard model the low energy exci-
tations may be described by an effective spin-orbital model. The Hund’s
rule exchange interaction leads to a competition between different possible
magnetic order in the ground state. In a doped material this competion
is additionally enhanced by the differences in the kinetic energies which
leads to the formation of three-particle bound states. Superconducting
ground state may be then stabilized by the exchange of d—d excitons.

PACS numbers: 74.72. -h, 64.60. -i, 05.90. +m, 71.27. +a

1. Introduction

In spite of the fact that the High Temperature Superconducting Ox-
ides (HTSO) have been discovered already over six years ago [1], there is
still no consensus concerning the minimal theoretical model which describes
the essential physics. It is well known that the CuO; planes are the com-
mon structural element of all Cu-based HTSO and thus one is interested in
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describing the electronic structure of these planes. The band structure cal-
culations [2] suggest that the three-band Hubbard model [3] reproduces cor-
rectly the relevant part of the band structure in the insulating compounds,
like LapCuO4 and YBa;Cu3z0g. As the holes are strongly correlated at
the Cu sites [4, 5], the low-energy excitations in a doped insulator may
be described by the effective spin-fermion model [6], where the conventional
hole doping of the above compounds to Laz_,Sr,CuO4 and YBa;Cu3Og4 ;,
respectively, leads to the formation of the local states, the so-called Zhang-
Rice singlets [7]. Therefore, the situation resembles the strongly correlated
Hubbard model near half-filling and may be described by the t-J model [8].
The propagation of holes in such a model happens due to their coupling to
quantum fluctuations which results in a new energy scale of the order of the
exchange interaction, J, for the hole quasiparticles [9].

The above scenario sounds very simple and attractive, but there are se-
rious and accumulating theoretical arguments that the real situation within
the CuO; planes of HTSO is more complex. Calculations aiming at a real-
istic description of the electronic structure indicate that more orbitals are
involved in accommodating the holes than those considered in the three-
-band model of Varma, Schmitt-Rink and Abrahams [3]. The analysis of
the experimental data in terms of the ionic model [10] allowed to estab-
lish the existing correlation between the maximal values of the transition
temperatures in the HTSO, T7***, and the positions of the atomic levels
of the oxygen ions in apical positions. This naturally suggests that the
Cu(3d;,2_,2) sstates should play as well an important role in the doped
systems, as the sizable number of doped holes is accomimodated in the a;
symmetry [11]. Indeed, polarized X-ray absorption spectroscopy (XAS)
[12] and electron-energy-loss spectroscopy (EELS) [13] show that hole occu-
pancy of the 3d;,2_,2 orbitals amounts to ~ 10% in the doped materials.
These experimental results are in good agreement with the direct analysis
of the ground states obtained from the multiband Hubbard models which
include explicitly the Cu(3d;,2_,2) orbitals by using mean-field approaches
to the strongly-correlated periodic models (local ansatz [5] and slave boson
[14]), by correcting the Hartree-Fock state by the configuration interaction
method [15], and by the exact diagonalization of finite clusters [16].

Excitonic mechanism of pairing due to the intersite Coulomb interac-
tion between Cu and O ions in HTSO has been proposed already by Varma,
Schmitt-Rink and Abrahams [3]. According to this idea, the doped holes,
which occupy mainly the oxygen orbitals in CuQO; planes for realistic pa-
rameters [2, 5-7, 14-16], attract each other for sufficiently strong intersite
Coulomb interaction, Uy, [17]. However, the realistic value of the intersite
repulsion, Uy, =~ 1leV (18, 19], is too low to explain the observed supercon-
ductivity by this mechanism. Potential importance of the 3d,,2_,2 orbitals
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for the miscroscopic mechanism of paring in the HTSO has been emphasized
by Weber {20], who proposed that the difference in intersite Coulomb inter-
actions between the holes within Cu(3d,2_,2) and O(2p.(y)), and the holes
within Cu(3d;,2_32) and O(2p,(y)) orbitals may promote local d-d excita-
tions and lead to the pairing of doped holes. The analysis of the d-d excitonic
model performed by using weak-coupling Bardeen-Cooper—Schrieffer (BCS)
formalism showed that, in agreement with experiment, superconductivity of
s-wave symmetry is indeed stable for low doping, while d-wave symmetry is
favoured for higher dopings {21]. This model has been next reformulated in
terms of localized quadrupolar fluctuations on the copper sites, promoting
the pairing of d-wave symmetry already at low doping [22].

