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The classic Granato-Liicke model for dislocation damping is revis-
ited by accounting for possible refinements to the basic vibrating string
mechanism. We argue that the perturbation approach, which consists in
separating the (linear) dislocation dynamics from the equilibrium lattice
environment, is not suitable, no matter how accurate the description of
the coupling, to explain the finite decrement function observed experi-
mentally in a variety of samples at vanishingly small frequencies. A few
ideas for a more general theory are discussed in some detail.

PACS numbers: 61.72. Bb

1. Introduction

The attenuation of sound waves in crystals was the subject of a tremen-
dous amount of both experimental and theoretical work in the 50’s and early
60’s [1, 2]. As the military industry focus shifted towards microelectronics,
the interest for physical acoustics seemed to fade away. A surge of fresh
curiosity has been reported recently in the literature concerned with the
problem of extremely accurate mechanical measurements [3, 4]. In partic-
ular, the approval of two big experiments for the interferometric detection
of gravitational waves (the American project LIGO and the French-Italian
collaboration VIRGO) stimulated new investigations on the role of internal
friction crystals. As a matter of fact, the purpose of the above experiments
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boils down to measuring of the response of a forced mechanical pendulum
(the single mirrors suspended in the interferometric cavity), where the ma-
jor source of uncertainty comes from the internal (or thermal) noise in the
suspension device (typically, wires made of metallic alloys or fused quartz).

The motion of a defect known as a dislocation provides a very efficient
mechanism of dissipation of mechanical energy in lattice structures (7, 8]
under the operating conditions of both LIGO and VIRGO gravitational
antennas. The first experimental evidence of the role of dislocations as a
source of internal friction in crystals was produced back in the early 40’s
[9, 10] by studying the dependence of the decrement function A of a sample
(defined as the ratio of the energy lost per cycle to half the maximum stored
energy) on the orientation of the crystallographic axes [9], the impurity
density [7], and small plastic deformations in the elastic stress-strain regime
[10].

In spite of the very many parameters required for an exhaustive ex-
planation of the phenomenon of dislocation damping, most experimental
observations may be interpreted, at least qualitatively, in terms of a very
simple model: the vibrating string model. Such a model was fully developed
by Granato and Liicke (GL model [7, 11}]) and is outlined in the forthcom-
ing Section. In Sections 3-7 we present a number of refinements of the
basic dissipation mechanism and estimate the relevant corrections to the
earliest predictions of the GL model. In particular, we discuss the choice
of a suitable impurity distribution (Section 3), the effects of the impurity
diffusion (Section 4) and finite temperature (Section 5), the limit of weak
dislocation-impurity interaction (Section 6) and the role of lattice interac-
tions (Section 7). We conclude our analysis in Section 8 pointing out that
the GL model is very unlikely to explain the finite values of the decrement
function at vanishingly small acoustic frequencies observed experimentally
for a variety of samples over the last three decades [4, 5, 8, 12]. Finally,
we suggest that a stick-and-slip mechanism of dislocation diffusion may be
more appropriate to interpret the experiments on crystal internal friction
at low frequencies.

2. The Granato—Liicke model

A great many people contributed to the development of the so-called
GL model. For a historical presentation the reader is referred to Granato
and Liicke review paper [7]). In order to appreciate the basic mechanism
of such a model, it is necessary to know only little of dislocation theory
[2]. A dislocation line is a linear imperfection in a lattice structure. At its
center line (assimilated here to a string) the lattice is strongly disturbed,
whereas at distances much larger than the lattice spacing(s) the disturbance
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is described by an elastic stress field, that is a permanent shear deformation
or slip step at infinite distance. The type of dislocations, of interest for
the present analysis, are able to glide along certain crystallographic planes
(slip planes) under the action of an applied stress. The magnitude and
direction of the slip step is characterized by the Burgers vector b of the
dislocation. Thus, if a dislocation segment of length ! moves a distance
£, its inelastic contribution to the strain ep is given by blf. An external
shear stress with perpendicular component ¢ in the dislocation slip plane,
exerts a force bo on a dislocation of length unity. The possibility for the
dislocation to move in the presence of an external stress diminishes the
sample elastic constant. The resistive forces which oppose the free motion
of dislocations in a crystal are responsible for the mechanical energy losses
known as dislocation damping. The relevant decrement function is defined

intermsof c and ep as A = Gifa—:gfn

In a real crystal glissile dislocations break up to form a network of dis-
location segments (or loops) with a characteristic length L in the range
[10~% — 1073] cm or wider, depending on the material and preparation of
the sample [1]. It is usually assumed that the loops are tightly pinned at
the network nodes [2]. Defects such as impurities, vacancies and intersti-
tials, have a lower energy near the core of a dislocation than in the good
lattice and, therefore, act as pinning-points on the network loops. More-
over, at finite temperature defects like impurities are free to diffuse and,
as a consequence of their interaction with the dislocation line, their linear
concentration ¢ on the loops attains a higher equilibrium value than the
average lattice concentration cg, i.e.

|Ec|) , (2.1)

¢ = ¢o exp (—k-l—,—

where E¢ is the negative impurity—dislocation interaction energy introduced
by Cottrell {1, 2].

Under stress the network loops bow out like an elastic string, being
held back at the pinning-points (Fig. 1). The energy of a bowed out loop
is greater than that of a straight loop pinned by the same pair of fired
impurities, due to the fact that its length is greater. Such an effective loop
tension provides the restoring mechanism in the vibrating string model for
dislocations. If the applied stress is large enough, the force exerted on the
loops at the pins can be thus strong as to overcome the Cottrell binding
force and the so-called depinning (or breakaway) process sets in.

It is apparent that the loss is made up of two different contributions.
The first type of loss is due to the frictional force acting upon the moving
dislocation loop as a result of its interaction with the lattice environment.
The physical sources of such a drag force are discussed briefly in Section 8.
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Fig. 1. Examples of pinned network loop. Solid dots: the network nodes at the
end-points, circles: pinning-points randomly (a) and equally spaced (b); solid and
dashed curves represent the dislocation loop under increasing stress.

