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1. Introduction

The motion of a particle in a disordered medium has attracted consid-
erable interest during the recent years [1-3], due to the importance of this
problem in many fields of science such as the transport properties of porous
media, membranes or biological materials, the transmission of energy or ex-
citations in amorphous solids and imperfect crystals, or the transmission of
a signal in a perturbed system. Similar questions also arise, for instance, in
the theory of chemical reactivity, either for the macroscopic study of reac-
tion kinetics in a complex medium [4-7] or for the microscopic calculation
of rate constants in a dense phase (8, 9].

This problem is not only of great practical importance, but it is also very
interesting from the theoretical point of view; it has been shown in a variety
of cases that the fluctuations of the medium can play a predominant role
and lead to anomalous kinetic laws, differing completely from the behaviour
which can be expected from average properties or mean field theories [10].
However, if much work has been done on frozen disorder, where only space
correlations are taken into account, time fluctuations have not been as well
studied, although they obviously occur in many circumstances [11-14]. This
is for instance the case in the calculation of rate constants in a liquid phase:
the environment is always changing and the effective reaction potential,
implying the interactions of all neighbouring molecules with the reacting
complex, is strongly time-dependent; thus the time-averaged potential does
not represent the effect of the instantaneous potential correctly, excepted in
particular circumstances.

Our purpose is to model a time-dependent medium where the fluctua-
tions of the medium are spatially uncorrelated but have a finite correlation
time, so that it is needed to keep the past trajectories of a particle in mem-
ory in order to describe its motion. The medium will be represented by one-
and two-dimensional lattices with time-dependent nodes, which permits to
obtain a number of analytical results; on the other hand the models allow
numerical simulations of the problem with a reasonable computer time, in
spite of the finite memory of the medium.

We will first present one-dimensional models, which can be useful-in
the theory of reaction rates or in signal theory; in particular, it will be
shown that the coupling of the fluctuations of the medium with an arbitrary
random process can lead to examples of stochastic resonance.

Two-dimensional models will then be studied, mainly as models of dif-
fusion of a particle in a fluctuating environment. It will be shown that the
normal diffusion laws are modified by the memory of the medium, although
less strongly than observed for a spatially correlated medium.
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2. One-dimensional model: succession of fluctuating barriers

2.1. Introduction

In this section we study the evolution of a one-dimensional system, or
‘particle’, evolving according to a given stochastic process perturbed by
fluctuating obstacles. The unperturbed stochastic process can be rather
general and even non-Markovian, in a sense that will be precised later, but
its laws are supposed to be completely known; on the contrary the obstacles
are modelled in the simplest way by dichotonous barriers that, neverthe-
less, have a finite memory, the problem being to compute the overall laws of
evolution of the particle. It is first necessary to give some definitions con-
cerning the underlying stochastic process, which we call ‘reactive process’,
since it can be used to describe the kinetics of a chemical reaction or, more
generally, of many rate processes.

2.2. Model reactive process

We consider the stochastic motion of a particle, modeling for instance
a chemical reaction leading from a stable chemical species A (the reactant)
to another stable chemical species B (the product). The position of the
particle is determined by the coordinate z. We assume that the laws of
motion are known. In particular, if the particle moves between two points
a,b we can calculate the conditional probability of leaving the interval [a, b]
for the first time by the extremity b (resp. a) between times t and t + dt
knowing that the particle starts at time 0 with velocity v from z € {a,b].
We will denote these probabilities as p(B, t|z, v)dt (resp. p(A,tiz,v)dt).

v

A

-

A acb B "X

Fig. 1. Model bistable potential V(z): A, B: bounded states; {(a,b}: potential
barrier; c: top of the barrier.
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Such probabilities [15] are especially useful in the theory of chemical
reaction rates. If z is the reaction coordinate, the bound states Ay and By
of the stable chemical species correspond to two minima of the interaction
potential V(z), whereas (a,b) denotes the top of the potential barrier (see
Fig. 1). The reactant region A = {z : ¢ < a} and the product region
B = {z : 2 > b} are the regions where the chemical species A and B can be
identified. According to the definitions based on correlation functions, used
for instance by Chandler [16] and Hynes et al. [17], the rate constant k4p
of the reaction A — B can be written [9]

o0
1
kAB = q—/dt/dvp(B,ﬂl','U)vP(zav)a (1)
A
0

where p(z,v) is the equilibrium probability density at (z,v) and g4 is the
equilibrium probability of the reactant region 4. J(z,v) = vp(z,v) is the
equilibrium probability current at (z,v). z is an arbitrary point belonging
to (a,b) (kap is independent of z [9]). More general definitions of J and
kap can be given [18], but for the sake of simplicity we will not apply them
here.