All the above excitonic mechanisms have concentrated on the Coulomb
interactions being an immediate reason for the effective pairing interaction.
In what follows we want to concentrate on another, not yet discussed possi-
bility, that d-d excitons, and possibly also attractive interactions in HTSO,
may originate from purely kinetic energy terms. Therefore, we consider
below (in Sec. 2) an effective spin-orbital model derived earlier from the
four-band model for the undoped system [23]. The motion of doped holes
in CuO; planes may be then studied by considering their coupling to the
spins in an effective model of t—J variety. As discussed elsewhere [24], the
possibility of local triplet states leads in such a model to a more complex
analytic structure of the one-particle Green function. Instead of solving
directly this complicated problem, we focus ourselves in Sec. 3 on the ener-
getics of charge order in an effective model which neglects spins and show
that d-d excitons occur in the doped systems due to the increase of kinetic
energy. They may lead either to phase separation or to superconductivity in
the intermediate regime of parameters. In Sec. 4 we point out that the pre-
sented model and its analysis are representative for a whole class of doped
Mott-Hubbard insulators.

2. Spin-orbital model for d° configuration in CuO; plane

The commonly used three-band model for CuO2 planes of HTSO [3]
includes the Cu(3d,2_,2) and O(2p,(y)) orbitals. Here we extend this model

by the Cu(3d;,2_,2) orbitals, in agreement with the evidence discussed
above that these states are important in HTSO given above [10-16]. Thus,
we start from the four-band model, analyzed first in Ref. [4],

H = Hy + H;y, (1)

where Hy describes the one-particle part,

Hy = Z Ealma,o + Zepni,a + Z Vmi,a(d:{na,o‘aisd + H.C.), (2)

mao io miao
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and H;,; describes the on-site electron-electron interactions on Cu ions in
the form being rotationally invariant in the orbital space [25],

Hine = (U+2JH) Y Pma,iPma,t + U D Aomz,afmz,—o
moa mo

+(U - JH) E Nmz,oMmz,0 — %JH Z dzz,adiz,—adgz’_o-diz,o‘ . (3)
mo o

Here d:na,a and a} » are creation operators of a hole within a 3d22_y2 for

a = z (3d;,2_,2 for @ = z) and 2p,(,) orbital, respectively. The atomic
energies, €; and ¢, define the charge transfer energy, 4 = ¢, — €., while the
energy difference between the two 3d orbitals defines the energy of a local
d-d excitation (crystal-field energy), E, = €, — €;. The hopping between
the Cu and O orbitals is described by the hybridization elements, Vi «,
for a = @,z. The values of these elements depend on the chosen phase
convention and their absolute values fulfill for the atomic functions the
Slater—Koster relation, |Vini 2| = |Vini,z|/\/@0, where for the atomic 3d wave
functions one has ag = 3 {26]. The one-particle parameters which define the
Hamiltonian Hy are shown schematically in Fig. 1, with tg = |Vi;,2|. We
describe the electron-electron interactions by two parameters at Cu sites:
the on-site Coulomb interaction, U, and the exchange interaction, Jgy. The
value of the intraorbital Coulomb repulsion, U + 2Jg, is related to the
intersite Coulomb and exchange elements due to the rotational invariance
of Hi,: in the orbital space [25]. For simplicity we have ignored in the
Hamiltonian (1)-(3) the interoxygen hopping (t;,), as well as the Coulomb
interactions on the oxygen ions (Up) and between the holes on Cu and O
sites (Ugp) (14, 19]. These elements could in principle be included, but
they complicate the analytic treatment and do not influence the qualitative
analysis of the model in the strong coupling limit presented below.
Physical properties of a charge-transfer system described by the Hamil-
tonian (1)-(3) and filled by one hole per unit cell, as CuO; plane, depend
on the parameters. One expects that if one of the characteristic parameters
for transition metal oxides: either Coulomb interaction, U, or the charge
transfer energy, 4, is small, the system is metallic and otherwise is an in-
sulator [27]. The realistic parameters which describe the CuO; planes in
HTSO: A = 3.6eV, U = 10eV, ty = 1.3eV [18, 19], suggest that the holes
localize to a large extent at Cu sites in the undoped system. Indeed, the di-
rect calculation of the charge distribution gives that ~ 60 — 70% of the holes
in the undoped systems is within the 3d,2_ 2 orbitals, while the remaining
~ 30 — 40% distribute over the 2p_(,) and, to some extent as well over the
3d;,2_,2 orbitals {5, 14-16). One finds as well that the undoped systems
are antiferromagnetic insulators of the charge-transfer type [28], using the
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Fig. 1. Schematic representation of the electronic structure parameters which de-
scribe atomic orbitals: Cu(d;:_y3), Cu(dz,a_,3), and O(2p,(y)), in the four-band
model given in Eqs (1)-(3) for a CuO; plane in HTSO. The hopping between the
d3;s_,z and 2p,(y) atomic functions is reduced by a factor \/ap with respect to the
hopping parameter between the d;:_,: and 2p;(y) ones, to. The charge transfer
energy and the d-d excitation energy are defined as A and E,.

