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Multiparton correlations in a QCD jet are calculated analytically in
the double logarithmic approximation for constant «,. For a well devel-
oped cascade, i.e. far from the low energy cut-off, correlations show char-
acteristic scale invariant power behaviour. Cumulant moments in re-
stricted angular cells also follow the power dependence on the volume
of a cell with known exponents.

PACS numbers: 12.38. Bx

1. Introduction

Perturbative QCD and its analytic solution has a long history [1-6].
The original success of the theory came from the description of the deep
inelastic scattering. In later years the time like region was also understood
and many predictions, e.g. for total multiplicity and single parton inclusive
densities, have been formulated and confronted with experiment. Theory
and experiment agree to such an extent that many physicists consider QCD
as a closed chapter. On the other hand the low energy nonperturbative sec-
tor of QCD remains an open problem, and questions of the confinement and
particle spectrum can be attacked only numerically [7]. There exists how-
ever an intriguing possibility that perturbative QCD “knows” more about
its low energy sector than could be a priori expected. In particular the
energy spectra of particles produced in ete™ collisions agree very well with
those of partons if the cascade is evolved to sufficiently low cutoffs. This
led to the concept of local parton hadron duality [8], which still puzzles
many people. It will be interesting to extend these studies to multiparton
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distributions. So far only correlations between parton energies have been
derived in Double Log Approximation (DLA) [9] and recently in modified
LLA [10].

Another recent interest in multiparticle correlations comes from the
studies of multiplicity fluctuations in variable phase space intervals [11,12]
and their possible connection to the underlying fractal structure of the QCD
cascade [13]. One can infer from these studies that the multiparticle correla-
tion functions increase for decreasing distance in a two- or three-dimensional
momentum space. This rises the question about the singularity structure
of multiparton densities, not fully addressed so far.

In this article we present a scheme to solve the fully differential mul-
tiparton densities. Then the explicit expressions for the two-gluon density
in the relative angle, and for the fully differential angular correlations are
given. We also prove the selfsimilarity of the QCD cascade at asymptoti-
cally high energies and derive intermittency exponents by direct calculation
of the multiplicity moments.

All results were obtained in the collaboration with Wolfgang Ochs. We
discuss here only the fixed a; case in DLA [14]. Generalization for the
running a, was also done recently [15,16].

2. A scheme to derive multiparton densities

The master equation for the generating functional of multiparton den-
sities [4,17] reads in the DLA [9]

Zp{u} = exp / Mp(K)uw(K)Z{u} - 11K |, (1)
p(K)

where the subscript P stands for the momentum vector of the parent parton
and the half opening angle (P = {P,@}); I'p(K) denotes the phase space
for the d*K integration (I'p(K) = {K : K < P,Oyp < O, KOyp > Qo}
where Qg is a cutoff parameter). Knowledge of the functional dependence
of Z{u} on u(g) is equivalent to knowing all normalized cross sections. For
example 567 /8u(ky)...8u(kn)Z{u} =0 = p(k1,...,ky) gives probability
densities for exclusive production, while Taylor expansion around u(E) =1
generates the inclusive densities

A gy k) = 6™ Zp{u}/6ukr) ... 6u(kn) |u=r - (2)

In general u(IZ) can be thought of as the profile or the acceptance function.

In particular setting u(l:) = v for all k gives the generating function of the
distribution of the total multiplicity.
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Differentiating functionally Eq.(1) we get integral equations for inclusive
multiparton densities

P = Me(k) + [ Me(I)pPWER,
r

P (ke k2) = P8 (k)03 (ka) + Mop(k2)p\D) (k2) + Mp (k2)p{)) (k1)

# [ Me(E)A k) K (4)
r

and for arbitrary order

P(;)(kla .. '7kn) = d(;l)(kla' "ak”) + / MP(I()p(I?)(kl’ ‘ "kn)daI(' (5)
r

Here, and in the following, the symbol I denotes generically all bound-
aries of the phase space integration, and Mp{K) is the probability for
bremsstrahlung of a single gluon

Qdf\’ dOpy dPpre
K Opxg 2=

Mp(K)YPK = a (6)

where a? = (2/7)Cya,.