Let us assume that there are only two possible velocities tv; this as-
sumption still leads to qualitatively reasonable models [9]. Then we get

- vp(_a___,v) i a,v
tan = 2 0/ dtp(B,1 | a,v) (2)
- E%l’lo/dt[p(s’,t | z,v) — p(B,t | z,-v)]. (2')

Here J, = |v|p(z, v) = {v|p(z)/2 is the one-way equilibrium current at z.
2.8. Fluctuating barriers
We now assume that dichotomous fluctuating barriers of zero width are
inserted at different points z3,z2,...,2, of the interval [a,b]. All barriers
are independent and obey the same law. Each barrier can be in two states: 0
(open) and 1 (closed). The waiting time in state ¢ (¢ = 0 or 1) is exponential

P(t; > t) = e Mt (3)

Ao and A; are positive numbers [13].
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The probability to find a barrier in state : knowing that it was in state
j at time ¢ is

pji(t) = aj + (8 — as)e ™, (4)

where §;; is the Kronecker symbol and
A= Xo+ A1, (5)
@ = A1/A, a1 = Ag/A, (6)

{a;} is the stationary probability distribution of the states of the barrier.

If the particle reaches the barrier when it is open (state 0), it crosses
the barrier instantaneously without changing its velocity; if the barrier is
closed (state 1), the particle is instantaneously reflected and its velocity is
reversed.

In order to compute the effect of the barriers on the overall process, we
assume that as soon as the particle crosses a barrier or is reflected, loses all
memory of past events, and that its future motion does not depend on the
previous value of velocity. The last condition is satisfied if, for instance, the
velocity is randomized each time the particle touches the barrier, or if the
particle can have only two velocities (+v); we will adopt the last hypothesis
in the following sections.

2.4. Effect of one fluctuating barrier

We assume that a fluctuating barrier of the previous kind is inserted in
some point ¢ of the potential barrier [a, b] separating the potential wells A
and B corresponding to the stable chemical species. This barrier can crudely
model the influence of a solvent molecule hindering the reaction; in the case
of signal transmission, it can represent a fluctuating inhomogeneity or defect
reflecting the signal {13]. The characteristic frequency of the passage from
A to B is given by the rate constant k4p (2) or (2°).

In order to calculate kpp for the overall process we introduce the fol-
lowing auxiliary conditional probability densities, defined supposing that ¢
is an absorbing point (which of course can be reached only when the barrier
is open

s;(B,t | ¢, +) is the probability density to be absorbed in B at time ¢,

starting at t = 0 just on the right of ¢ with velocity +v and the barrier

in state 1;

ro;:(¢, +,t | ¢, —) is defined in the same way for the particle starting just

on the left of ¢ with velocity —wv.

These auxiliary densities can be expressed in terms of quantities s and
r defined analogously but in the absence of the fluctuating barrier; s and r
depend only on the unperturbed stochastic process on the intervals [a, c] and
[c,b] and are supposed to be known.
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We assume that at ¢ = 0 the stationary probability to find the barrier

in the state ¢ has the value a; given by (6). Using definition (4) of the
transition probabilities ¢;;(t) of the barrier one can write

t
s;(B,t|c,+)=s(B,t]|c,+)+ / dt'gl(c,t -t e, =)eri(t)r(c, —,t| ¢, +),
0
(7a)
roi(c, —€,t| c,€) = poi(t)r(c, —,t]| c,€)

t
+ / dt'rg(c, &, t —t' | c,e)p1:(t)r(c, —€,t | ¢, +€), (7b)
0

where ¢ = +; —¢ is the sign opposite to ¢.
Introducing the Laplace transform of a function f(t)

oo

f(w) = / dte=*!£(t)

0

and defining

oo

7ii(e, —€,u ] c,€) = /(pji(t)r(c, —&,t] ¢, €)
0
aj

i

F(u) + (65: — aj)f(u+ A), (8)
we get from (7)