classification of Zaanen, Sawatzky and Allen [27]. It is therefore justified to
consider a strongly correlated system described by the Hamiltonian (1)-(3)
with tg € A and ty <« U as representative for the situation within the
CuO; planes of HTSO.

Let us consider a strongly correlated system described by the Hamil-
tonian (1)-(3), with t; € A and t; <« U, filled by one hole per CuO,
unit. Under these circumstances one may derive the effective Hamiltonian
by considering the virtual transitions to the excited states, similarly as it
was originally done for the Hubbard [8] and for the three-band model [6].
Although the actual calculation in the realistic situation for CuO; plane
is more complicated, one may imagine this transformation as performed in
two steps: (i) first the hopping between the Cu orbitals and the oxygen
orbitals in intermediate position is transformed away to generate the effec-
tive hopping elements between the 3d orbitals at Cu sites, and (i7) next the
transitions to the doubly occupied configurations at Cu sites are considered
to derive the effective magnetic interaction. This allows to use strong cou-
pling perturbation theory [29], starting from the two-band Hubbard Hamil-
tonian. The superexchange maguetic couplings, as well as the interorbital
transitions are obtained by transforming away virtual fluctuations to inter-
mediate state: dgd9 = dsdw. These transitions are realized by different
possible hopping processcs between the d orbitals of two neighbouring sites,
described by the parameters t,, tz, = tzz/\/ap and t;, = tz-/ay, for
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the z-z, -z and z-z hopping, respectively. In this way one finds a rather
lengthy effective Hamiltonian, being a generalization of the Hamiltonian
derived earlier by Kugel and Khomskii [30] by the terms which result from
the difference in the intraorbital and interorbital Coulomb repulsion for the
electrons with opposite spins,

Sy

lg (Vs
Hy=(2J - Jz)§> ((Stme + o5 Siee + - Sir)

. 1 - —1)¥¢
. (Sj,:z: + —85,22 + (=1 Sj,u)
Qg

1 iE 7
+ ;—f(niv—' + (_1)3/ s \% QOTi,zz)(nj,- + (—l)y s \% aOTerZ)]

0
+ [E +2(2J — Jz);lz‘] PILIE
0 i
2J s & 78 faq S,
:(2)}_ <;j> [(‘gi,zz - Si,zz + (_1)3/ ’ aoSi,:cz)

) (gj,z: - SJ 2z + (= )375\/0—65’}‘,2)
~4(Sizn + Sisz) - (Siiee + Sz
et )

where ¢ and § are the unit vectors which point in the 71— j and y-direction,
respectively, and z is the number of neighbours (z = 4 in D=2). The
phase factor (-1)¥ 5 follows from the different signs of the hoppmg between
the z2 — y? and 3z2 — r? orbitals in the z and y direction. S, ,ap are
intraorbital and interorbital spin operators, respectively, defined as follows
by the fermion operators,

LR dmrdwi ) (5a)
Chi dzsztzi ) (5b)
Si+zz = dIszul + dEszizl ) (5¢)
S%zz = 3(nizy = nizy), (6a)
Sf.e = §(nizy = nuzy), (6b)

Sizz= (d dizt ‘*“lurdwT d izl dwl dzzldtzi) (6¢)

iz]
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They fulfill the usual spin commutation relations,
[SE, 5% = idije,,eSE (7)
The remaining operators are spin-independent and express the asymmetry

in the hole distribution over = and z orbitals, and the mixing between the
two orbitals, respectively,

Ny = (dewaT + du:ldwl dzsz”T d:zld”l) (Sa)
Ti,zz = (d dzzT +d; zldtzl + d, szzT + d,zldwl) (Sb)

izT

The superexchange interaction, J, and the coefficients in the correction
terms, J; and Ja, are given as follows,

J = 2Uz (9a)
Ju J
J 2J

Jo= s ) (9¢)

The correction terms arise from the splitting between the triplet and singlet
states in the intermediate d® configuration and are linear in Jg /U for large
Coulomb interaction, U. We note that the Hamiltonian (4) contains in
the leading order, ~ J, two terms: the superexchange interaction and the
orbital interaction. For convenience, the energy origin has been chosen at
E,/2 which gives the energies of FE,/2 for a hole occupying the d_»
and dy,2_,2 level, respectively.

