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The quantum dynamics of a quartic double well, subjected to a har-
monically oscillating field, is studied in the framework of the Floquet for-
malism. The modifications of the familiar tunneling process due to driv-
ing and dissipation are investigated numerically and explained in terms
of the quasienergy spectrum. In absence of dissipation, there is a one-
dimensional manifold in the parameter space spanned by amplitude and
frequency of the driving force, where tunneling is almost completely sup-
pressed by the coherent driving. The influence of dissipation is described
on basis of the reduced density matrix in the Floquet representation. In
particular, we consider the effect of weak Ohmic damping. In the classi-
cal limit, this system corresponds to a damped bistable Duffing oscillator.
The interplay of coherent and incoherent transport processes is studied in
terms of the transient time evolution of a temporal autocorrelation func-
tion. We find that the coherent suppression of tunneling is stabilized by
reservoir-induced noise for a suitably chosen temperature. By computing
stroboscopic Husimi distributions, we also compare the quantal stationary
states with the corresponding classical deterministic attractors.

PACS numbers: 03.65. Ca, 05.60. +w

1. Introduction

Bistable systems are abundant in physics, from the microscopic to the
macroscopic realm. On the macroscopic level, bistability represents a ba-
sic concept in nonlinear dynamics. In quantum mechanics, on the other
hand, bistable potentials are associated with a paradigmatic coherence ef-
fect: tunneling [1]. Accordingly, this class of systems represents a partic-
ularly promising field to study the interplay of classical nonlinearity and
quantum colierence, and the way,this is reflected in phase;space transport.

* Presented by P. Hinggi at the V Symposium on Statistical Physics, Zakopane,
Poland, September 21-30, 1992.
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In the present work we investigate the influence of periodic driving on
the quantal dynamics in a bistable potential. Being equivalent to adding
one degree of freedom, external driving is capable of qualitatively altering
the dynamics, e.g., in the classical limit, it can render a bistable system
chaotic {2, 3]. Here, however, we concentrate on the alterations of the
tunneling process, due to the driving, in the deep quantal regime: They
take the form of mere quantitative changes of the tunnel splitting, from its
complete vanishing up to its augmentation by orders of magnitude, as well
as of qualitative changes as a consequence of the admixture of additional
levels, beyond the ground-state doublet.

Periodic driving is simple enough to still allow, by way of its discrete
time-translational symmetry, for a systematic analytical treatment: The
Floquet formalism provides a generalization of the notions of energy eigen-
values and eigenstates to periodically time-dependent systems [4-7]. Since
its validity is not restricted to small amplitudes of the driving nor to large
characteristic actions, we need not resort to perturbative or semiclassical
methods. Furthermore, the Floquet formalism obviously enables us to go
beyond the two-state approximation commonly used in the context of tun-
neling.

In Section 2, we present our working example, a harmonically driven
quartic double well, and introduce some analytical concepts for later, refer-
ence, such as the Floquet operator and the local spectrum. The quantum
transport and the local spectrum in absence of dissipation are addressed in
Section 3. Section 4 contains our principal results. They form a survey of
the friction-modified coherence phenomena that replace driven tunneling in
various regimes of the parameter space spanned by amplitude and frequency
of the driving force. We summarize our results in Section 5.

This contribution is partially based on results originally published in
earlier works by the present authors [8-11].

2. The periodically driven double well

The system we study is a quartic double-well potential driven by a
monochromatic force. Its Hamiltonian reads, in dimensionless variables,

Hpw(p,z;t) = Ho(p,z) + Hy(z;t),

2 2 4
_r_r .,z
Hy(z;t) = Sz coswt, (1)

where D denotes the barrier height, and S and w are the amplitude and
frequency of the driving force, respectively.
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In systems with a discrete time-translational symmetry, a stroboscopic
time evolution is generated by the Floquet operator [12-15], the propagator
over a single period of the time-dependent force,

to+2r/w
Uy =U (tg + %’,to) =Texp | —1¢ / dt H(t) | , (2)

o

where T denotes the time-ordering operator. Therefore, Uy, may be called
a quantum map. According to the Floquet theorem, its eigenstates take the
form

[$a(t)) = exp(—ieat)|$alt)), with |po (t+25)) = [¥alt)).  (3)

The eigenvalues €, are called quasienergies. In fact, each of them is a repre-
sentant of an infinite class of eigenvalues e = €4 + kw, &k = 0,+1,£2,....
The €, correspond to solutions equivalent to Eq. (3), as is obvious if one
defines |@¢4r) = exp(ikwt)|@a). In other words, the quasienergy spectrum
is cyclic, i.e., defined mod w, similar to the Brillouin-zone structure in the
solid-state context.