The vibrating string takes on a phase-lag with respect to a weak oscillating
external stress. The resulting dynamic loss is frequency dependent, since the
underlying dissipative mechanism is a resonant one. The second type of loss
is due to the depinning of dislocation segments connecting adjoint defects,
say impurities, in the presence of a stronger oscillating stress (Fig.1(b)).
During the unloading part of the stress cycle, the network loop segments
get pinned down again, possibly back into the initial relaxed configuration,
but following a different path and, thus, giving rise to a hysteresis cycle. The
resulting loss is proportional to the area encircled by the stress-dislocation
strain cycle (o, ep). Since for a given stress amplitude such a hysteresis
cycle is mostly a microscopic property of the individual sample, this type
of loss is expected to be frequency independent.

2.1. The dislocation resonance loss

A single pinned-down dislocation loop obeys the following partial dif-
ferential equation for an elastic string [7]
9%¢ o€ 0%¢
A—+B—= - C—= = bo(t 2.2
o2 T B O =00 (2.22)
where £ = £(y, t) and the boundary conditions are £(0, t) = £(I,t) = 0.
Here y denotes the coordinate of an element of a dislocation line of length {
at rest on the positive y-semi axis and £ is its displacement in the direction
of an applied perpendicular stress ¢ = o(z,t). The parameters A, B and
C are the effective string mass, the viscous (or drag) force and the effec-
tive tension per unit of dislocation length, respectively. In GL calculations
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the random force attached to the drag force by the fluctuation-dissipation
theorem, is neglected relative to the oscillating bias generated by the exter-
nal stress without loss of generality. The stress wave travelling through a
crystal embedding a dislocation network obeys a further partial differential
equation {7]

8%c p 8%

9z G 0t?
where p is the density of the material, G the shear modulus and A the total
length of dislocation line per unit of volume. The average loop displacement
£ is defined as (1/1) fol £(y, t)dy.

The decrement function Agr(w), corresponding to the dynamic loss in
the vibrating string model (2.2), has been calculated explicitly by Granato
and Liicke {11] for an arbitrary travelling stress wave o(z, t). However, on
choosing o(z, t) = o coswt, the resonance contribution of A(w) can be cast
in the more tractable form:

a2
= Apbwf(l,t), (22b)

Ap(w) = PAG fozr/w £(l,t)oq sinwtdt

fo.“/w ag cos? widt

(2.3)

Solving Eq. (2.2a) for the fundamental string mode and making use of
definition (2.3), one obtains the approximate solution

AR) a2 = (24)
’ [1-(2)7] +()*(2)
where A 8GY? B _wC\/?
o= 4= «=7(3)

2 is an orientation ratio (the square of the resolved shear stress in the slip
plane to the square of the applied stress) and the subscript R denotes the
resonance loss

The experimental consequences of Eq. (2.4) are discussed in detail in
Ref. [7]. Here, we limit ourselves to remember that for most high-purity
metals at not too low temperature w% > 1, i.e. the string dynamics (2.2) is

overdamped and Eq. (2.4) may be simplified as

Agp(w) 9 WT
—— = QA —— 2.5
Ag 14 (wr)?’ (2:5)
where 7 = _52 = —512 The temperature dependence of the relaxation

time 7 is due mainly to the power-like temperature dependence of B (see
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Section 8). Therefore, no activation mechanism is involved in the process.
Most notably, Ap(w) is independent of the stress amplitude and tends to
zero for both w — 0 and w — oco. As anticipated in the Introduction, the
prediction Ag(0) = 0 is contradicted by the experimental evidence.

2.2. The dislocation breakaway loss

Breakaway of dislocations from a pinning-point occurs when the force
applied on a dislocation segment just exceeds that exerted on the segment
by the pinning-point itself. For the adjacent loops of length I; and I; in
Fig. 1(b), the former force is given by bo(l; + I3)/2, whereas the pinning
force at zero temperature can be estimated in terms of the Cottrell energy
Ec, i.e. |Ec|/b. Therefore, the breakaway stress o, is given locally by the
condition boy(l1 +12)/2 = |Ec|/b (single-pin approzimation). In most cases,
this value for o is much smaller than the value estimated by Frank and Read
[2] for the breakaway stress op from a network node oy € ¢p = Gb/Ly.
It follows that the longest pair of pinned loops in a network segment are
likely to breakaway first, thus causing the remaining loops to unpin. This is
certainly the case if the pins lie on a straight segment connecting the relevant
network nodes. However, different network loops have different length and
pinning-point distribution and, consequently, different breakaway stresses
(13, 14].

To calculate the amplitude dependence of the decrement function,
Granato and Liicke introduced the following simplifying assumptions about
the equilibrium distribution function N(!) of the loop length I: (7) all of
the network loop length L) are the same size; (i1) Ly > Lp where Lp
is the average value of the loop length I; I is distributed according to the
maximally uncorrelated distribution compatible with the model, i.e. an ex-
ponential distribution [15] (see Section 3). Under these assumptions the
decrement function at zero forcing frequency reads (7, 11]:

4]

Ap(0) _Ln4B 9B exp ( UB) , (2.6)
Ao Ter ao

where oy is the stress amplitude, o g is the average breakaway stress and the
subscript B denotes the breakaway loss. In particular, Ag denotes the total
length of the dislocation line per unit of volume involved in the breakaway
process. The strain amplitude dependence (¢ = ¢/G) predicted in Eq. (2.6)
is in generally good agreement with the experimental observations at finite
temperature.

In the vibrating string model, the dynamics and the very nature of dis-
locations are highly idealized leaving the reader with the task of introducing
the refinements needed to fully interpret the results of measurements carried
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out on real samples. For instance, the energy of a dislocation is distributed
over a cylinder with radius of the order b and, therefore, interactions be-
tween adjacent loops may become appreciable {16], the line tension depends
upon the type of dislocation and may be affected by anisotropy [17]. Al
though such effects could not be estimated quantitatively, it is believed [18)
that they can be averaged out by rescaling suitably the model parameters.
Fortunately, a number of more conspicuous effects can be treated analyti-
cally as shown in the forthcoming Section with particular attention to the
problem of the residual resonance loss at zero frequency.