In practical applications three diinensional integrals separate into usu-
ally simple momentumn integrals, and into 2-dimensional angular integrals
with often complicated boundaries. However, in the DLA one can simplify
boundary restrictions and reduce the number of relevant variables, by iden-
tifying the regions of the phase space which give the dominant logarithms.
In these regions only simple poles from inner bremsstrahlung dominate the
integrand. This “pole dominance” approximation is an inherent part of the
DLA and was used successfully for calculations of the total multiplicities
and momentum distributions [1-5]. We illustrate this approximation tech-
nique by solving Eq. (3) for the single parton inclusive distribution in k. To
this end we rewrite the d® K integration explicitly, see Fig. 1,

Fig. 1. Kinematics and variables of the integral equation, Eq. (8}, for the single
parton inclusive density.
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d[\ dflg
9, k, P) = k —
r

POk, k, K). (7)

Because of the angular ordering @ p¢ > @ . Consequently the dominating
singularities are those in @, @i ~ 0 . At this point Opy ~ Opy = 9.
Choosing the polar angle of the df2y integration as @) we get

W

dO g
Ok

P
P9,k P) = Mp(t) + 55 [ G - (0 ap(@rcn 1K) L (8)
k

"@\cz

where the factor in the square brackets does not have Born pole 0 2 . This
equation can be further simplified by introducing, natural for this problem,
variables z = In(P/k), z = In(K/k), ( = In(9Q¢/k), £ = In(OrQo/k)
and corresponding density p(z,() = d*n/dzd( = 27k39%p(9, k, P). Then

z ¢
pl(z,¢) = a? +a2/d2/d£p(z,£)- 9)
g 1]

This can be easily solved (e.g. by iteration) and gives

P (F) = Mp(F)Io(2a+/C). (10)

We now present our general solution for arbitrary density, Eq. (5). First,

it is easy to prove that the inhomogenous term d( ), which corresponds to
the direct emission from the parent parton, is bullt from various products
of the correlation functions of lower order. Only if all n derivatives act on
the Z function under the d*K integral in the exponent of Eq. (1) can we
recover the n-th order density. This gives the last term in Eq. (5). In all
other cases the n derivatives are split among various factors resulting from
the differentiation of the exponent giving various products of the densities
of lower order. Integral of any particular densiy, of lower than n order, can
be always replaced by the density itself and corresponding inhomogenous
term of yet lower order, by using apropriate integral equation for the lower
order.

Second, the unknown function p{™ appears only in the last term in
Eq. (5). Simplicity of this structure allows us immediately to solve equation
(5) by iterations



Solving QCD Cascade Twenty Years Later 1031

PV (ks k) = Z/d31{1...dBKrMp(KI)MKI(Kg)
1'=0P

Mg (KA (k) (11)

or symbolically

1
(n) _ _ ) o dl™. 12
? (1—M> (12)

Further, we note that all but one K,, integrations (m =1,...,7—1) can ac-
tually be done, since the complete K,,, dependences are given by the Born
cross sections and variable boundaries of the inner integrations. Hence
changing the orders of integrations we get the following integral representa-
tion of the solution

P (k1y o k) = S (R, k) + /Rp(K,a)d(I?)(k],...,kn)d3K,

r
(13)
where the resolvent Rp(K, o) is given by

Rp(K,0)=Y / PKooy . LK Mp(Ky).. My, (K).
r:]rv@K,_1K>°'
(14)
For constant as, Rp(K, o) can be calculated explicitly

Rp(K,0) = Mp(K)Is (2ey/In(PTK) In(0xp /7)) , (15)

but the results {13, 14] are valid for running a, as well. In these formulae o
is the minimal opening angle of a jet K and has to be determined for each
case separately; in general it depends on all momenta o = o(ky,...,ky, K),
for example, 0 = @y g for n = 1.

A role of o can be better understood if we consider in detail contribution
from the second iteration, see also Fig. 2,

P (K) = /d3K1Mp(K1)/d31(2MK1(1(2)d‘,?2’(;C). (16)
n ry

I'; and I'; denote appropriate boundaries resulting from all three constraints
I'p(Ky), ', (K2) and I'g,(K), where K denotes collectively all momenta
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Ky
Opx,

Fig. 2. Second iteration of the integral equation, Eq. (5).

of the final partons X = {ky,...,k,}. After changing the orders of the K,
and K, integration we get

pB(K) = / &K, / & Ky Mp (K1) M, (K2) | &P (K),
Iy [, Ok k,>0

(17)
which allows to identify the term in the square brackets with the second
order contribution to the resolvent, Eq. (14). However, because the K
integration is now done af fired K, its boundaries are influenced by the
constraints implied on Ky by the configuration of the final partons K. In
particular, angular ordering requires that O i, ¢, > (K, K2) with o defined
as above. Similar considerations lead to the general formula, Eqs. (14), (15)
with o being the lower cutoff of the emission angle @ py and, at the same
time, the opening angle or a measure of the “virtuality” of a jet K.