Another, more special symmetry of the system described by the Hamil-
tonian (1) goes back to the inversion symmetry: z — —z, p — —p, of
phase space for the time-independent system Hg(p,z). This symmetry is
destroyed by an arbitrary periodic driving term, but for the harmonic time
dependence chosen here, the relation cos(wt + 7) = — cos(wt) allows for
invariance under the operation [8, 16]

P: 22— -2, p—-p, t—t+Z. (4)

P forms a unitary symmetry and may be regarded as a generalized parity. As
a consequence, the basis formed by the Floquet eigenstates can be divided
into an even and an odd subset.

A quantity that provides some condensed information on the transport
of probability between the two wells of the bistable potential, and that
allows to relate this information directly to the relevant structures in the
quasienergy spectrum, is the probability to return [17, 18]

PY) (t,) = [ (# (0 + 222) | #(t0)) !2 = (@(20)|(U) "2 (to))*,  (5)

defined with reference to some initial state |¥(tp)), and with time restricted
to a discrete series t, = tg + 27n/w, n = 0,+1,42,.... The role of the
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quasienergies for this time evolution is made explicit by expanding Eq. (5)
in the Floquet basis,

PPOO) (¢, ) = 71 ¢ Z exp (i(ea — €g) (322))
a#f

X [($al(to) |2 (ta)) *[(5(ta) |2 (a))]* (6)

Here, £ 1, the diagonal part excluded from the double sum in Eq. (6), gives
the long-time average of P¥(%)(t,,). The spectral counterpart of P¥(t0)(t,)
is the two-point cluster function P;p (tO)(n) of the local Floquet spectrum
[17-20]. It is related to P¥(%)(t,) by Fourier transformation and thus
contains all the frequencies involved in the time evolution of P‘I’(‘O)(tn),

weighted according to their relative significance for the specific dynamics
starting from |¥(to)).

3. Driven tunneling in absence of dissipation

In the present Section, we discuss the modifications imposed on the fa-
miliar tunneling dynamics, due to periodic driving. That is, we concentrate
on the time evolution, under the external force, of a state that is initially
prepared as an approximation to a superposition of the two lowest unper-
turbed eigenstates, |{(r)) = (|1) + (=)|2))/V2, centered in one of the two
wells. Accordingly, we trace the quasienergy doublet, corresponding to the
unperturbed energies E; and E2, through the parameter space spanned by
amplitude § and frequency w of the driving force. Thereby, we exclude dy-
namical complexity due to mere preparation effects from our investigation.

There are two regimes in the (9, w)-plane where tunneling is not qual-
itatively altered: Both in the limits of slow (adiabatic) and of fast driving,
the separation of the time scales of inherent dynamics and external force
effectively uncouples these two processes and is reflected in a mere renor-
malization of the tunneling rate A(S,w). Specifically, as both an analytical
treatment and numerical experiments show [8}, the driving always reduces
the effective barrier height and thus augments the tunneling rate in the two
limits at issue.

Qualitative changes in the tunneling behavior are expected as soon as
the driving frequency becomes comparable with the internal frequencies of
the double well, i.e., in particular, the tunnel splitting A = Ey — E; and the
so-called resonances E3 — E,, E4 — E1, Es — E3,.... A physical understand-
ing of the temporal complexity in this regime is obtained by relating it to
the “landscape” of quasienergy planes €,4(S5,w) in parameter space. Fea-
tures of particular significance are close encounters of quasienergies: Two
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Fig. 1. Driven tunneling at the fundamental resonance w = E3 — E;. {a) Time
evolution of P¥(*o)(2,) over the first 105 time steps; (b) local spectral two-point
correlation function P.f (t°)(7)) obtained from (a}. The parameter values are D = 2,
§=2-10"2 and w = 0.876034.

quasienergies approaching each other form an exact crossing if they belong
to different parity classes, otherwise the crossing will be avoided.