3(B,ulc,+)
9
1—-1"'11(c,—,u]c,+)’ ( a)
éO(B$u I = +) = E(B,u I ¢, +) + -‘il(B’u l C, +)7210(c’ —,u| c’+)s (gb)
fo1(c, e,u | ¢, —¢)

1= ia(c,e,u] ce)’ (9¢)
foolc,&,u ] ¢, —€) = Foo(c e, u| ¢, —€) + Foy(c, €, u | ¢, —€)F10(c,6,u ] ¢, —£).
(9d)

$1(B,ulc,+)=

iol(c) & u { c, _5) =

If u — 0, we get from (9)

5,=3,(0)= / dtsi(t), Rj; = #5(0), (10)
(1}
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in terms of § = 3(0) and R;; = #;;(0). In particular,

S = S
=1 ao(l - ’f‘(A))-{- ay S ’
__ S1-#N)
%% G- s o

Using densities s and r we can calculate the conditional probability
densities of absorption in B at time t starting at ¢ = 0 from ¢ with velocity
ev and the barrier being in state 0, po(B,t | c,e). We have

pO(B’t I ¢, +) :QO(B$t I c, +)

t
+/dt'p0(B,t—-t' | ¢, =)rgo(c, =t | c,+), (12a)
0

4

po(B,t|c,—)= [ dt'po(B,t —t' | c,+)rge(c, +,t' | ¢, —). (12b)

o,

These equations can be solved by Laplace transforms. We get the total
probability to be absorbed in B starting from ¢ with velocity +v

Py(Blc,+)= /dtpo(B,t e, +)
0
So(B e, +)
= s 13a
Ty P ey o ey A
Po(B l C,—) = /dtpo(B,t l c,—)
0
So(B | e, +)Rgo(c, +1 ¢, —
- . 13b
1- E00(6a+ } c, ")-—E-OO(C, - l c, +) ( )
Introducing
Y =Po(B|c,+)— Po(B|c,—) (14)

and noticing that

So(Ble,+) =1~ Ryple,~| e, +),
S-O(A!c?_)z 1—_}_{_00(6,+§C,—),
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we obtain
I 1 . 1
¥ S(Blet)  Se(Ale-)
The above relation can be deduced directly from the properties of
“chain-like” systems [9]. Using (11) we obtain [13]

-1. (15)

Lo ( : - 1 15’
y=p t e T L) (159

where 1) is defined similarly to 1, but in the ahsence of the fluctuating
barrier and we have introduced the condensed notation

#EA) = e, = A e, 4),
fac(/\) = T(C, +)’\lc3’)‘

If J. is the one-way equilibrium current at ¢ in the absence of the
fluctuating barrier, the corresponding current in the presence of the harrier
is agJ¢; the overall reaction rate kg is thus given by (2)

aOJc_":é’_
qA

(16)

kap =

and is related to the rate without barrier, kap = Jc.9¥/gqa by

kTST  RTST 1 1
-AB__ “AB_ +ﬂ( - —1), (17)
KAB kAB apg \ 1 — Tac(/\) 1—-7 C(/\)

if J./qa is identified with the rate LTST of the Transition State Theory
(which stipulates that the reaction is completes as soon as the particle
reaches c).

It is clear from (17) that when A increases from 0 to oo, kpp increases
from agkap to k3p, given by

kTST kTST 1 1 1

AB “AB
-AB_ — ~1+—-1 1
i =k e s teE TG )

(which value can be found directly using the inverse addition law for chain-
like systems[9]). It should be pointed out that the effective time-averaged
barrier would simply be a barrier reflecting the particle with probability
ay without the memory effects which corresponds to the limit k35 which
confirms that the fluctuating barrier cannot be correctly represented by a
static one. On the other hand, k4 p is always smaller than k4p, which,
although reasonable, is not completely obvious a priori. More precisely,
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k 4p increases from 0 to k4 when the probability ag increases from 0 to
1. We can summarize these remarks by noticing that

agkap < kap < kGp < kaB, (19)

so that the memory effects always decrease the reaction rate. This con-
clusion is one of the main results of this paper. It holds not only for the
particular cases studied here: it will be extended to a similar process includ-
ing two fluctuating barriers and the approximation developed in Section 2.6
indicates that the same conclusion should hold for any number of barriers.
It would be interesting to generalize it to other processes.