3. The loop distribution function

Since the earliest formulations of the dislocation string model it was un-
derstood that the appropriate choice for the loop-length distribution N ({) is
a crucial ingredient to achieve a favourahle agreement with the experimental
measurements [15]. For instance, the resonant peak of Ag(w) for a single
vibrating dislocation loop (2.4)-(2.5) is too narrow when compared with the
measurements of the decrement function in the MHz-range. On the other
hand, the exponential expression for N(!) introduced by Granato and Liicke
to determine Ag(0), Eq. (2.6), was justified by neglecting the pinning-point
dynamics. In the present Section we derive a more general expression for
N(l) based on equilibrium thermodynamics. We remark that at the basis of
the GL model is the factorization of the dislocation dynamics from the lat-
tice dynamics, which is made up mainly of vibrational modes (phonons) and
defect diffusion. Whithin such an approach, which is uitimately questioned
in the conclusions of the present paper, a few specific assumptions may be
introduced safely. Due to the interactions with the dislocation line, impuri-
ties migrate through lattice structure to form a “Cottrell atmosphere” (2.1)
around the network segments. At zero temperature a dislocation network
segment is pinned down by impurities and no thermal depinning is to be
considered (see Section 5). At thermal equilibrium and in the absence of
external stresses, it is conceivable that the impurities are arranged like in
Fig. 1(a), rather than like in Fig. 1(b). The dislocation tension drags the
pinning-points of the network loop close to the straight segment connect-
ing the network nodes. The impurities are relatively free to diffuse along a
vibrating dislocation line, whereas the transverse movement is suppressed
by lattice interactions (i.e. it takes place on too long a time scale). A net-
work loop of length Ly is thus modellized as in Fig. 2: a vibrating elastic
string pinned at its end-points A and B and passing through a number of
small rings free to glide along the segment AB of length L (the movable
pinning-points) subject to viscous friction.
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Fig. 2. Example of dislocation loop pinned down by diffusing impurities.

In the presence of a constant external stress ¢ the distribution function
N(l,0) is obtained by minimizing the total free energy F(o) of the system
string+pinning-points under the following constraints:

Ly
/N(l, o)dl =1, (3.1)
0
and Ly
/lN(l,cr)dl: Lp. (3.2)
0

The average dislocation loop length at o = 0is Lp = L /N, by definition.
The total free energy has been calculated, under the assumptions spelled
above, by Bauer [19] and Alefeld [20]:

Ly
F(c) = NkT / N( o) N (o) + 21 - poi¥)a (3.3)
0

apart from an irrelevant additive constant. The meaning of the parameters
a, a and f is illustrated now in some detail.
The quantity F(o) is made up of three distinct contributions:

(1) configurational free energy: the first term is the free energy related to
the distribution of the N — 1 pinning-points along the network segment
discretized in unit cells with length a (typically the relevant lattice spac-
ing). This is a purely configurational term, where the string dynamics
and the external stress o play no role. When used to calculate N (!, o),
such a free energy term yields the o-independent expression [15]

N(l) = ——;exp ( - —) (3.4)

employed in Section 2.2.
(2) wvibrational free energy: the second term accounts for the vibrational
modes of the pinning dislocation-network loop. On neglecting lattice
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interactions (whose treatment is postponed to Section 7) and assum-
ing the condition of strong pinning (when ignoring thermal depinning,
dislocation breakaway can only take place when locally ¢ > op), the
calculation of the classical vibrational free energy term is straightfor-
ward [19]. The parameter a is a function of a Debye characteristic
temperature @ p of the dislocation line a = @p /4T + In(@p/T) — 1.
Most notably, one can verify that the classical internal energy per unit
of length of a vibrating dislocation line in the absence of applied stress
is exactly kT, as expected. It follows that the internal (or thermal)
stress due to the string vibrations gives rise to no net force on the
pinning points parallel to the dislocation line. Furthermore, the loop
length distribution function (3.4) is left unchanged when including the
vibrational free energy term.

(3) stress dependent free energy: as shown by the third free energy term,
coupling the dislocation line with an external stress o affects the loop
length distribution appreciably even for values of ¢ less than opg. The
potential energy of an elastic string in the presence of a constant stress
o can be easily calculated under the simplifying assumptions introduced
above [19]. The string straight line is deformed into an arc of parabola,
whose potential energy, —Bc?l® with 8 = b%/24CkT, appears in the
corresponding free energy term of Eq. (3.3). From the stress dependent
term of the potential energy one derives an expression for the force
acting on the n-th pinning-point parallel to the dislocation line

(ba)?

As a consequence of impurity diffusion, the shorter loops tend to get

shorter and vice versa.

The latter statement is confirmed by the explicit calculation of N(I, 7).
Minimized F(o) (3.3) with the constraints (3.1) and (3.2) yields [21]:

L—lgexp(‘fl‘;) (o< oc)
g )l o ()] 2o
(3.6)

where L, = (Bo%L%,)"! and o¢ = (N/ﬂL?\,)l/z. As expected, when o¢
is exceeded and o¢ <« op, most of the N loops are compressed by a few
loops that grow to large dimensions. It is understood that for the fraction
of the dislocation network loops for which o > op the above distribution
collapses to [11]

N(l,o)=28(l-Ln). (3.7)
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The pinning-point diffusion makes the transition from the exponential dis-
tribution (3.4) to the entirely depinned configuration (3.7) smoother than
anticipated in Section 2.1.

We make now a few important remarks:

(i) the single vibrating-string prediction for the decrement function Ap(w)
in Eqs (2.4)—(2.5) should be averaged over the loop length distribution
(3.6),

Ly

Ap(w) ~ Apw) = [ Ap@)N@ o)L, (3.8)
0

thus obtaining the observed broadening of the resonance peak at around
wo [7];

(i1) due to possible entropy variations, a more general expression for the
impurity “Cottrell atmosphere” (2.1) is

Fe

¢ = cg exp ( kT) , (3.9)
where Fo is the free energy contribution E¢ — T'Sc associated with
accommodating one extra impurity on the thermalized dislocation line
(19, 20]. Accordingly, S¢ = —k+ % In ¢ (apart from a negligible additive
constant);

(iii) the estimate of Section 2.1. for the mechanical breakaway stress op
should be modified, as well. When accounting for impurity diffusion, a
simple free-energy argument leads to [19]

kT
= g, 3.10

whence the inequality og > o¢ for most experimental samples.