We discuss two specific instances of the quasienergy spectrum with the
corresponding tunneling dynamics, one of them featuring an avoided cross-
ing, the other an exact one. The “single-photon transition” at w = E; — E,
is called the fundamental resonance. At § = 0, it corresponds to a cross-
ing between the quasienergies 3 ; and €3 x_; and, for § > 0, forms an
avoided crossing, since the corresponding eigenstates have equal parity.
Fig. 1(a) shows the time evolution of P¥(%)(¢,), at the fundamental res-
onance (D=2, § = 107%, w = 0.876), for an initial state prepared as
the ground state of a harmonic oscillator approximating one of the wells,
i.e., a Gaussian approximation of |I(r)). The monochromatic oscillation
of P'p(‘O)(tn), characteristic of unperturbed tunneling, has g'iven way to a
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more complex beat pattern. The two-point correlation P;‘ (tO)(n) of the lo-
cal spectrum reveals that these beats are mainly composed of two groups
of three frequencies each (Fig. 1(b)), which can be identified, in turn,
as the quasienergy differences €3,y — €2,0, €2,0 — €1,0, €3,—1 — €1,0, and
€4,-1 — E3,—1, E4,—1 — £2,0, £€4,—1 — €1,0, at the avoided crossing.

In contrast, a two-photon transition that bridges the tunnel splitting
4 is “parity forbidden”, and thus the quasienergies ¢, x4 and €5 ;_; give
rise to an exact crossing. Eq. (6) indicates that a vanishing of the difference
€2,—-1 — €1,1 will have a drastic consequence: For a state prepared as an
exact superposition of the corresponding two quasienergy eigenstates only,
P¥(%)(t,.) and all other observables become constants, at least at discrete
times 27n/w, and thus it is possible that tunneling comes to a standstill!
According to an argument going back to von Neumann and Wigner 21,
22], exact crossings should occur along one-dimensional manifolds in the
(8,w)-plane. Fig. 2(a) shows such a manifold for €5,y = €31, as deter-
mined numerically: It is a closed curve, reflection-symmetric with respect
to the axis § = 0, with an approximately linear frequency dependence for
A SwS E3—E;. A typical time evolution of P¥(%)(¢,,) for parameter val-
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Fig. 2. Coherent suppression of tunneling at an exact crossing €5 _; = €1,1. (a) One
of the manifolds in the (S, w)-plane where this crossing occurs (data obtained by
diagonalization of the full Floquet operator for the driven double well are indicated
by crosses, the full line has been derived from a two-state approximation, the arrow
indicates the parameter point for which the subsequent parts of the figure have
been obtained); (b) time evolution of P¥(°}(¢,) over the first 10® time steps; (¢)
time evolution of P¥(°)(¢) within the first period of the driving; (d) [(¥(t.)|z)]?
at n = 458 (dashed line), compared with the initial state (full line) (the dotted
line indicates the unperturbed potential). The parameter values are D = 3, S =
3.171-1072, and w = 0.01, that is, w = 52.77A.

ues on the linear part of that manifold (D = 2, § =3.171-1073, w = 0.01)
is presented in Fig. 2(b). It clearly demonstrates the suppression of tunnel-
ing. Remaining oscillations of small amplitude can be ascribed to an ad-
mixture of higher-lying quasienergy states to the initial state. In addition,
the time dependence synchronous with the driving frequency has not com-
pletely vanished, as is revealed by the evolution of P¥(*0)(t), resolved within
a single period of the driving force (Fig. 2(c)). In Fig. 2(d), we compare
{¥(tn)|z)|?, at a time (n = 458) where the deviation of P¥(*0)(t,) from
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unity is exceptionally large, with the initial state: This confirms that the
leakage of probability into the initially empty, opposite well indeed remains
extremely small. So the coherent suppression of tunneling truly amounts to
a localization of the wave packet in one of the wells.

This phenomenon appears to be an elementary quantum-interference
effect. In fact, much of it can be understood on basis of a two-state approx-
imation. It is achieved by solving the equations of motion for the expansion
coefficients of a localized initial state in the Hilbert space spanned by the
unperturbed ground-state doublet |1), [2). The two-state approximation
predicts an infinite number of manifolds where localization occurs and yields
analytical expressions for them [11, 23].