Eq. (13) has a simple interpretation in terms of the cascading process
(see Fig. 3). In fact, the resolvent Rp (K, o) is nothing but the inclusive dis-
tribution of a jet (K, o) in a jet (P, ®). Indeed the inclusive density of “el-
ementary” partons pg)(k), Eq. (10), coincides with the resolvent, Eq. (15),
if the angular cutoff for emission of an elementary parton Qo /k is replaced
by o for a virtual jet.

Egs. (13), (15) give the recursive prescription for explicit calculation of
general (fully or partly differential) multiparton densities of arbitrary order.

3. Correlation functions from the resolvent representation
3.1. Denstty in the relative angle

As a first application we consider the distribution of the relative angle
between two partons in a jet with primary parton momentum P and jet
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Fig. 3. Graphic representation of the integral equation, Eq. (5) {a}, its solution,
Eq. (13) (b), and of the equation for the single parton density or for the resolvent,

Eq. (15) (c).

half opening angle @ for fixed ay,
P (915, P,0) = /pg)(kl,kg)é(@hkz 9Pk ks, (18)

Integrating Eq. (4) over the phase space of final partons, at fixed 912, gives
the integral equation

P [C]
'
p®(915, P,O) = (912, P, O) / /—;p— (912, K, ). (19)
/912 I‘3‘12
The direct term is defined as
g(912, P,0) = /dg)(lﬂ'l,kz)ﬂ@klkz — D1a)d ke d ks . (20)

Here dg)(kl, k2) is given by the inhomogenous part of Eq. (4) and can be

written as d(?) = prod t+ dnest Where the “product” term corresponds to
two independent emissions from the primary parton (P — 1, P — 2) and
the “nested” term to chain emissions ( P -1 — 2 and P - 2 — 1).

In deriving Eq. (19) we have followed similar procedure which led to
Eq. (8). However now the polar angle ¥ = @pp, and as a consequence
the relative angle ¥;5 sets the lower hounds for ¥ and K integrations in
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accordance with our arguments following Eq. (7). Namely, the leading log-
arithms always emerge from K || k1(k2). In this configuration minimal
virtuality of a jet K, which subsequently emits a pair (ky, k;) with given
angular separation, is controlled by the relative angle ¥;,. Note that the in-
dividual directions 7, , iy, are already integrated over, therefore the “most
narrow” singularities @ gy, , @ g, ~ Qo/K are included in P (912, 9, K).
Therefore the relative angle ;3 is the only remaining scale controlling the
singularities of the integrand in Eq. (19). This is an important difference be-
tween the partially and fully differential correlations which will be discussed
later.
Equation (19) has the solution

dI( dW P @
o915, P,0) = g(13, P, ) / / (1 9012, K, ),
Qo/V12
(21)
with the resolvent
I(z,y) = Iy(2a+/In(z)In(y)) . (22)

After carrying out the momentum integrals in Eq. (20) the direct term can
be represented by products of single particle angular distributions

P(P])( z) =

zsinh(aln(d;/k))(k = Qo/P,¥; = Opy,)- (23)
1

In order to integrate the product term over the angles, Eq. (20) we use
again the pole dominance, this time however the kinematics is different. We
are looking now for the regions in the phase space of children partons k;,
k2 which give dominant logarithins at fized parent momentum P. Secondly,
the integrand in Eq. (20) contains products (in case of d;;,q) of singularities
in @ pg, and @ py,. In this situation our receipe reads

191')

dOpy,
gprod(1912)P7@)_p(P])(l91~) —t (l)(

@ Opiy) +(1=2),  (24)
/ Pky

i.e., the singular part around each pole (O py, ~ 0,say) is integrated down
to the elementary cutoff Qo /P while the remaining slowly varying function

pg)(@pkz(Opkl,ﬁlz,qb)) is approximated by its central value p( )(1912).
The upper bound for @ py, is chosen as ;2 since beyond this scale the
integrand does not have the logarithmic divergence. Final result is simple

)— 1}, (25)

2 12
Iprod(V12, P, O) = E%smh(aln T){cosh(
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while the nested term can be integrated exactly due to its hierarchical struc-
ture

2a® 04 0]
gnest(P12, P,O) = ——{cosh(aln —2) — 1}1n — .
V12 K V12
Note that integrating the direct term g,,,,q over the whole range of the
relative angles gives a square of the total multiplicity in a cone

(26)

©
PO :
/d1912gprod(19123 P, 0) = (COSh <aln 22—> - 1) = ﬁ(PG))z 3 (27)

0

as it should. This shows that our approximation, Eq. (24) correctly identifies
all leading logarithms.