A qualitative information about the possible ground states of the model
Hamiltonian (4) may be obtained by solving the classical problem in the
mean-field approximation (MFA), where we neglect the terms which contain
the S+ g operators (5a)-(5¢c). As the spin and orbital degrees of freedom
decouple in the MFA, it is convenient to introduce the mixed representation,
cta = cos(6;)d]_ _ + sin(8;)d! (10)

1 iz,0 iz,0°

._.y2

The most general two-sublattice solution is obtained by assuming the same
angles in Eq. (10) for the two sublattices, §; = 84 if i € A, and 6; = 0p
if i € B. From the form of the Hamiltonian (4) (with J > 0) one expects
the antiferromagnetic (AF) Néel order. It may be easily shown that the AF
states are of pure d_2_ 2 or d4,2_.» character with the energies normalized

3 -y
per site:
=-1F 2 2J —J 2 J 1
Eazp(z) = —3 :-a( - 2)+*£ 15 (11)
2
Eap(z) = 3E. + (27 - J2) + ““"Jl (12)

a

o



832 A.M. OLES, J. ZAANEN

As a consequence of the reduced hopping between the d;,2_ 2 orbitals with

respect to the d 2_ 2 ones (see Fig. 1), the AF order of 2% — y? symmetry

-y
is stable even for E, :< 0. A transition from the z% — y? to 322 — 72 AF
state occurs for Jy = 0 only at E; = —16J/aZ. One finds therefore that
the AF order suppresses the orbital ordering [23]. The reason is the term
with alternating phases in the z and y directions which cancels the coupling
between the average orbital and spin fields in the MFA. The situation is
reversed, however, for the ferromagnetic (F) spin order. Here one finds that
the AF orbital order with the alternating phases for the two sublattices in
Eq. (10), 64 = —0p, is the most stable phase for Jyz > 0 and close to the
transition line between the AF states in the 22 — y? and 322 — r2 orbitals.
The optimal mixing of the two orbitals in the F phase is determined by the
condition

af B +2-§(af-1)

cos(204) =
Lag +1)2 + (@0 + 1) + (a2 + ag + 2) 51

; (13)

where K = 2(2J — J;) and K; = 4J; for the square lattice. The energy
(normalized per one site) of the F phase with AF orbital order is given by,

1 1
Ep(AFO) = —(EEz + 31() cos(26,4)
0

+ II—SK{ [(1 - ;10-) + (1 + 21_1;) cos(20A)]2

+ 4:—2 [(14 ) cos®(264) — ao) }
0

+ 1K, [%(2 cos?(204) — 5) + (1 + 51—0-) cos?(204) — 1] (14)

For ag = 3, Jy = 0 and E; = —16J/9 one finds that the energy of the
F phase is degenerate with that of the AF phases and cos(264) = —0.5.
Thus, at this point one gains the same amount of energy by the mixing of
orbitals due to the alternating phases as the loss of the magnetic energy due
to reversing the spins from the AF to F configuration. The phase diagram of
the spin-orbital model (4) is presented in Fig. 2. The region of stability of the
F phase increases with the increasing value of Jiy/U. Due to the alternating
phases on the two sublattices, one finds larger lobes and, consequently,
stronger bonds, in the z and y directions for the transition metal ions on
A and B sublattice, respectively [24]. Therefore, a quadrupolar distortion
is stabilized in this phase. In fact, similar arguments were used on a more
qualitative level by Kugel and Khomskii [31] who predicted the existence of
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Fig. 2. Phase diagram of the model Hamiltonian (4) found in the mean-field ap-
proximation, as a function of the d-d excitation energy, E,/J, and the Hund’s rule
exchange interaction, Jy/U. The ferromagnetic quadrupolar phase with the local
occupancies of cos(Gi)dfx’T + sin(@i)d‘!z’T, is stable between the pure d;a_y s and
d3.s_,2 antiferromagnetic Néel states.

such a structural distortion in the quasi-2D F compound, K;CuF4. Later
such a phase was indeed detected experimentally [32].