4. Driven tunneling with dissipation

The approach towards the macroscopic realm comprises, at least, two
different aspects: the increase in characteristic phase-space scales allows
the use of small-wavelength approximations and lets finer and finer details
of the classical phase space flow show up in the quantum dynamics, while
the growing role of the ambient degrees of freedom tends to reduce the
complexity of the quantum dynamics by degrading coherence effects. We
shall here focus on the latter aspect (for semiclassical studies of driven
tunneling, see Refs [24, 25]) and present some preliminary results on the
influence of dissipation on the quantum dynamics of the driven double well.

We incorporate dissipation by coupling the driven system in (1) to a
reservoir, i.e.,

H(t) = Hpw(t) + H1 + Hr,
Hy =2 (gibi +g°b}),
;

Hg = Zwi(bzbi + %) (7)

Each reservoir oscillator 7 is described by a frequency w;, second-quantization

operators b;, b;f , and a coupling constant g;. Starting from the von Neumann
equation for the density operator of the full system, we perform the usual
procedure [26-28] to trace out the reservoir degrees of freedom under the
assumptions.(i), that the reservoir is Markovian, i.e., correlation functions
for the boson modes decay instantaneously on characteristic time scales of
the double-well dynamics, and (%), that the driven double well is weakly
coupled to the reservoir, so that we can neglect the higher order quantum
effects in the coupling strength. We assume that the full system starts at
time to with a density operator p(ty) = o(to)Br, t.e., the driven double well
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and the reservoir are initially uncorrelated and the reservoir is in thermal
equilibrium with the canonical statistical operator By at temperature T'.
Here, o(tg) := o(tg,to) denotes the initial reduced density matrix of the
driven double well. Using the interaction picture at ty and performing the
trace over all reservoir oscillators (trg ) yields the equation of motion for the
reduced density matrix,

t—1p

F(t te) = / dt'trg [fII(t,to), [ﬁl(t~t',t0),BTE(t,t0)]] . (8)
0

In the representation by the Floquet states, the unitary time-translation
operator of the undamped system reads

Upw(t,t0) = ) exp(ica(t - t0))[da(t)){alto)l- (9)

This allow us to evaluate the interaction operator Z in terms of Fourier
components in the Floquet representation [26],

3(t,t0) = Uy (b, to)zUpw(t,te) = D exp (idapr(t — to)) Xaprlap(to) -
a,.k
(10)
Here, we have introduced the frequencies A,gy = €4 ~ £g + kw, the matrix
elements of the position operator,

27 /w
Xopk = ge;/o dt exp(—ikwt){(da(t)|z|ds(t)),

and the projectors I'ng(te) = |da(to)){ds(to)]. In the limit of a dense
spectrum of the reservoir oscillators, we introduce the coupling strength
s

= lim —— 2.
J(w)= lim — . ;M gl (11)
ww <w w

In this way, Eq. (8) can be rewritten as

F(tito) = >, D XapeXlgu exp (iapk — Aarprir)(t — to))
ah@,kal,ﬂl,kl

X :{O(Aa’ﬁ'k')S(Aa’ﬁ'k') (1+ nen(Aarprer))

L (P(Awpir) + Qr(Aaigi)) }

T,/ (20), (¢, to) Tag(to)]

{0(Awpri)S(Awpi )nen(Aapir) + 2QT(Aiprr)}
:Faﬁ(to), a(t,to)l"l,ﬁ/(to)] ] + h.e. (12)

X + X +



854 B. OELSCHLAGEL, T. DITTRICH, P. HANGGI
We use the abbreviations @(z) for the unit step function, n,(w) for the

thermal occupation of the boson mode with frequency w, and P(w), Qr(w)
for the quantities

Pw)=P [a/ T gpy=p [aIlm) g
0

W — W w —
0

with P indicating the principal value. Specifying the coupling strength as
Tw
J e 14
)= v wfad) o
we obtain, in the classical limit, the Langevin equation
t
E+ywe / dt'z(t') exp(—wc(t —t')) — (1 + 2yw,) + %D’ + Scoswt = f(t).
— 00
(15)
Here, f(t) is a random force with the autocorrelation function

(F(£)f(t")) = vkpTw, exp(-wc|t - t']). (16)

Eq. (15) describes a bistable Duffing oscillator with Ohmic damping and
fluctuations due to the thermal noise.