+ exact (MC)

4
- pole dominance
0 i i i 3.
0 02 04 06 08 10

"n

Fig. 4. Test of the pole dominance in the angular correlations for two energies
(Y = In(P/Qo)). Comparison of the O(a*) double log formula (solid line) with the
MC integration over the final phase space.

To illustrate the quality of the pole dominance approximation we com-

pare results for g,,q at the Born-level. In this case p(PI)('é‘i, ki) ~ a?/(9?k?)
and the 6-fold integral in Eq. (20) can be calculated exactly by numerical
integration. The comparison between the exact result (MC method) and
the approximation is shown in Fig.4. Whereas the result of the exact cal-
culation vanishes for 9,2 — 0, in our approximation it vanishes already for
P12 — K; for 932 — © on the other hand our approximation yields too large
values. In between these limits there is a range of reasonable agreement and
it improves with the energy. This agrees with the known applicability range
of the DLA.
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With the direct term given by Eqgs. (25) and (26) the integral in Eq. (21)
can be done analytically yielding our final result

(2) _ @ = 2m+1 _ _21 . 1
p ("91271),@) - 1912 Z y I2m+l(z) 1912 sinh (4yz) ’ (28)

m=0

where y = 2/In(912/)/In(0/912), z = 2a+/In(912/k)In(0/912), and
I)(z) is the modified Bessel function of the order [. It turns out that this
sum is rapidly convergent and only few termns are sufficient for numerical
evaluation. The same result can be obtained by solving the corresponding
differential equation.

A particularly simple expression is obtained for the special point y = 1,

t.e. U192 = K.(O/rc)(l/s) = U, where one finds

< 4 e
P, P,O) = 5% <sinh<€a In Q) - 4sinh<§ln 9)) . (29)

K J K

This can be generalized by introducing a concept of the dual parame-
ters in resemblance to the statistical physics. Define the dual variables
914, P*, 0" such that y* = y(J7,, P*,0") = 1/y and z* = z. Then, there
exists a simple expression for the sum of the two correlations (p(9, P,0) =

(9/2a)p (D, P,O) + sinh (aln (I/x)))

5(9,P,0) + B(9", P*,0%) = sinh ( - (y + i)) . (30)

<

Dual relations of this type may have broader applications for fully differen-
tial correlations since then one has more flexibility to satisfy hoth relations
y* =1/y and z* = z.

In the high energy limit, k = Q¢/P — 0, our result, Eq. (28) assumes
a simple form (see Appendix A for the details)

2

) EIR 2a ) a/2
)y ~ 2 12
(02, P, O) = 297, ( ) (1912> ’ (31)

K

which proves a selfsimilar nature of the QCD cascade for fixed a,. Note
that this simple power law emerges only for the well developed cascade, i.e.
for ¥y, much bigger than the elementary cut-off. Eq. (31) represents the
two components of Eq. (21): the first two factors correspond to the direct
term (g =~ gprod in this limit), the last factor to the enhancement from the
emissions of the intermediate parent jets. The exponent in the first term
2a = 4,/3a, /27 agrees with the asymptotic result of Gustafson and Nilsson
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derived with a different method and for different observables [18]. However,
the last factor changes this result by 25%. In addition we find that the
dual sum, Eq. (30), is given exactly by Eq. (31). Hence in the combinations
analogous to (30) the terms nonleading in 9,2/ cancel. Finally, we observe
that, for 912 > k, the leading powers of 912/ cancel in the normalized
density,

()(9y,, P, 0
ri2(J12) = /22) (912 ) (32)
pp,.od(1912, Pa 0)
and we get the infrared safe and free of the narrow divergences result
o\ 9
Pz ~ ( ) , >, (33)
19]-_) K

where the deviation from unity is due to the emissions of the intermediate
parent jets.