We will now see that the presence of several fluctuating barriers leads
to other interesting behaviours due to the possible trapping of the particle
between two barriers and to the corresponding memory effects.

2.5. Two fluctuating barriers and stochastic resonance

Let us now consider the particle moving according to a given stochastic
process on the interval [a,b]. In this interval, just beyond the points a
and b there are fluctuating barriers F4 and Fp. If one of these barriers is
open at the moment the particle reaches it, the particle is absorbed at the
corresponding extremity; if it is closed, the particle is reflected and loses
the memory of all past events (see Fig. 2). F4 and Fpg are independent and
obey the laws given in 2.3.

IFA s
| |
| |
1
! 1
! i
| 1
—le —
A a b B

Fig. 2. Stochastic motion with two fluctuating barriers: A, B: absorbing states;
Fa,Fg: fluctuating barriers; between a and b.

We first define the conditional probabilities corresponding to the stochas-
tic process without barriers in the way similar to (2.4):

s(B,t | a,+) is the probability density to be ahsorbed in B at time ¢,

starting from a with velocity +uv;

r(A,t | a,+) is the probability density to be absorbed in A with the

same conditions as above, etc.

We want to compute the overall probabilities for the system with fluc-
tuating barriers, such as
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P(B | a, +;1,j) — the total probability to be absorbed in B starting
from a with velocity +v and barriers F4 and Fpg in states i, j respectively.

The method is the same as in 2.4. However, the presence of two barriers
makes it more intricate. To simplify the problem, let us assume that the
process is symmetric, i.e.

s(B,t|a,+) = s(A,t] b =)= s(t), (20a)
r(A,t]a,+)=r(B,t]b,-)=r(t). (20b)
Then we have
P(B[as+;i1j):P(A‘b,_;j’i)siij3 (21&)
P(A|aa+;iaj):P(B|bs_;jai)5£ij' (21b)
It is particularly important to compute
So =Y Se;a; =Y P(B|a,+;0,5)a; (22)

J J
which is the average transmission probability for the particle starting from
a with velocity +v with F4 open and Fpg in its stationary distribution. It

can be shown [19] that
So=S5S+aXS, (23)

0]" _

X=R-S-#A)-a;35(A)Y 1,

Y=1- a]‘f‘(/\) — ao'f'(2/\) + 005(2A) ,

Sy =) 8,05 =[25+aX]7'S. (24)
j

with

S = /t)dt—s(o R=1-§
0

The above expressions, in spite of their complexity, can be investigated
analytically [19]. The main conclusions are that for any stochastic process
between a and b satisfying the conditions given in 2.3:

(i) when X increases from 0 to oo and ag is kept constant, S, always
increases from ag S to §/(ag + 2a;5); since the relaxation time of the
barriers is 1/, we can conclude that the transmission probability of the
system decreases as the memory increases, in analogy with the conclu-
sions of section 2, concerning one barrier.
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(ii) when aq is varied and A is kept constant, we have two cases depending
on the value of § (transmission probability in the absence of barriers):
- if § > 1/2, §; increases up to § as ag increases from 0 to 1;
- if § < 1/2, there are two values A* and A** (A* < A**) defined by

1-#A*)—-25=0,
[1 - #(A™) = 25][1 - #(A*)] - 2(A™) = 0,

such that

for A < A*, §, increases up to S as ag increases from 0 to 1;

for A* < A < A**, §, has a mazimum for some &g € (0,1). Sy(&o) > S;

for A > A**, S, > 5. Depending on the value of A, S, is monotonously

decreasing with ag (large A) or is nonmonotonous, with one or several
maxima.

Thus if § < 1/2 it is possible to improve and optimize the transmis-
sion probability by a convenient choice of ag (i.e. a convenient choice of,
the relaxation frequencies of states 0 and 1 of the barrier): this effect can
be considered as a stochastic resonance between the underlying stochastic
process in [a, b] and the fluctuations of the barriers.

2.6. Succession of n barriers

The calculations presented above become too complicated if the number
of barriers increases. We will now present a simple approximation for the
case of the ballistic motion between the barriers [13]; the time 7 = d/fv
of crossing the distance between two successive barriers is constant. We
assume that all barriers are independent, the parameter A is the same for
all barriers, but the values of af may be different for different barriers.