In order to simplify the equation of motion (12), we introduce the
rotating-wave approximation. In the present case, we can distinguish three
different aspects of it,

(1) dropping all terms with A,gr A gk < 0,
(ii) dropping all terms with (a, 8) # (o', 8'),
(#ii) dropping all terms with k # k'.

We start using the full rotating-wave approximation (7)-(7ii), but we
shall have to partially release it later to allow for the exceptionally small
energy scales occurring in the vicinity of quasienergy crossings. In this way,
we obtain a quantum-mechanical master equation in the usual form [26-29],

éazc:z(t, tO) = Z(Wauguu(t7 tO) - Wuagoza(t7 tO)) ]

v
Taptste) = =3 > (Woa + W,5)5as(t,t0), a#B8,  (17)
v

where
oQ

Wap = D [Yapk + nun(l8apkl) Yapr + Vpa—i)] »

k=—o0
Yapk = 270(Aagk)S(Aapk)| Xagkl® s
Fap(t) = (dalto)la(t)|da(to)) -
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Eq. (17) comprises a closed subset of equations for the approach of the
diagonal elements towards a steady state, and another subset describing
the decay of the non-diagonal elements. The time-independent coefficients
W, contain the specifics of the potential and driving via the quasienergy
differences A, g. Besides the slow dynamics generated by Eq. (17), observ-
ables show an additional periodic time dependence, with the period of the
driving, which persists even in the steady state. It enters through the time
dependence of the quasienergy states |¢p4(t)) upon calculating expectation
values. Eq. (17) amounts, within the approximations made, to a quantiza-
tion of the driven bistable Duffing oscillator in the limit of weak damping,
whose classical chaotic dynamics has been studies in Refs [29, 30].
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Fig. 3. Driven tunneling with dissipation. (a) Time evolution of PY¥(0)(t,) over
the first 10° time steps; (b) local spectral two-point correlation function P-f(o)(n)
obtained from (a). The parameter values are as in the corresponding conservative
case shown in Fig. 1 (repeated here as dashed lines), but with a finite damping

constant, y = 4.10"% at T = 0.

Fig. 3(a) shows the time evolution of Po{*0)(t,) = tr(a(ts, te)o(ta)),
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Fig. 4. Tunneling in the periodically driven double well with dissipation, for the
parameter values D = 6, S = 0.08485, v = 10~%, and T = 0. (a) Time evolution of
the autocorrelation function P?(°)(t, ), over the first 3-10* time steps, starting from
a coherent state centered at one of the classical attractors withing the right well; (b)
Fourier transform of (a), corresponding to the local spectral correlation function
(dashed: the same function for the undamped system); (c) coordinate distribution
at selected times ¢, (graph 1: n = 20, 2: n = 40, 3: n = 8910, 4: n = 5- 10%)
as marked in part (a), and stationary state {thick line); (d), (¢} Husimi represen-
tations of the steady state, compared with the corresponding classical stationary
distribution (sharp peaks) at t,, (d) and ¢, + 7/2w (e); (f) classical phase-space
portrait of the steady state of an ensemble of noisy trajectories {see text), for the
same classical parameters and at the same phase as in {d) (dot clouds), compared
with the corresponding deterministic point attractors (heavy dots) and the full
(i.e., non-strobed) periodic orbits to which they belong (full lines).

with an initial state o(tg) = |[¥(t0))(¥(te)| and parameters of Hpw as in
Fig. 1, but with the finite damping constant y = 4 - 1075, at zero tem-
perature. The complex quantum beats, characteristic of the corresponding
conservative system (dashed line), die out and give way to a steady state
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with a finite constant value of P?(%)(¢,) (the periodic time dependence of
the steady state persisting in a periodically driven system is invisible in a
stroboscopic plot like this). The broadening of the quasienergy levels, due to
the incoherent transitions described by Eq. (8), can be read off the Fourier
transform of P?(t0)(t,,), Fig. 3(b).