The elementary excitations of the different classical ground states may
be investigated by making a Random Phase Approximation (RPA) in the re-
spective equations of motion for the transverse Green functions [33]
<< S:QBIS;‘” >>. Such a calculation allows to demonstrate that the
magnons for the spin-orbital model (4) have a mixed spin-orbital character.
The increased number of degrees of freedom causes larger quantum correc-
tions to the energy of the ground state that those found for the standard
Heisenberg Hamiltonian in D=2 dimensions. More details may be found in
Refs [23] and {33].

3. Triplet t—J model and d-d excitons
in doped CuO; plane

Theoretical understanding of the doped Mott-Hubbard insulators is
a challenging problem. The simplest and generic way of approaching its
solution is by considering the well known ¢t-J model [8], intensely studied in
recent years. The essential limitation of the t—J model is the use of the single
nondegenerate band. Therefore, the motion of doped holes is confined to a
single d orbital and each moving hole may be dressed only by low-energy
spin excitations. In reality, however, the holes moving in the transition
metal oxides may be as well excited to the higher energy d-orbital states.
Consider as an example the case of a high temperature superconductor. As
the energy of the d—d excitation, E, = 0.5eV [19], is lower than the typical
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bandwidth at finite doping, such excitations are likely to be excited by the
hopping of doped holes. It is straightforward to see from Fig. 1 that the
kinetic energy is larger for the holes within the dzz—yz orbitals and the
hopping Hamiltonian may be written in the generic form,

1
II? =1z § : d::: adjzv°+—/_'
<i3>,0 [ o

1
Egdgz,adjzaa] 3

(15)
where t;, = t;. This expression, however, does not include the dependence
of the actual hopping process on the symmetry of the initial and final states
formed locally before and after the considered hopping which makes the
dynamics of holes more even complex, as we present below.

We want to consider the case where the hole doping of the Mott—
Hubbard, or charge-transfer insulator in the d° limit leads locally to the
formation of triplet states, stabilized by the Hund’s rule exchange interac-
tion, Jrr. These triplet states may propagate by virtual transitions via the
oxygen orbitals in intermetallic positions in the CuO; planes. The hop-
ping elements for the dzz_yz — Pz(y) and dj,2_.2 — py(y) terms differ by
a factor of \/ag discussed above. Let us assume that Cu site, ¢, is occu-
pied by a triplet |s + 1/, m;), while the neighboring site, j, is occupied by
one of the d° states, |s,m2). As a result of two consecutive hoppings via
the intermediate oxygen orbital, the configuration changes to |s,m; — 1/2)
(Is,m1 + '/2)) and |s + Yo, ma + 1) (|s + Y2, m2 — 12)) at sites i and 7,
respectively. Thus, compared to the singlet hole in the ¢t—J model, there
are more possibilities for the hopping which reflect the new internal degree
of freedom of the triplet hole. The hopping amplitudes may be easily con-
structed from the overlaps of the states at sites ¢ and j before and after the
hopping and are given by Clebsch-Gordan coefficients. It is convenient to

represent the triplet holes as products of SU(3) Schwinger bosons, a}m, and

(dztm,adjzva +dztz,adj1':<7)+

auxiliary fermions, hz. They represent the internal spin degree of freedom,
m; = 1,0, -1, and the charge of doped hole, respectively, in analogy to the
singlet holes in the t-J model [34]. The s = !/ spin background may be
realized in two ways, if either dzz_yz or d;,2 _,2 orbitals are occupied. This
may be represented by the SU(2) Schwinger bosons which occur now in two
flavours, b}z,m and bgz,m.
Hamiltonian for triplet holes in the d° background,

t L t (_1)5-ib1
H, 25 Z Z { (bf-kg,z,n + \/% ;+g,1:,'n.)

?,g m,n=~1/2

X {Xi: VERETmGzEe | ars ]

Altogether, we may write the following hopping
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(159
x (bi’,z,n + /a0 b?,z,n

Vhihd s+ He ). (16)

By adding this Hamiltonian to the spin-orbital model Hamiltonian derived
in Sec. 2, one obtains the generalized t-J model for the triplet hole, including
the crystal field excitation [24],

H,;=H,+Hj. (17)