3.2. Fully differential angular correlations

This calculation shares common features of both cases considered ear-
lier, namely the angular ordering in the single parton density, Eq. (8), and
integration of a product of the singularities as in Eq. (24). We begin by in-
tegrating our resolvent representation, Eq. (13) over parton momenta. One
obtains

pB (21, 12) = g2 (8, 92)

a® [dK d.QKI (P Opr

2 K’

(2)
2| Koz, ) 9510 (OKryOKck,) > (34)
with the resolvent I(z,y) defined in Eq. (22) and the inhomogenous term

given by the product

g2 (31,92) = p0(891)p3)(92), (35)

with the angular densities given by Eq. (23). Similarly to the previous cases,
nested terms do not contribute to the leading behaviour in the high energy
limit and will be neglected. If needed, they can be included without any
difficulty. Saturating the angular integration by two poles @ x4, (@ p,) ~ 0

we get for the connected correlation function, I'(2) = p(2) — p(1)(2),
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P
a3 dK P 9
I8, 05, 012) = & / I( 1 )

o7 K \K’ 914
Qo/Y12
1 0 )
— o) 9 / ——L{-k—lsinh(aln(——{{—k—l)) +(1—2 . 36
19§»°K( 12)'c Orcn, py (1-2) (36)
K

As before i was replaced by 7y, (7, in the 1 « 2 term) in all nonsingular
expressions. In particular, @pg — U3 and @y, — J12. Note also that
o(k1, k2, K} = ¥12 in this case since the minimal virtuality (emission angle
Opk) required for the parent K to emit k; is indeed controlled by 9,5 if
I?“i‘;l The upper limit of the @y, integration is given by 912 and not
by ©py, as one might have guessed from the angular ordering. This is a
consequence of the arguments following Eq. (24) !. For the same reason
the lower bound of the K integration is controlled by ¥;2 and not by @py, .
Integrating Eq. (36) we obtain

F§>2)(191,192,1912)
a? i 2 [\™H
= (2"‘—1)(—) Iyma2(2a+/1L1) + (1-2),(37
(27)2919%, 22, L e ] » (D

where | = In(¥;2/k), L1 = In(¥1/912) and 9;:(F2) > I3z respectively.
Eq. (37) is the new result for the full angular dependence of the two parton
correlation function in DLA. Similarly to the density in the relative angle,
Eq. (31), we find a characteristic power behaviour at high energies

) ~ a2 1 (E)Za 1 (.1.9..1_)‘1/2 + 1 (_1_91)(1/2 (38)
- 2(47!')2 19%2 K 19? '1912 19% ’!912 ’

which shows again the fractal (or intermittent) nature of the cascade.
With the aid of Eq. (13) our scheme can now be applied to higher order
correlation functions. In order to derive analytic expressions it is essential
to use the pole dominance at each stage of the recursive calculations. In par-
ticular, whenever the product of two or more singularities in @y, appears,

it is sufficient to restrict the K integration to the vicinity of each singularity
separately and approximate the remaining, slowly varying, function by its

! However, the connected correlation I' in Eq. (36) does not vanish only if
Opk,{Opk,) > J12 hence the angular ordering along the cascade is preserved.
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central value. For example the leading (in P) part of the direct term for
n = 3 reads

3
d® = T #MG) + pM )0 (2,3) + cyel. (39)

i=1

It is clear from Eqs (23) and (38) that now we will encounter two and three
pole terms which should be treated as discussed above [15]. This proce-
dure indeed reproduces all dominant logarithms. In particular, integrating
Eq. (37) at fixed relative angle one recovers known result for the angular
correlation [14], and integration over the full phase space gives the well
known DLA expression for the second cumulant.

4. Multiplicity moments in restricted phase space

Fractal structure of the final states can be conveniently analysed in
terms of the factorial moments counting the average number of n-tuples of
particles produced in the restricted regions of the phase space (cells) v {11]

o= [ o, (40)
/

Power dependence on the volume of a cell signals the selfsimilarity (inter-
mittency) of the production mechanism, with the exponents being simply
related to the fractal dimension of the produced system. In this chapter
we shall calculate the intermittency exponents of the QCD jet choosing as
a cell the sideway cone (9, §) with the half opening angle § and the po-
lar angle with respect to the jet axis 9. Factorial moments, Eq. (40), can
be calculated directly from the correlation functions derived recursively in
previous chapter [15]. However, one can avoid tedious analysis of the many
body correlations by deriving and solving integral equations satisfied by
moments themselves. This will be done in this Section. First we simplify
integral equations satisfied by the correlation functions and next, by suitable
integration, derive equations for moments.