If 7 > A1, we can approximately neglect the memory of the barriers
and consider that the k—th barrier is in its stationary distribution {a¥}
when the particle reaches it. One can see from (4) that the probability
of any trajectory of the particle can be expanded in powers of e=*". The
zero order term corresponds to barriers without memory; the transmission
probability is then given by the inverse addition law of chain systems [9]. If
we introduce SB4A = P(B | a,+) = prohability to be eventually absorbed
in B, starting from a with velocity v, when all n barriers have no memory,

we get
n k
Z “lx (25)
k= Qg

a4 e, (25"
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The second term of the expansion is of order e 72*" and can be obtained
in the following way: we take an arbitrary trajectory from A to B, the
probability of which is calculated without memory (i.e. with the zero order
term of ¢;;(t)), and we add to this trajectory an excursion from barrier
k (k € [1,n]) to one of the accessible next neighbours k 4+ 1 and return to k:
the contribution of this excursion is calculated by using in ®;i(t) only the
term with e72*". Summing up all these contributions it is found that the

first correction to (25) is

s 1 s2sBA ] 1 1
o (—> =T =) atay™ [+ e™ 7 (26)
SBA (SBA)2 kg] a(l)c a(’;*f‘l

or for identical barriers

3 1 (01)2
8 | =55 ) = 2(n— 1), 27
(587) = 2n- {2 o)
Thus, in agreement with our previous conclusions, the overall trans-
mission probability always decreases because of the barrier memory in this
approximation, and the effect increases with the probability a;.

Fig. 3. Transition probability of a succession of 10 fluctuating barriers: Sap:
transmission probability; A: relaxation frequency of barriers; 7: time for ballistic
motion between two barriers; ag: a priory probability of presence of a barrier. Solid
lines: approximation (27); squares: numerical simulations.

Numerical simulations (Fig. 3) show that the present approximation is
satisfactory if A7 > 1 and if a; < 0.7. It is possible to compute higher terms
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4 —6AT
-

of the expansion, of successive orders e **7, e .5 the calculations
become quite complicate, but they significantly improve the agreement with
the results of simulations. Nevertheless if A7 <« 1 the particle can be trapped
for a long time between two barriers; so another kind of approximation has
to be found.

It can be noticed that in the present case of n identical barriers with
very short memory both the reaction time 784 « 1/SB4 and its first
correction §27B4 are of order of n when n > 1, so the flux SB4 and §2+B4
are of order 1/n. An interesting case occurs when the barriers have equal
), but different randomly distributed {a¥}. Formulas (25)-(26) apply for
B,A §2,.BA

each realization of {a*} and it can be shown [14] that T and

§B,4 §26BA are still of the respective orders n and 1/n. This is due to the
persistency of the particle motion, the displacement of the particle from a
barrier being (partially) determined in function of the initial velocity.

If the condition of persistency is dropped, we obtain a model equivalent
to the well known Sinai model [20]; it has been shown that in this case of

diffusion in a random medium the flux $&:4 has the anomalous dependence

1/y/n [21].

3. Two-dimensional case: motion in a fluctuating lattice
3.1. The model

We consider a square lattice with each node switching randomly be-
tween two states 0 and 1. The mean waiting time in each state follows the
exponential law (3); the transition probability ¢;;(t) is given by (4). All
nodes are fluctuating independently.

A particle is moving on the lattice and travels between two neighbouring
nodes in time 7 with constant velocity. At each node the direction of its
velocity may change depending on the current state ¢ of the node; it may
follow the same direction with probability p;, go backward with probability
g; or turn to the left or right with probability » or r~. For the sake of
simplicity we will take

=1, pi=p, q1=¢q tT=r"=r, (ptqg+2r=1)

This model [14] extrapolates between two limiting cases. For A = 0 the
model corresponds to a Lorentz gas (the movement of a particle in a static
medium). For A = oo we have a persistent random walk [22]; at each node,
the velocity may remain unchanged with probability ag + a;p, be reversed
with probability a;q or be rotated by +7 /2 with probability a;r.
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3.2. Transmission in a stratified medium

We consider a succession of n infinite horizontal layers (Fig. 4), suppos-
ing that they are uniform in the horizontal direction (Ox),i.e. all nodes of
a k-th layer have the same af (¢t = 0,1). The probabilities p, q,r are the
same for all nodes of the lattice.