In Fig. 4, we present the quantum dynamics generated by the master
equation (17), at a parameter point (D = 6, w = 0.9, and S = 0.08485)
where the driving frequency w is close to the fundamental resonance, for
¥ =10"% and T = 0. A pure, coherent state centered at one of the clas-
sical attractors within the right well served as the initial state. Fig. 4(a)
shows the time evolution of the autocorrelation function at discrete times
as in Fig. 3(a). There is a slow oscillation of P°(t0)(t,) between 0 and
1 which corresponds, up to an augmented rate, to the familiar tunnel-
ing, and there is a superposed fast oscillation of smaller amplitude due
to the participation of additional quasienergy states. The corresponding
local spectral two-point correlation function is shown in Fig. 4(b): It re-
flects the primary effect of the incoherent processes induced by the reser-
voir, a broadening of the quasienergy levels. The broadening is not uniform

0.0 . r : .
0 10° 2 10° 410° 6 10° 8 108 1107
n
1.00 +—
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T=[0,0.01]
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Fig. 5. Coherent suppression of tunneling in the presence of dissipation. (a) Time
evolution of the autocorrelation function P?(°)(t,), over the first 107 time steps,
at a parameter point (D = 2, S = 3.171- 1072, and w = 0.01) close to a manifold
where the tunnel splitting vanishes, for vy = 1078, a cutoff frequency w, = 1, and
various values of T, starting from a coherent state centered in one of the wells; (b)
the first 2 - 10 time steps from (a) on an enlarged time scale); (c) temperature
dependence of the decay time T of P?(°)(2,) (defined by P°(%)(t,) ~ exp(—n/T))
for three values of the detuning Aw = w — wioc(S) from the localization manifold
(graph 1: Aw = —1.4-1077, asin part (a), 2: Aw =5.0-10"7 at §$ = 3.1712- 1073,
3: Aw=1.4.10"% at § = 3.1715- 1073). The other parameters are as in part (a).
The data shown do not extend down to T' = 0, where 7{T'} diverges, but start only
with the rising part of this function.

but lets the high-frequency components, contributed by quasienergy pairs
separated by a large quasienergy difference, decay faster, as should be ex-
pected from the Ohmic reservoir coupling. The spatially resolved states
P(z,t,) = (2]|o(tn,to)|z) after 20 (graph 1), 40 (2), 8910 (3), and 5 - 10*
(4) periods of the driving, respectively, as well as for t — oo, are presented
in Fig. 4(c). While the slow oscillation ((1,2) — 3) corresponds to a flow
of probability between the two potential wells, the fast oscillations are as-
sociated with transport within the wells. The transport can no longer be
attributed to only a few quasienergy states, but it still has the character of
a coherent process without close similarity to the classical phase-space flow.
The stationary state (thick line in Fig. 4(c)), in turn, does bear the signa-
ture of the classical dynamics. Fig. 4(d) shows a phase-space representation
of this state in terms of the Husimi function {31]. A comparison with the
corresponding stationary state of the deterministic (i.e., noise-free) classical
system [29, 30] (sharp peaks in Fig. 4(d)) demonstrates that the occurrence
of two pairs of maxima (each pair rotates with the phase of the driving) co-
incides with the bifurcation of the classical stationary distribution into two
separate point attractors (in the stroboscopic dynamics) in each well. Each
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of these pairs of attractors rotates with the phase of the driving: Fig. 4(e) is
analogous to Fig. 4(d), but delayed in phase by /2 (due to the symmetry,
Eq. (4), the corresponding states at phase 7 and 37 /2 are related to those
shown in Figs 4(d),(e), respectively, by reflections with respect to the ori-
gin). The broadening of the quantum-mechanical stationary distributions is
essentially an incoherence effect caused by reservoir-induced noise. This is
demonstrated in Fig. 4(f): In order to simulate the coupling of the spatial
coordinate to the reservoir (see Eq. (7)), we generated noisy classical trajec-
tories by adding uncorrelated Gaussian noise in the z-direction, with arbi-
trary strength and in time steps much smaller than the driving period. The
dot clouds in Fig. 4(f) represent the stationary state of this ensemble corre-
sponding to, and at the same phase as, the state shown in Fig. 4(d). Despite
the very crude modeling, we find a good qualitative agreement. The compar-
ison of the noisy ensemble with the full phase-space traces of the associated
deterministic classical attractors (continuous lines in Fig. 4(f)) shows in ad-
dition that both classical and reservoir-induced quantum-mechanical noise
act predominantly in the direction of the stationary deterministic classi-
cal flow. (For the present parameter values, there is a fifth classical point
attractor which, however, has no discernible counterpart in the quantal
stationary state.) Fig. 5 is devoted to the influence of dissipation on the
coherent suppression of tunneling. In the vicinity of the manifold where
the relevant quasienergy crossing occurs, the conservative time evolution
contains very small energy scales and correspondingly large time scales. In
order to obtain an adequate description by the master equation for o(t), we
start from the full Eq. (12) and restrict the rotating-wave approximation to
its part (iii), .e., drop only the terms with k # k'. Figs 5(a) and 5(b) show
the time evolution as in Fig. 2(b), but for parameters of the driven double
well slightly offset from the localization manifold, for ¥ = 10~° and various
values of T. For small temperature, P°(*)(¢,,) exhibits a slowly decaying
coherent oscillation with a very long period, due to the small detuning from
the quasienergy crossing (the fast decay of superposed oscillations that re-
flect the admixture of other quasienergy states, which is present also here,
is shown in Fig. 5(b)). Asymptotically, the distribution among the wells is
completely thermalized. With increasing temperature, the decay time of the
coherent oscillation first decreases until this oscillation is suppressed from
the beginning (not shown in Fig. 5(c), see below). After going through a
minimum, however, the thermalization time increases again. At a charac-
teristic temperature T*, this time scale reaches a resonance-like mazimum
where the incoherent processes induced by the reservoir stabilize the local-
ization of the wave packet in one of the wells and thus compensate for the
detuning introduced deliberately. In Fig. 5(c), we present the temperature