This forms a complicated many body problem and so far only the limit-
ing case of the motion of a single triplet hole in the AF background stable
within the d_2_,2 orbitals, i.e. the projection of the full problem to the low-
est energy manifold, has been studied [24]. The main qualitative difference
between the present problem (17) and the singlet t-J model, which may
be formally obtained by projecting the effective magnetic Hamiltonian of
Sec. 2, Hj of Eq. (4), and the generic hopping Hamiltonian, H? of Eq. (15),
to the d,2_,2 subspace, lies in the possibility of free triplet hole propaga-
tion, without disturbing the magnetic order. This free dispersion is reduced
by the factor of 1/\/5 with respect to the free fermion dispersion, ~ ¢,
which results from the overlap factor between initial and final states before
and after the hopping of the triplet hole. We have found that this dis-
persion is strongly renormalized by the coupling of holes to the spin-waves
in the AF background of z% — y? symmetry which gives finite lifetime to
the quasiparticle poles. As a result of this coupling, the spectral function
found in the selfconsistent Born approximation [34] has distinct peaks which
resemble the original dispersion, but even the lowest energy quasiparticle
has finite lifetime, i.e. Fermi liquid behaviour breaks down [24]. Therefore,
perturbation theory is divergent for the triplet hole problem.

The above t—J model (17) is exceedingly complicated. Although the
single-hole problem in the quantum antiferromagnet, described by the stan-
dard (singlet) t-J model, may be successfully treated by solving the linear
spin-wave theory and finding the spectral density by the selfconsistent Born
approximation for the hole-magnon couplings [35], there are no standard
methods of treating the finite hole density problem, and, as discussed above,
for the single triplet hole even the perturbation theory breaks down. There-
fore, it is instructive to look at a simplified model which deals only with
the charge degrees of freedom and ignores entirely the spin dependences in
the hopping problem. The possible hopping processes in such a model are
shown in Fig. 3 (a). They correspond to the respective hoppings in the full
model which includes the spin variables, as presented in Fig. 3 (b). Since
J € E, and J < t for the typical situation, as for the holes in CuO; planes
of HTSO with J ~ 0.12eV, E, ~ 0.5eV, and ¢t ~ 0.4eV [18-20], one may ex-
pect that such a simplified model will still capture the essential dependence
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i=1 2 3 4

Fig. 3. Schematic representation of the spinless model given by Eq. (18) which
represents the dynamics of a doped hole in CuO; plane (a): the local triplet on
the site 7 = 2 may hop either to site ¢ = 3 with a preexisting d-d exciton with
amplitude ¢, or to site i = 1 with amplitude ¢, = ¢, /ag. The same transitions
are possible as well in the realistic antiferromagnetic state in d,z_y; (b), but the
presence of low-energy spin excitations complicates the mathematical analysis.

of the determined ground state on the orbital degrees of freedom, while the
lower-energy spin excitations could change this picture only quantitatively.
The spinless model which corresponds to the full generalized t—J model (17)
is,

- DR f (=157
H_tZ(bu+7a—0—bw Fidies \bivs. ¥ " as Pivbe

TE: D bLbia + DON( D] blebie + flfi- 1), (18)

ib
==,z

where b:-f:l= and b;-'z are Schwinger bosons which represent the orbital degrees
of freedom and A; are Langrange multipliers to enforce the local constraint.
Hence, we neglect all spin dependences in the hopping and consider only
the orbital dependence. Further, we assume that the spectrum of orbital
excitations can be modelled by a single oscillator. Hamiltonian presented
in Eq. (18) may be solved in the MFA for a strongly correlated system by
applying the slave-boson MFA of the Newns and Read variety [36]. It is

obtained by replacing the Schwinger boson operators, b& and b;¢ by scalars
(b), and taking a global (\) instead of a local constraint (A;). For this
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uniform distribution of the average boson fields we obtain a MF free energy,
Fur = 726E, + A(b*(1 +7%) - 1) - = / —dilna +e PF), (19)
MF Z l; (27r)2 L]
where E are the excitation energies,

1 2n
Epx=X+220 |(n* + =)y + —77 | -
F= Ak s (4 g+ (o)

In Egs (19) and (20) we used the parametrization: (b,) = b, (b,) = nb,

and v; = %dexp(—ilg - §) and 1 = (1/2) ¥ z(-1)¥6 exp(—ik - §) are
the structure factor for the 2D lattice, and the structure factor for the
hopping with the alternating phase factor, respectively (z is the coordination
number). There are three possible saddle points of Fyqp. Either the holes in
the d® background localize within the d_z__ . orbitals, with the free energy
atT =0

-y
1

Fmr = —(1-n)Ey4, (21)
ag

occ,

where n is carrier density and E4 = (2¢/N) >3 vj, or they localize within
the d;,2_ 2 orbitals, with the free energy at 7' = 0