4. Pinning-point diffusion

In the foregoing Section we showed that the string-impurity interaction
determines a correlation in the loop length distribution at equilibrium. How-
ever, impurity diffusion also affects the relazation properties of the string-
impurity system, thus making a generalization of the GL calculation of the
decrement function necessary. Although such very notion has been around
in the literature since the work of Yamafuji and Bauer [21], we introduce
here an explicit expression for the diffusion controlled decrement Ap(w).

Our starting point is the model for the string-impurity system outlined
in Section 3. We keep neglecting lattice interactions and the transverse mo-
tion of the pinning-points relative to the dislocation line. As a matter of
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fact, at room temperature the rms stress exerted on a dislocation loop length
I by the thermalized vibrational modes of the string (thermal stress), is ap-
proximated to [19] oy =~ (8/<:TG'/L:}’,)1/2 and is quite large, o, ~ Noc.
Moreover, the transverse force acting on the n-th pinning-point in the pres-
ence of the applied stress o is [19] 10b(l,, + I,41). Experimentally, the
applied stress oscillates in time o(t) = og coswt, whereas oy, (t) may be
represented as a zero-mean random process. In conclusion, the net trans-
verse force exerted by the vibrating string on a pinning-point vanishes when
time averaged on many a forcing cycle. A few exceptional cases where the
above assumption is not tenable are quoted, for instance, in Ref. [2] (see p.
78).

The zero temperature limit invoked in Section 3 should be taken with
some caution. It is generally meant that thermal depinning may be safely
neglected (kT < |Ec¢|, so that oy, < o¢), whereas the impurity diffusion
coefficient along the dislocation line Dp = kT /vyp is finite (and, in general,
much larger than the bulk diffusion coefficient). The relevant frictional
drag coefficient 7p is taken constant at temperatures where the thermal
activation energy kT is much larger than the lattice potential barriers (i.e.
T > Op with O p the Peierls temperature). Of course, corrections to Ag(w)
due to impurity diffusion are expected at frequencies much lower than the
characteristic relaxation time of the loop length distribution function.

The time dependence of N (I, o) is described by the following Fokker—
Planck equation [21]

0

gN(I,a;t)—: 2Dp—[—'f(l’a) 9

T ta

ot al ]N(I, a;t), (4.1)

where the generalized force f(I,0) acting on the pinning-points is derived
from the relevant free energy, :.e.

kT 8N(l,0)

fho)= Nao) a

(4.2)

and, by definition, N(l,0) = tlim N(l,0;t) is the equilibrium distribution
— 00

(3.6). On assuming for simplicity and without loss of generality that ¢ < o¢,
the diffusion equation (4.1) boils down to

0 gl 1 0

5l Ts &] N(l,o;:t). (4.3)

The relaxation time of N({, o;t) follows immediately 7 = 2L§>/Dp, so that
impurity diffusion effects on dislocation damping are expected for wr < 1.
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Values of 7 of the order 1 sec are commonly measured for sound attenuation
(20, 21].

The calculation of the diffusion controlled decrement function Ap(w)
runs parallel to the GL derivation. We remember that in the absence of
diffusion ! is a constant and definition (2.3) can be rewritten as

el
==

Ap(w) Tmé(h, )], (4.4)
where £(I,w) denotes the relevant Fourier coefficient of £(I,t). Due to dif-

fusion [ becomes a random variable with stationary distribution (3.4). It is
then natural to replace £(I,¢) with the two-time quantity

Ly
1 -
i 0/ 1(0)E(I(t), )N (1, 0)dl. (4.5)

On substituting Eqs (3.11) and (4.5) into Eq. (4.4) one obtains

2n/w
AD(w):zi’Z” / (E(I(2), £)1(0)) sinwtdt , (4.6)
0

where (...) denotes the average in Eq. (4.5) and the subscript D denotes
the diffusion controlled loss. The general expression (4.6) can be made more
tractable by rewriting /(t) as Lp + é(t) and approximating £(I(t),t) with

E(Lp,t) + 5 (Lp,t)81(t), whence

2nfw  _
2G AN ¢ .
e 5L (EOI(0) sinwtde.  (4.7)
0

Ap(w) = Ap(w) +

The Fokker-Planck equation (4.3) can be solved analytically [22]. Stan-
dard calculations yield the following asymptotic behaviour for the auto-
correlation function of §I(¢)

Jlim (51(2)51(0)) ~ % exp (-f—]_g) , (4.8)

with (812) = L%,. Accordingly, the impurity diffusion contribution to Ap(w)
has the same dependence as Ap(w) for w — 0. We are thus led to conclude
that the observed residual decrement at zero frequency cannot be explained
in terms of a purely diffusive model.
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5. Thermal depinning

In this Section we summarize the results of a score of papers [23-25]
devoted to the study of a more realistic depinning mechanism. First of all, if
we neglect the phenomenon of impurity diffusion, the bare string-impurity
interaction potential can be represented by a function U(£) (£ is the string
displacement from the relaxed straight-segment configuration) with a finite
characteristic range r. As pointed out by Cottrell first (for a review see Refs
(23] and [24]), U(€) has the shape of a smooth potential well with depth Up
and horizontal asymptote as y — +oo. The actual analytical expression
for U(¢) is immaterial, here. Secondly, depinning takes place due to either
an external applied stress of magnitude o larger than the breakaway value
op introduced in Section 2, or thermal activation [22]. Indeed, thermal
fluctuations may help the dislocation line to overcome the binding potential
even in the presence of relatively small stress bias. We formulate here the
treatment of Refs [23] and [24] as a nucleation mechanism [26, 27].