4.1. Integral equation for angular correlation functions

Momentum integrated correlation functions satisfy the following inte-
gral equation

pM(0) = dM () + /d31(Mp(I()p§?’(rz'), (a1)
r
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where 2 denotes collectively all angular variables, and I' stays for the
boundary of the parent phase space implied by P and 2. It is convenient
to rewrite this equation in terms of the connected correlation function [15].
One obtains for n = 2

1"1(;3)(191, 92,912) = A‘,f’(ﬂ:,ﬂz, 1912)+/d3KMP(K)F}\E)(9Kk1, O KkyrV12),

(42)
where, the inhomogenous term A is given by (we again neglect the nested
contribution)

A(Pz)(mﬂ’z,ﬂn)
2 ¢ 4K 200

= .a_ hatuilt (1) , Kky 2 (1) }

T 92 / 7 P (912) Orxr, [91\ ki Prc (OKciy )]+(1 — 2).(43)
Qo/Y12 KK

Where, as usual, we have used the pole dominance to simplify the parent
integration. Similar equations hold for arbitrary order n, the only difference
consists of the more complicated expression for the inhomogenous term
A(), Note however, that although d(™) contains product of many poles
(or more general, power singularities), which result from varius products
of lower correlation functions, the structure of AU") is simpler. The pole
dominance in d*K integration splits A(") into a sum of terms where the
parent is almost parallel to each one of the final partons. Consequently
A™) has a structure

n
A = /d31(Mp(If)¢i‘,?’ =3 2 (@, x), (44)
i=1

where X denotes all remaining variables. It follows that x contains only
relative angles 9;; between final partons. In particular A) as given by
Eq. (43) has the form (44).

The structure (44) of the inhomogenous term implies that the parent
integration in the integral equation for I'\™) itself , Eq. (42), can be also
simplified. It turns out that I'("}) also decouples into a sum of the type (44)

and each of individual termns I i(n) satisfies the following equation (n=2)

I{)(9;,912, P) = A3 (9,15, P)

P 9
a? dK dOk. ” .
/ — [O%M;F(-)(@I\’k,-y'ﬂlzal‘ )] ,¥i > 912 (45)

+ =3 —
19? I\ OI\'k,'
Qo/Y12 912
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Again the pole dominance was used to approximate the angular part of
the parent integration. Note however the difference in the phase space
boundaries as compared to Eq. (43). Similar equations hold for higher
order correlation functions. They all imply a remarkably simple structure
for the connected correlation functions.

4.2. Integral equation for cumulant moments

Since the results of the previous Section show that connected correla-
tion functions are more natural observables for the description of the QCD
cascade [15], we discuss here the cumulant moments

cM(v,8) = Ay ... d, IS (02, .., 2,). 46
P P

’7(1916)

For small opening angle § <« ¥ the difference between the cumulant and

factorial moments F — C = [ d is nonleading in DLA since the cone v does
¥

not contain narrow singularities of the direct term d(Pn). For § ~ 9 the

difference may be significant, however it vanishes again in the high energy

limit (the angular cut-off x — 0). For small ¢ the integral in Eq. (46) can

be approximated, giving for n = 2

6

2

c® = Z/drz,‘/dnl._,r}”(ﬂ,‘,ﬂn) ~ 4#62/1"1(2)(19,19]2)1912&912,
i=1 %

(47)
since both terms in the sum are equal. For larger § the integral over £2;
should be done more carefully. However, one can define new moments which
are simply related to I' for all §. Because the natural variables for this
problem consist always of one polar angle @ pr, = 9; and all others relative
angles, it is useful to define moments of the associated multiplicity

A9, 8) = Z/a(n,- —)r'™Man, .. .dn,, 2= (9,4). (48)
=1

For small opening angle § cuunulant moments and associated moments are
simply related C ~ §2A. For larger § associated moments are still readily
derivable from the connected correlations and contain complete information
about the scaling behaviour.