FME = (1 — n)(E+ + Ez) s (22)

or, finally, a mixed state with non-trivial orbital ordering is stabilized. The
saddle point equations yield 2 = (1 — n)/(1 + 7?) and

-E_

= , 23
" Vo (E;+ A+ E.) (23)
A= ——% (_(ao + 1)E+ + F,

Qo

+ \/(Mi + Ez)2 - i(Ei +ELE, - Ei)) v (24)
Qg Qo

where E_ = (2t/N) 33 7 is the new kinetic energy resulting from the
orbital mixing. The mechanism of this new kinetic energy contribution is as
follows. If the d? states are mixtures of z and z, the hole will hop easier in,
e.g., the z-direction than in the y-direction, if the phasing is uniform. The
system now gains energy because the z « z term in Eq. (18) contributes
on average. The Fermi surface gets orthorombically distorted and therefore

E_ # 0 in Eqs (23)—(24). On the other hand, this new state costs kinetic



838 A.M. OLES, J. ZAANEN
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Fig. 4. Mean-field phase diagram for the spinless d° triplet hole model (18) as a
function of the crystal field energy E./|t;| (t = t), and hole concentration, n.
The shaded areas indicate regions of phase separation between the pure and mixed
phases.

energy in the 2 — z and z & z channels (E4) and, therefore, the orbital
mixing can only pay off at some substantial hole concentration.

In Fig. 4 we sketch the phase-diagram as a function of doping, n, and
crystal-field energy, E./|t|, using the single band value for ag. This phase
diagram has a similar appearance as the one expected for the charge-transfer
mechanism of Varma et al. [37]. At low doping we find the pure z? — y?
phase (but, of course, fluctuations will mix in some finite amount of 3z% — r?
character). Depending on the actual value of E,, a first-order transition
would follow to the mixed-phase (dashed line), but according to the Maxwell
construction this is masked by a region of phase separation (shaded area).
Obviously, if E,/t gets smaller, the stability of the mixed phase increases
and the opposite holds if oy gets smaller. We note that the 3z2—r2 character
of the background increases relatively little for increasing doping in the
region where the mixed-phase is the ground state.

The above effects hint at a possible mechanism for superconductivity.
The attractive interaction is now driven by the real increase in kinetic en-
ergy of the composite holes if they exchange crystal-field excitations. It may
be formally derived from the model Hamiltonian (18) by a canonical trans-
formation which transforms away the orbital excitation. As a result, oue
finds the familiar BCS (Bardeen—Cooper—Schrieffer) attractive interaction,
induced by d-d excitons. The interaction is large because it is set by the
bandwidth ~ (ap — 1)t/ ap, and together with the density of states ~ ap/t,
we find

(ao - 1)2 t

A= 2
ao E21 (5)
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which results in
T. ~ E;exp(~-1/}), (26)

but only for sufficiently high hole doping, i.e. if Ep > E,, where Ep is the
Fermi energy measured from the bottom of the doped band. This would
suggest very high transition temperatures indeed and there could be several
reasons to influence the final value of T, in a particular compound (small
polaron effects and structural stability, the effects of the spins, vertex correc-
tions, etc.). We would like to emphasize that our mechanism is distinct from
those originally suggested for d—d excitons, as here the difference in the hop-
ping is the driving force of the pairing, rather than different Coulomb inter-
actions [20, 21}, or the interaction between the electric quadrupole moments
[22]. Unfortunately, it seems however that there is now firm experimental
evidence [38] that the three particle bound states formed by the moving
hole an a d-d exciton bear no relevance to high 7, superconductivity.

The electronic instability detected in the above spinless model should
have pronounced structural consequences. The orbital polarization in the
mixed-phase should couple strongly with the lattice [39]. At half-filling, the
electron-phonon distortion is of the form,