Let us consider the dislocation network loop of length Ly of Section
2. Onm including the interaction terms with an impurity distribution p(y),
but still neglecting lattice interactions, Eq. (2.2) in the overdamped limit
(A = 0) becomes

d o? oU
Ba—f - CB;E— = bo — p(y) aég) + n(y,t). (5.1)

Here, contrary to Eq. (2.2), o is a positive constant and the zero mean,
Gaussian, delta correlated spatio-temporal noise 7(y,t) is included explic-
itly, (n(y,t)n(0,0)) = 2BkTé(y)é(t). On further ignoring impurity diffusion,
we can assume a uniform pin distribution

p(y) = %- (5.2)

In the continuum limit, implicit in Eq. (5.1), such a choice is equivalent to
the equally spaced pin distribution of Fig. 1(b).

For low stress values Eqs (5.1) and (5.2) admit two constant solutions
for £(y,t). On setting its Lh.s. term equal to zero, Eq. (5.1) admits two

solutions for
U

rbLp

o<opg= (5.3)
For the potential shape U({) described above, one of the two solutions
€ (€ < r) is stable and the other one &, (£, > r) is unstable. The rest
configuration of the dislocation loop in the presence of a uniform impurity
distribution is, thus, given by {(y,t) = &&. Eq. (5.3) provides a more
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realistic estimate for op than reported in Section 2. The condition (5.3) is
required to maintain the metastable nature of the system. As a matter of
fact, thermal depinning is the mechanism which allows the string to jump
out of the pinned configuration {; into the unpinned configuration £ = oc.
Eq. (5.1) admits of another stationary solution &,(y) with boundary
conditions £,(y) — & as y — Zoo. Such a solution is a critical nucleus
which acts just as a saddle-point configuration in the relevant nucleation
process [26]. If thermal fluctuations feed energy onto the string up to the &,
configuration, then, the nucleus walls can be pulled apart by the constant
stress . Such a mechanism for the string to overcome the potential barrier
that confines it at around &, requires only a finite activation energy [22, 23]

&n(y) U U 1/2
Un(o) = (8C)'/2 / [—zf) — bo€ - ———éi) dy. (5.4)
{s

The analytical expression for £,(y) depends on the choice of the potential
U(€) and is generally unknown. To a very rough approximation ,(y) can
be envisaged as a square tooth with characteristic length 2y;,.

The thermal depinning rate g can be calculated in terms of the quan-
tities y, and U,. The rate u is a typical Arrhenius rate

it = uexp<~U2f;)>, (5.5)

where the effective “attack frequency” v is a complicated function of y,, Uy,
and T [26, 27].

On rescaling Eq. (5.1) for the stationary string configurations by posing
£ & y— ¥Land U(y) — u(y) = U(Y)/UsLp, that is

2
o< _ ' (y) +

baL2P _
0y?

Cr

0, (5.6)

with A = %,’ng, we can distinguish two limiting cases:
(i) continuous pinning approzimation. A loop of length 2Lp pinned at
fixed points is distorted by an external constant stress into a parabola
branch, e.g. £ = %(L%, — y?). The stress that causes such a loop,
obtained by depinning the string locally from a single pinning point at

y = 0, to bow a distance of the order 7 is

2Cr op

=T (5.7)
L% X

(51
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Now, on assuming that the Cottrell potential U({) has a finite range
r it is clear that breakaway from a single pin should be impossible at
o < o1 [24]. Hence, contrary to the earlier model proposed by GL,
depinning may only occur if the dislocation moves away from a group
of pins: the breakaway is a cooperative process. Under the restriction
0 € og < o7 or, equivalently, A < 1 (short loops), yn and Uy, can be
obtained formally by integrating Eq. (5.6):

En(y)
1/2 U -1/2
yn=(§) /[m;ff)—bas———UL(f)] dy,  (5.8)
s

while Uy, is given in Eq. (5.4). Approximate expressions for y, and Uy,
are given in Ref. [24]:

1 (20U, \'/? 2
Yn = ‘6‘;( Lp ) y Un= 5(2yn)U0 . (5'9)

single-pin approzimation. The single-pin mechanism outlined in Sec-
tion 2 gets more and more accurate as o increases ahove o; and ap-
proaches og. Therefore, the single-pin approximation gives a reason-
ably good estimate for Uy(c) in the range [03, op]. Furthermore, it
should be noticed that the critical nucleus overlaps several pinning-
points for o < ﬁ%, as one sees by equating y, in Eq. (5.9) to Lp. This
remark is consistent with the approximations in (i) for A < 1. In the
limit of long loops (A > 1}, instead, this suggests us to restrict ourselves
to stress value f—'ﬁ; € o € op, whereas the reader is referred to the
original work on the subject [24] for a more exhaustive treatment. The
string segment undergoes a parallel librational movement in the effec-
tive binding potential made up of the Cottrell potential and the tilting
term due to the applied stress. Since the latter term is depressed with
respect to the former one by the small coupling factor 1/, one guesses
immediately that

tn~Lp, U,~Up. (5.10)

This guess is confirmed by the analytical calculations of Refs {23] and
[24] and supports the earliest formulation of the GL model in Section 2.

The conclusion of both the present and the foregoing Sections is that the

dislocation breakaway stress o¢ in the presence of impurity diffusion alone is
given in Eq. (3.10) and should be compared with o; in Eq. (5.7). A detailed
analysis of the depinning mechanism in the (o, T') plane is expounded in
Ref. [24]. The ratio of the pinned to the depinned dislocation loops varies
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widely in the different regions of the (o, T') plane, the results of Section 4 (no
thermal depinning) and 5 (no impurity diffusion) being tenable for suitably
small values of T and o, respectively. However, no matter what (o, T) plane
region, the decrement function A(w) at small applied stress values retains
its resonant behaviour, t.e. A(w) ~w as w — 0.