184

Finally, it is convenient to introduce C = 924 ~ 2.C which corre-

6-
sponds to the density in ( = In 9.
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Now we are in the position to derive and solve the integral equation
for factorial moments. It was shown in the previous section that connected
correlation functions depend on rather simple subsets of all angles character-
izing the final n-parton configuration. This allows for the straightforward
integration of the integral equation Eq. (45) (also for higher n) over the
cone, Eq. (47). One obtains (see Appendix B)

P 5
—(n) (n) dK [ dy— oS,
0,0 =000+ [ L [ LoPww
Qo/6 KK
7 oaK 0d¢
2 (n)
vat [T [FeRwe. @)
Qo/6 4

Inhomogeneous parts D(™) are given by the corresponding integrals of, once
iterated, disconnected contributions A(n)

by = /A(") (50)
Y
In particular
52) (2)
@ (6) = 27rZ (92483 (9,912, P)) 912012, (51)

with Agz) given by the i — th term of the Eq. (43). It is easy to see that —ﬁ(n)
is independent of ¥. Equation (49) has slightly more complicated structure
due to the term C (%, %). Nevertheless, it can be solved in two steps — each
step involving the type of equation encountered earlier. Obhserve that at
§ = 9 the last term vanishes and we get simpler equation for the boundary

value Co(6,8) = o (6),

P
i Y dK dw (n)
O=05"0+¢ [ T [TLePw. 6
Qo/é KK

Equations of this type are satisfied by the global quantities like the total
average multiplicity 7i( P@) or factorial moments in the whole cone (P, @).
They can be easily solved by iteration

¢t =p™ z a zsin alz - D™ z =In ps
C (z)=D ()+0/ hla(z - t)|D" '(t)dt, 1<Q0). (53)
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Now equation (49) reads in two variables

P
ol o 2 [ dK _¢~<n)
(0.6 =C 60 +a [ G / 20w, (s
Qo/8 s

with the known boundary term given by Eq. (53). Hence the equation for
moments, Eq. (49), was reduced to, standard by now, integral equation with
slightly more complicated inhomogenous term.

It is interesting to note that the equation for the two parton density in
the relative angle, Eq. (19), is identical with Eq. (54) if we substitute

O — 9,912 — 6. (55)

Leading, when P — oo, behaviours of the inhomogenous terms also coincide
for n = 2, hence the asymptotic form of the cumulant moment C(2) follows
directly from our asymptotic solution, Eq. (31) upon substitution (55) {14]

4.3. Solution for the cumulant moments at high energy

Asymptotic behaviour of the curmulant moments for arbitrary order n
can be now readily obtained. We have proven [15] that in the high energy

limit n
é‘ a
D™~ 4,8 (—) . Kk—0. (56)

K

Eq. (53) implies the same behaviour for 5&;1)(5). Substituting this into the
resolvent solution of Eq. (54),

P J
A g o _ ) 2 df"/ﬁi_&f LAY o)
Cp'(9,6)=Cp’(6)+a / 7 | o5 )l (8, (57)
Qo/é 4

with I(z,y) given by Eq. (22), we get for the unnormalized cumulants (see
Appendix C)
na—a/n a/n 9
() 9,6y~ (2 AT
e~ ()" (2) L o

This gives for the normalized cumulants,

(9) §2 /9\*
@ _C = A
Cnorm = ﬁ% y  TNy(9,6) 92 (I{) s (59)
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the following result which is free of the narrow and infrared divergencies

n § a(n—-1/n)—2(n-1)
ctitn~ (5) (60)

As we have discussed earlier, the asymptotic behaviour of factorial moments

is the same for § < ¥, since the difference F — C = [ d is higher order in
¥

the small opening angle § 2. More comprehensive discussion of all our

results, including running «a,, and with emphasis on the phenomenological

applications, will be published elsewhere [19].

5. Conclusions

We have found that multiparton correlations in the QCD cascade have
surprisingly simple structure. A recursive scheme exists, which allows for
the analytic calculations of the fully differential correlation functions of ar-
bitrary order. We have analysed in detail the solutions for the distribution
of the relative angle among two partons in a jet, and for the complete angu-
lar dependence of the connected two-parton correlation function. At high
energy they show the power hehaviour typical for the selfsimilar process.
Similarly the cumulant moments in the small angular cells have been cal-
culated. These moments exhibit the power dependence on the volume of a
cell with intermittency exponents

a 1
/\n:§(1z~;;)~n+1. (61)

These results were recently generalized to the running a, case [15, 16].
In addition to the complete theoretical calculation of the exponents (61),
results presented here constitute a hasis for the higher order calculations of
the correlation functions. Such a program would allow for further tests of
the local parton hadron duality.