dependence of the decay time 7 (defined by Po(to)(t.) = exp(—n/T)) for
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three values of the detuning Aw = w — w),(5): With increasing Aw, the
maximum is shifted towards higher temperatures and decreases in height.

5. Summary

The present work is intended to give an overview over various aspects of
tunneling in a double well under the influence of periodic driving. (For the
effects of periodic driving on the tunneling decay out of a single metastable
well, see Ref. [32].) The basic notions to discuss a periodically driven quan-
tal dynamics are provided by Floquet theory, a time-domain analogue of
Bloch theory: Quasienergies and quasienergy eigenstates replace the fa-
miliar concepts of energy eigenvalues and eigenstates, respectively. Conse-
quently, driven tunneling is adequately analyzed in terms of the quasiener-
gies that contribute to the time evolution of a state initially localized in one
of the wells.

In the limits of slow and of fast driving, the familiar tunneling dy-
namics is merely accelerated. Qualitative modifications occur where the
quasienergies corresponding to the groundstate doublet of the unperturbed
double well interact, in parameter space, with quasienergies corresponding
to higher-lying unperturbed eigenenergies. In particular, avoided crossings
can lead to quite complex quantum beats, while at specific exact crossings
which form one-dimensional manifolds in parameter space, an almost com-
plete suppression of tunneling occurs. It is essentially a two-quasienergy
interference phenomenon, in fact much of it can be understood in terms of
a two-state approximation of the double well.

Towards the classical limit, both diffusive transport due to classical
chaos and incoherent processes induced by the environment become signif-
icant ingredients of the physics of the driven double well. A dissipative
dynamics, introduced by coupling the double well to a reservoir, leads to
a broadening of the quasienergy lines and to a corresponding decay of the
complex quantum beats observed in the conservative case. The steady states
approached by this system form the quantal analogues of the attractors of
the damped bistable Duffing oscillator. In contrast, the coherent suppression
of tunneling shows a less obvious response to incoherent perturbations: At
a suitably chosen temperature, it is stabilized rather than destroyed by the
coupling to the environment. This surprising result bears some resemblance
of the stabilization of classical instable equilibrium states by multiplicative
noise [33, 34], but it is not yet understood quantitatively.

One of us (BO) acknowledges financial support by the State of Bavaria.
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