On passing we derive what experimentalists call the T-dependence of
op. When o approaches op with g < o¢ (or, equivalently, when ne-
glecting impurity diffusion), the approximate expressions for Up(c), (5.9)
and (5.10), are not valid any more. After expanding the effective binding
potential at around the barrier, straightforward algebraic manipulations of
the integral (5.4) for 0 ~ o lead to [24]

o \5/4
Un ~ Uo(1- U—g) (A<1) (5.11)
and 32
o
Un ~ Us (1 - E) A>1). (5.12)
Substituting Eqs (5.11) and (5.12) into Eq. (5.5) and solving with respect
to o yield
ET . v\*©
TY=op|l-cal ==InZ) |, 5.13
oa(T) = a1 - ca( 102} | (513)

with a = 4/5 for A € 1, a = 2/3 for A > 1, ¢4 a constant of the order
unity and v the T-dependent attack frequency of Eq. (5.5). The stress
og(T) is the effective breakaway stress at finite temperature reported in
the literature [1]. The calculation of og(T) for the case o < op is much
more complicated. As suggested by a wealth of measurements on different
materials (1}, og(T') is expected to decrease anyway with increasing the
temperature (by a factor up to 50% for T from 0 to 600 K).

6. Nonlinear effects

In the foregoing Sections we assumed that the pinning-points are all
distributed along the straight segments connecting the network nodes by
the pair: a single network loop gets pinned by the impurities lying nearest
to the relevant such a segment and, ultimately, lines them up onto it. This
mechanism is tenable only when the impurity density is very low. In the
opposite limit the dislocation line cannot be represented by a sequence of
pinned vibrating string segments. A sounder picture is provided by a string
&(y,t) moving in a random background potential (see Fig. 3). Such a po-
tential originates from the overlap of the Cottrell potentials attached to the
individual impurities. On assuming for simplicity a high and homogeneous
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Fig. 3. Example of weakly pinned dislocation loop. Pinners are represented by
circles.

pin distribution on the slip plane, the statistics of the random force exerted
on the string becomes Gaussian and almost delta-correlated (weak pinning).
The latter property is justified when the average inter-impurity distance is
much smaller than L. The combined action of the background potential
and thermal fluctuations is, thus, represented by a Gaussian random force
7(y, t) with zero mean and auto-correlation function

(n(y,t)n(0,0)) = 2D58(y)é(¢) - (6.1)

The noise intensity D, depends on both the temperature and the impurity
density of the material under study.

In the presence of an applied stress o(t) directed, for instance, perpen-
dicular to the y-axis like in Fig. 3, the bias exerted on the string is

bocosa = ba[l + (g—j)z] o o~ ba[l — %(2—5)2 +] . (6.2)

Indeed, since each element of the string is locally pinned, the stress compo-
nent tangent to £(y, t) is ineffective, that is, the relevant bias is compensated
by the pinning force. Eq. (6.2) brings in a nonlinear term in the correspond-
ing equation of motion for an overdamped dislocation line,

2
g% 0%, ba(t)(g_j

ot 0y? 2
Eq. (6.3) coincides formally with the Kardar-Parisi-Zhang (KPZ) equation
for the growth of interface profiles {28]. The main feature of the KPZ model
is the appearance of very large fluctuations (anomalous diffusion [29]) as
an effect of the nonlinear self-coupling term. In particular, by means of
renormalization group techniques one obtains

EITN;
Jim (55 (5,0)5:(50)) ~ 412 (6.4)

)" = bo(t) + (s, 1). (6:3)

The exponent 4/3 of the power-law (6.4) is in excess of 1, the exponent of
the Einstein diffusion law.
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In order to estimate the effects of such large fluctuations on the decre-
ment function at zero frequency, we assume that w is so small that o(t)
can be taken constant over the time interval required for the anomalous
diffusion to set in. The corresponding constant bias in Eq. (6.3) produces
a shift of the string parallel to itself and can be taken care of by a suitable
Galilean transformation. We are thus left with the task of calculating the
excess noise [29] for the diffusing string in the presence of a constant bias.
In the present dislocation, model dissipation is a local process and should be

computed for each infinitesimal element of the vibrating string g—gdy. From

Eq. (6.4) it follows immediately that the power-spectrum of % (%) in the

regime of anomalous diffusion decays according to the power-law w~1/3,
This is the excess noise law for our driven dislocation line subject to weak
pinning. The w-dependence of Ag(w) for w — 0 is obtained by multiplying
the excess-noise power-law times the linear contribution of the resonance
loss at low frequency, i.e.

1

“I’iglo Ap(w) ~ Y w3, (6.5)

The main conclusion of the present Section is that nonlinear effects play

an important role at low frequencies. Even if this is not enough to sort out
the puzzle of the finite resonance decrement at zero frequency, the law in
Eq. (6.5) seems to come much closer to the experimental observations than
the GL model: due to nonlinearity, Ag(w) decreases with w slower over
the entire frequency range spanned by measurements {4, 8] than predicted
by the linear models. Unfortunately, we would obtain a finite value for
Ag(0) in Eq. (6.5), only by replacing the exponent 4/3 in Eq. (6.4) with 2
(ballistic diffusion). However, in such a case the whole procedure outlined
here would be not tenable any longer, being the ballistic diffusion accounted
for by merely rescaling the (almost) constant translation speed of the string.

7. Lattice interactions

As early as 1954 Bordoni {30, 31] discovered that the decrement function
of certain materials show a maximum on varying the temperature at a fixed
forcing frequency. Seeger and Schiller [32] proposed that the Bordoni peak
is caused by a thermally activated relaxation process involving dislocations
in their slip plane. Indeed, the energy per unit of length of a dislocation,
which lies parallel to one of the close-packed directions of the lattice, is a
periodic function of its position

abop 27

Up(€) = -5 cos ¢, (7.1)
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where a is the lattice spacing and op is the Peierls stress. i.e. the stress per

unit of dislocation length needed to overcome a Peierls potential valley (7.1)

without the aid of thermal fluctuations. At finite temperature, however, a

dislocation line lying in one Peierls valley can pass over into an adjacent

valley even for 0 < op. The thermal activation mechanism involved is very
much the same nucleation mechanism described in Section 5.

The equation of motion for an overdamped string subject to the Peierls

potential (7.1) reads

2
p% 2t
at dy?