HEP = Z [Kn(q")ni,- n_g,— + Kt(ij)Tq‘,:czT—q‘,zz] ’ (27)

q9

where K¢(¢'= (7, 7)) dominates for CuO; planes in HTSO [39]. Here ng, _
and T_g ., are the Fourier transforms of n; _ and T ;. defined in Eqgs (8a)
and (8b). Such electron-phonon coupling also tends to favour an orbital
mixed phase ‘with the staggered phases, as obtained above for the F state
at intermediate d-d exciton energy E,. As a result, the purely electronic
and electron-phonon interactions act together, causing an orthorombic in-
stability. Thus the electron-phonon coupling amplifies the lattice instabil-
ity in KoCuF4. On the contrary, within the CuO; planes of HTSO one
expects a competition between the nondistortive AF states the distortive
hole-induced instabilities. Thus, the doping can lead to gquadrupolar lo-
cal distortions, where two oxygens move towards, and two away from the
Cu atom. With our uniform phasing, these local distortions line up and
the crystal as a whole gets orthorombically distorted. It cannot be excluded
that the competition with the superexchange and phonon induced couplings
(which favour staggered configurations [39]) might give rise to more compli-
cated ordering patterns, involving larger length scales. We wonder if such
a theory might underlie the recent structural model proposed for oxygen
deficient YBa;Cu3zO7_, {40]. In fact, the recent neutron scattering data
[41] of a variety of HTSO seem to indicate such an instability.
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4. Discussion and summary

The triplet t—J model presented in the previous Section is by no means
the only possible model to describe the doped carriers in a Mott—Hubbard
insulator. A similar model Hamiltonian may be as well constructed for the
doping of Mott—Hubbard insulator in d® configuration, corresponding to the
undoped NiQO, or La;NiO4. As the undoped nickelates are usually high-spin
materials, the underlying spin model favours again an AF ordering of the
spins § = 1 at each site, if the triplets described in Sec. 3 are locally stable
against the low-spin singlet configurations, |z 1,z |). The corresgonding
superexchange Hamiltonian in the d® limit is [33],

Hy(d) =20 3 [($i+ (-0 vaZ) - (55 + (15T /arZ))

<ij>
+a2ni,snj,s] +Es Y nis, (28)
:

where a; and ay are the parameters depending on the geometry of the wave
functions forming the.bonds. If @ = 3, as in Fig. 1, a; = 3 and a; = 4,
while J' = 8t2/9U. The spin and pseudospin operators, S; and Z;, may be
written as follows,

57 = VAB} Bio + Bl Bi 1), (29a)
zF = V(B! 4; + AlB; 1), (29b)
$7 =B} Bi1- B! _Bi_,, (29¢)
ZF = —(A!Bio + B} 4), (29d)

where the operators Bf and AT are the creation operators of the m-
component of the trlplet and of the singlet at site ¢, respectively,

th 1= dw TdIz,T ? (303)
B, = (a4t  +d ! 30b
10_7‘5( Tzzl+ wlzzT) ( )
BJ—-] - dz:: ldzz l? (30(:)
Al =dl, dl, . (30d)

The triplet-singlet excitation energy is Es = Jy — E;, using the notation
introduced in Sec. 2. The new Hamiltonian (28) gives by itself a very in-
teresting quantum-mechanical problem which may be again studied on the
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mean-field level. The obtained phase diagram indicates that a mixed phase
of different kind is stable as well in the intermediate parameter regime [33].
Hole doping of such an insulator (to d” configurations) gives again inter-
esting possibilities and promotes locally the orbital mixing, on the costs of
magnetic energy [42]. We believe that local excitonic excitations might be
responsible for the virtual disappearance of the Mott—-Hubbard gap from
the inverse photoemission of doped nickelates, according to more detailed
calculations by van Elp et.al. [43].

The purpose of this paper is to point out that carrier-exciton bound
states are in fact quite comnmon in transition metal oxides. In contrast to the
charge-transfer three-body bound states [44], the relevant excitons are of the
crystal-field variety, while the interaction responsible for the exciton-carrier
binding is the atomic Hund’s rule interaction, Jg. Such states may be
considered to be more the rule than the exception in doped Mott—Hubbard
insulators. A challenging problein for each realization of the doped Mott—
Hubbard insulator is: the question how these three-particle bound states
may delocalize. We have demonstrated on the example of the cuprates
that the delocalization of the carrier-exciton composites leads to additional
couplings with the crystal field excitations. A better understanding of these
complicated phenomena requires further studies of realistic and complex
t—-J models, which, in our opinion, should provide as well better answers
concerning the spectral functions observed in photoemission and inverse
photoemission spectroscopies in doped transition metal oxides.

In summary, we have identified previously unknown effects related to
the binding of d-d excitons to holes in doped Mott-Hubbard insulators.
The delocalization of these composite carriers might give rise to a novel
kind of Jahn-Teller like structural distortion. Although we concentrated
for pedagogical purposes mostly on the cuprates, we argue that these effects
should be quite common in doped Mott-Hubbard systems in general.
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