We hope that simplicity of present approach will motivate further study
of the subject which in turn could shed more light on the connection between
the high and low energy sectors of quantum chromodynamics.

? Preliminary result for factorial moments have been communicated by
R. Peschanski et al. at the XXII Int. Symposium on Multiparticle Dynamics
in Santiago de Compostela, Spain, in July 1992. Their result agrees with ours
for the constant ay, and for § <« . For comparison of the running a,, see

Ref. [15].
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Appendix A

We derive here the asymptotic form, Eq. (31), of the correlation function
(28) at high energies kK = Q¢/P — 0. In this limit

In(¥12/k)
In(©/%12)

— 00, z=2ay/In(d12/k)In(O/F12) — 00, (62)

2
= aln( © ) = '02— = const. (63)

Using the sum rule,

2

oo
Z ykI,,+k(z) = z7Ve¥?/? /e_yT~/(2z)]V_1(T)T_VdT, v>0, (64)
k=0 0

one can rewrite the sum in Eq. (28) as

: —T2 -2z 7 T2
e"ii/e7-10(1”)1'd7'1L e’ﬁl/ea_zlo(r)'rdr ,
0

0

p(2)(1912, P, @) = 0_21912

(65)
with the first O((912/k)2%) term dominating the high energy behaviour. We
have neglected the terms O((J12/£)%). Since the integrand in the leading
term is well behaved at large 7, we can extract the large P limit by setting
the upper bound to infinity. This gives

5, OO
P12\ ¢ 2
(912, P,0) = — (—li> /e_“ Io(ou)udu, (66)
”f?]g K
0

which can be integrated exactly to give finally

(2) a 19]2 2a 02
p (1912,13,9):21910 - ed. (67)

This is identical with Eq. (31) after taking into account Eq. (63).
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Appendix B
We derive here the integral equation for the cumulant moments. Let

us begin with n = 2. Integrating Eq. (45) over the cone, Eq. (47), gives for
each 7 (1 = 1,2),

6 p 9
a’ dK
c®(9,5P) = D§2)+27r6252— 912d91s / —K—/ﬁidﬂil‘fz)(ﬁi,ﬂu,K).
K Qo/912 Y12
(68)
Changing orders of the ¥;2 and (K, ¥;) integrations gives two terms
c®(9,6,Py=D?
2 fak | df Vi
a ; ' 2
52192 / —T(— / 191‘ 27['1912 / ﬂ]gdﬁ]gfi( )(’191’,’(912,K)
Qo/é QO/K Qo/K
, P ik 6
33 5 /19 dv; | 2762 / 912d91, T (9,912, K) | . (69)
Qo/6 4 Qo/K

Recognizing definition (47) in the inner integrals and adding contributions
from both i we get

s ) , 82 dK P dv
C(9,6) =D (3,8) + * / TR v)
Qo/é KK
2 7 dK
a 4§
+ 5 [ 5 / YayC 2 (. 8), (70)
Qo/b 8

which gives yet simpler equation (49) for the logarithmic density C. This
result remains valid for general n as well. The essential property, namely
emergence of the two terms in the integral Eq. (69), which can be reinter-
preted according to the definition (47) is independent of the order of the
moment.
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Appendix C

We derive in this Appendix the asymptotic form of the cumulant mo-
ments Eq. (58) at large energies. In the logarithmic variables

Ps ) P 04
a)‘, tilng, ZZIIIK, ‘r::lnE, (71)

z=1In

equation (57) reads

z t
.C"_(n)( t) = C(n) /dZ/Ig 2a\/27_' (:c - z)dr
0 0

= ™, /\[I1 2av/28)C (2 — z)dz . (72)

Inserting asymptotic form of the inhomogenous term, Eqs (53), (56) —é(n)(w)
~ CY exp (naz), and expanding modified Bessel function we get

A ) 0 AL
C" =z, t) = C (z)+ C, exp (naz) ZO ey —TY z™ exp (—naz)d:z.
m= 0

(73)
Leading behaviour is unchanged if we replace upper limit of integration
by oo

(0 ) 0 o~ a@m e\
C (z,t) =C" (z)+ C, exp (naz L n T 1), (—)

m:O

x | u™exp(-u)du, (74)
[

which gives finally

E(n)(:c,t) = C,Ole("a”%t). (75)

This is equivalent to Eq. (58) for C{™),
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