2
= bo — opbsin _7r_£ + n(y,t), (7.2)
a

where notation is as in Section 5. On noting that Eq. (7.2) is a perturbed
sine-Gordon (SG) equation, the formalism of Refs [26] and [27] applies im-
mediately. A dislocation line thrown across Np+1 Peierls valleys is made of
Np +1 straight segments resting at the bottom of the potential troughs and
Np short domain walls which bridge two adjacent segments (Fig. 4). The
width of such walls is of the order w(a) = (aC/2r0opb)'/? and their rest en-
ergy follows from the unperturbed SG equation (7.2) with A = ¢ =T = 0,
i.e. Ep = CMp = 2a(2abopC/x3)!/%. The applied stress ¢ exerts a pulling
force on the walls to the right or to the left in such a way that the string
slips in the direction of the stress itself. We agree to call kinks the walls
moving to the left and antikinks the walls moving to the right. If the total
number of kinks and antikinks N = N + Ng in a dislocation length is
small, t.e. L/N > w, a dislocation line obeying the perturbed SG equation
(7.2) is approximated to a linear superposition of kinks and antikinks ( delute
gas approzimation).

i
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i
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i
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Fig. 4. Example of a dislocation line in the presence lattice potential. Horizontal
lines: Peierls valleys; vertical lines: Schottky valleys; solid and dashed curves
represent the dislocation line under increasing stress.

At low applied stress the dislocation line can move by two mechanisms:
(i) pair nucleation. This mechanism dominates when the dislocation line
runs parallel to the Peierls valleys and has been invoked by Seeger
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to explain the appearance of the Bordoni peak. Thermal nucleation
of kink-antikink pairs is also responsible for the thermalization of the
dislocation line towards a configuration characterized by Ng kinks and
N g -antikinks such that [Ny — Ng| = Np, the number of so-called
geometric kinks (antikinks) and N + Ni — Np = 2Lng(T) where

12 1 E E
no(T) = (2)"/ ;ﬁexp (;%) ; (7.3)

is the kink (antikink) density at thermal equilibrium. The parameters
Un and yy of Section 5 can be calculated exactly for the SG string. The
nucleation rate of kink-antikink pairs gp is, thus, determined analyt-
ically for the whole intensity range of the applied stress. Since we do
not make use of such a quantity in the following, we refer the interested
reader to Refs [26] and [27] for the relevant analytical expressions.
kink-antikink diffusion. Sidewise movements of the Np kinks (antikinks)
— we neglect for simplicity the thermal pairs with density (7.3) — are
caused by both the applied stress and the thermal noise n(y,t). It has
been shown that in the dilute gas approximation (kT < Ep) kinks
(antikinks) can be treated like non-interacting quasi-particles with rest
mass Mp and radius w. The single kink (antikink) dynamics is de-
scribed by the Langevin equation

2
i= —qut —F + (1), (7.4)
Ep

where u(t) denotes the speed of the kink (antikink) center of mass,
¥ = B is the viscosity coefficient, F' = abo /27 is the magnitude of
the bias exerted by the stress ¢ upon a quasiparticle and + refers
to kinks and antikinks, respectively. The random force 7(t) is a zero
mean-valued Gaussian noise with auto-correlation function (n(t)n(0)) =
(2vkT/Ep)é(t). The stochastic kink (antikink) speed admits of finite
mean value up = £27 F/yEp and variance kT/Ep.

We calculate now the decrement function in the presence of lattice in-

teractions. The analytical approach of GL is not viable here due to the
nonlinearity of the Peierls potential. An alternative approach is due to
Seeger and Schiller [32]. These authors replace the vibrating string of the
GL model with a chain of interacting quasi-particles, say kinks as shown
in Fig. 4 (kink model). It is well-known from the analytical solution of the
unperturbed SG equation that a kink passes through an antikink, but is
reflected by the another kink, and vice versa. The relevant interaction po-
tentials are short ranged. Typically, the repulsive kink-kink potential Ug (s)
decays like Ca%/2s at short relative distance s, i.e. for s < w. If we assume
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that a dislocation loop L is pinned between two points separated by Np
Peierls valleys as in Fig. 4(a), the Np geometric kinks repel each other until
they achieve an uniform distribution with spacing s9 = L/Np. The orien-
tation of the dislocation line with respect to the Peierls valleys is given by
the angle ¢, sin¢ = a/so. Let us denote the position of the i-th kink by y;.
The equation of motion for the Np kinks in the small oscillations limit is

Ep§; + 7Epy; = aba(t) + 2k (yi—1 — 29i + Yit1) - (7.5)

The elastic constant kg has been derived from Ug(s), kg = Ca?/2s},
and the random force 7(t) neglected compared to the sinusoidal bias due to
o(t) = oge'™t. The calculation of Apg(w) for the system (7.5) is now trivial.
At low frequencies [32]

™ A(lL¢) d w
Ap(w) ~ ﬁAGWEE, (7.6)

where A(l, @) is the total length per unit of the volume of the dislocation
loops with length [ and orientation ¢. Taking the average over ¢ yields the
string model result (2.5) for the resonant loss a part from a multiplicative
factor of order unity.

The linear kink model (7.5) should be taken with some caution (for a
detailed discussion of its equivalence with the string model see Section VIB
of Ref. [32]). Since Ug(s) is a short range potential, Ux(s) ~ exp(—s/w)
for s > w, a finite value for kg exists only if sin¢ > a/w(a). On passing,
we remark that the condition that the dislocation loop is pinned down at
the end points requires that Np|dUg /ds| < abog/2n, whence

ab op

Np < ———.
7C sin? ¢

(7.7)

In the opposite limit sin¢ < 1 Seeger and Schiller prediction for Ag(w),
Eq. (7.6), does not apply. The geometric kinks distributed along the disloca-
tion line undergo a Brownian motion of the type described by the Langevin
equation (7.4) and interact with one another elastically. Moreover, nucle-
ation of thermal pairs with density (7.3) introduces nonlinear corrections to
the single kink (antikink) dynamics. Not surprisingly, the phenomenon of
anomalous diffusion has been observed in the kink model, as well. The y;(t)
autocorrelation functions grow with time according to a power-law with ex-
ponent %/, thus producing the same excess noise in the string model (6.3).
(For details see Ref. [27] and references therein.) Therefore, the conclusions
of Section 6 about the effects of nonlinearity, see Eq. (6.5), hold good also
when the lattice interactions are included: The kink model cannot account
for finite values of AR(0).
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A further complication which might restrict the validity of the kink
model arises when one tries to include the lattice substrate interactions.
As shown by Schottky [33] this breaches the translational invariance of the
kink (antikink) solution, due the appearance of shallow potential valleys
(Schottky valleys) which intersect the Peierls valleys (Fig. 4). On assuming
that the two families of valleys are orthogonal and applying the technique
developed in Ref. [34], we obtain the relevant Langevin equation for a single

kink (antikink)