T
RN
o [ |

Y P —
S—

Fig. 4. Model stratified medium: black circles: diffusive nodes (state 1); white
circles: open nodes (state 0).

For A = oo (no memory) the vertical motion (in (Oy) direction) is
equivalent to the one-dimensional motion considered in 2.6. The particle
may cross the k-th layer with probability

Py =ag+ai(p+r), (28)
or be reflected with probability
Qk:af(q—i—r). (28")

The overall probability of crossing n layers (from region A (y < 0) to
region B (y > n)) is

<Fx= 2 =rt1 (29)

For nodes with short memory (A7 > 1) we can generalize the approxi-
mation scheme described in 2.6 based on the expansion of the transmission
probability in powers of e “2*7. The first correction is due to excursion from
one node to a next neighbour and return, where the term in e=2*7 is taken
into account in ¢;;(27). Summing up all these contributions gives [14, 22]

52( ) Zakak+l a§ + g“ (30)
SBA 19 (Pk)z (Pk+1)2 )

Again it is seen that the memory effects make the transmission probability
to decrease.
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In fact, numerical simulations show that the approximation (30) is sat-
isfactory in most circumstances, unless A7 € 1 and ¢ < 1.

3.3. Diffusion in an infinite medium

It is interesting to consider the displacement r(t) of the particle during
time t in an infinite fluctuating lattice with identical nodes. Numerical
simulations show [14] that for any A the diffusive regime is established very
rapidly: \

<ri(t) >
w0
if t — oo.

Naturally, the diffusion coefficient D increases with ay (without any
particular behaviour at the percolation threshold ag ~ 0.41 [24]; D also
increases, but not very strongly, with the relaxation frequency X up to the
value for a persistent random walk (A = o0), given by

—

1+7 (31)

D=
179

PN

with
Y=g+ a(p—q).

In order to study the possible Gaussian character of the distribution of
r(t), one can consider the kurtosis[14, 25]

x = (r1(1)) - 2(r*(2))? (32)

which vanishes for a two-dimensional Gaussian distribution.

Computer simulations show that x/t2? varies quite differently from (r2)/t,
and on a very different time scale; it eventually drops to a very small (al-
though generally not 0, in times we could reach) plateau value, but only
long time after the diffusive regime has been established (Fig. 5). It can be
remarked that for A = oo, corresponding to a persistent random walk,

x/t* = -2y/(1-7). (33)

In the general case it is seen that the behaviour of x strongly depends on
the relaxation frequency A of the nodes; for A < 0.1, after a short transitory
time, x remains positive; for A > 0.1 it remains negative, finally for A ~ 0.1 x
vanishes after a time of the same order as the time for setting up the diffusive
regime. The positive kurtosis observed for very small values of A corresponds
to a distribution which is sharper around 0 than the Gaussian with the
same variance; this can be interpreted by remarking that the particle after
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Fig. 5. Diffusion coefficient and kurtosis in a fluctuating square lattice for different
values of ag (a priory probability of a state 0) and of A (relaxation frequency of
barriers): curves a: (r2)/t; curves b: x/t2.

escaping from the neighbourhood of the origin, does not return to 0 easily,
because it can be retained far away by local traps.

4. Conclusions

It has been shown that the motion of a particle in fluctuating media
depends significantly on the memory of the medium. In several cases exact
solutions were found; they show that the effective average potential does not
represent correctly the motion of the particle in the case of a finite memory
time A~1. They lead to the conclusion that the memory effects decrease the
overall transmission probability of the system. They also permit to exhibit
stochastic resonances, which can improve the overall transmission rate by
a convenient choice of the parameters of the obstacles. In the case of the
large number of fluctuating barriers or obstacles, approximations have been
proposed. These approximation give good results for small and moderate
correlation times of the barriers.
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The diffusion of a particle is also modified by the memory of a fluctuat-
ing lattice. The effect concerns mainly the shape of the particle distribution,
whereas a diffusive regime is rapidly established for all values of the memory
time. In any case, the influence of fluctuations in time is not so strong as
the influence of fluctuations in space, which can lead to anomalous kinetic
laws {10, 21, 25].
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