2w 27 27
i=-vy = E;F - EFS sin (-C—;y) , (7.8)
where y(t) is the coordinate of the quasi-particle center of mass, a' is the
substrate spacing, Fs = a'bog/2nch(r?w/a') and o, denotes the Schottky
stress, 1.e. the stress required for a dislocation line of unity length to over-
come a Schottky barrier at zero temperature. It should be noticed that the
result in Eq. (7.8) is valid for o < op, only. For the sake of comparison we
remember that the typical values of op in fcc metal lattices range between
1073 to 1073G, whereas the corresponding values of o5 are smaller by a
factor of the order 10% or larger. Note that for such materials s may be
bigger that the breakaway stress op by one or two orders of magnitude.

The presence of Schottky potential barriers in Eq. (7.8) posses an im-
portant restriction on the number of Peierls valleys that a string of length L
can cross. On increasing Np the inter-kink spacing s¢ may decrease to val-
ues smaller than a'. This process takes place by rearranging the geometric
kinks to form incommensurate spatial patterns, which resemble themselves
a kink structure of the Schottky potential (super-kinks). A fraction AN
of kinks is, thus, forced to reside at the top of Schottky barriers and, as a
result, an internal stress is exerted on the pinning-points. On comparing
such an internal stress with the hreakaway stress one concludes that the
pinning condition requires

AN < ——=Np. (7.9)
a og

Finally, we comment on the relevance of the lattice interactions at high
temperature. The Peierls temperature @ p is defined as

kO@p = hwp (7.10)
withw? = 2rbop/aA — see Eq. (7.1). In the overdamped regime wg /d > 1

adopted throughout this Section, the string dynamics becomes purely dif-
fusive at temperatures much larger than @ p(wp/d) as well-known from the
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theory of dissipative quantum tunnelling [35]. In most experimental mea-
surements [1] such a condition is not fulfilled and lattice interactions do play
a relevant role.

8. Conclusions

The vibrating string model proved successful in interpreting, at least
qualitatively, a great deal of experimental data and observation on sound
attenuation. Its refinements to include impurity diffusion and lattice in-
teractions (the kink model) provide a reasonable picture of dislocation dy-
namics in quasi-pure metals. However, a few conceptual difficulties have
been pointed out, which might be at the basis of its failure to explain the
measured residual friction at low frequency.

First of all, the drag force exerted on the vibrating string by the lattice
environment has been assumed to be a viscous friction with coefficient B(T').
Such an assumption is questionable, indeed. Contributions to the friction
force on the dislocation line are of two types:

(i) the phonon bath. The forced string dissipates mechanical energy by ra-
diating elastic waves (or phonons) which propagates through the lattice.
As a matter of fact, in the immediate vicinity of the dislocation core
the elastic strain is too large for the linear theory of elasticity to apply.
This means that phonons can be scattered, absorbed or radiated by the
dislocation. The coupling of dislocation with the phonon bath is even
stronger on the nonlinear branches of the string (namely, the kinks and
antikinks bridging Peierls valleys). The effective damping exerted by
an equilibrium phonon bath at temperature T on a kink is proportional

o (KT)? [36];

(1) nonlinear dynamics. When an unperturbed kink overcomes an obsta-
cle, like a Schottky barrier or a lattice defect, it gets accelerated and,
therefore, radiates elastic waves. The intensity of the radiative emis-
sion is a function of both the activation energy and the kink velocity.
This and other nonlinear mechanisms are operative even at zero tem-
perature. In the absence of detailed quantitative predictions it is hard
to assess the relative weight of contributions (i) and (%) to the drag
force on dislocations. Certainly, the viscous term in Eq. (2.2a) should
be replaced with a more complicated functional form B[] of the string
£(y,t) [36]. The separation of the dislocation dynamics on one side, and
the (unperturbed) crystal dynamics on the other, is a very difficult task
and its feasibility is far from being proved.

Secondly, the nature and the distribution of the defects in the crystal
may endanger the picture of Section 4. In a real sample there may exist dif-
ferent kinds of defects. Considering many mobile pinners on a line together
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with several immobile pinners, one finds clusters of them everywhere along
the line which grow and decay, disappear completely and appear again at
different positions. Moreover, a detailed balance of the pinner exchange
between the dislocation core and the Cottrell atmosphere is needed to ac-
count for impurity diffusion consistently with a general thermodynamical
approach. New arriving pinners are randomly distributed along the net-
work loops, Eq. (3.4), whereas the already existing pinning-points are likely
to be thermalized according to the correlated distribution (3.6). Thermal
hysteresis effects would ensue as a result in both cases.

Finally, we calculated Agr(w) by assuming that the depinning events
are uncorrelated (apart from the energy conservation requirement), whence
the statistical mechanical approach of Section 4. In a recent paper [37]
we argued that a stick-and-slip mechanism would be more appropriate to
describe the pinning-depinning phenomenon in a dislocation network. A
model of self-organized criticality has been proposed which allowed us to
calculate A(0) at low stress amplitudes. The very same idea could be gen-
eralized to account for another effect which went overlooked in Section 4.
The pinner sitting on a dislocation line do diffuse in a random potential due
to the action of thermal fluctuations and the dislocation line tension, but
also interact with one another. We believe that a stick-and-slip picture of
the impurity diffusion process or, alternatively, anomalous impurity diffu-
sion (Section 6) should not be discarded a priori. This question is matter
of ongoing research work.

This work has been supported by the Istituto Nazionale di Fisica Nu-
cleare (INFN) under the VIRGO project. The project leaders A. Giazotto
and A. Brillet are thanked for their assistance and encouragement.
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