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It seems highly plausible that in changing from classical general rel-
ativity to the quantum gravity regime there is a stage at which in some
regions classical regime still remains in power {and the size of these re-
gions gradually shrinks to zero), whereas at some other places topological
anomalies, changes of the metric signature, metric degeneracies, and so
on, take over. The Lorentz metric behaviour in such situations is inves-
tigated in terms of the theory of differential spaces. It turns out that a
Lorentz metric can locally exist on space-time (modeled by a differential
space) only if the differential space in question can locally be immersed
in a Minkowski space of a suitably large dimension. It is shown that in
such a differential space, provided it is Hausdorft, the regions at which
the manifold structure breaks down can have only the form of edges and
vertices of a “lattice of crystals” on the faces of which the dimension is
constant. The question of how locally defined Lorentz metrics could be
“glued together” to form a “global metric field” is also considered. Some
suggestions are discussed concerning the transition to the radically non-
classical regime.

PACS numbers: 02.40. -k, 04.60. +n
1. Introduction

There is a strong belief that in changing from general relativity to quan-
tum gravity a “Draconian step” is required which should take into account
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“not merely a failure of the classical field equations hut also the whole edifice
of differential geometry upon which they are built” [12]. However, before
such a Draconian approach is successfully elaborated, less radical changes
are tried. For instance, one studies quantum fields on a fixed background
space-time with the background metric which can be degenerate on some
regions [8, 15], or subject to the signature changes either in the presence
of topology changes [11] or in the absence of them [4]. Many interesting
results have been obtained with the help of these methods (some of them
are discussed in Section 7.

In the present paper I explore a strategy which, although perhaps less
Draconian than that alluded to by Isham, provides a rigorous geometric
framework to study “non-smooth situations” investigated in the above men-
tioned works and also many others not taken into account in hitherto re-
searches. To this end I follow our previous proposal to model space time
by a differential space rather than by a differentiable manifold [5, 6, 10].
Differential space M is defined in terms of algebra of functions on M which
er definitione are assumed to be smooth on M (points of M are maxi-
mal ideals of this algebra), and is a vast generalization of the differentiable
manifold concept. The aim of the present paper is to study the existence
of Lorentz metrics (in general (pseudo)Riemannian metrics) on differential
spaces. These metrics are not necessarily assumed to be non-degenerate,
their signatures can change owing to either topology changes or other sin-
gular situations where by the latter term I understand all situations in which
the differentiable manifold structure breaks down. It turns out that in this
conceptual framework some methods elaborated hy the ahove mentioned
authors are not only recovered (usually as special cases), but also acquire a
strict mathematical formulation.

The main idea underlying the present work is motivated hy the following
picture of the very early cosmic evolution (which, for illustrative purposes,
I shall sketch as viewed backwards in time). At later times the Universe is
well represented by the standard relativistic model with its space-time heing
modeled by a Lorentz differentiable manifold. It is worthwhile to notice that
such a model of the space-time manifold can be fully reconstructed in terms
of the algebra of smooth real functions defined on it [7, 20] which, in fact,
is a differential space.

However, when one approaches the threshold of the classical physics
applicability the smooth manifold structure of space-time hegins to break
down. It seems highly plausible that whereas on some space-time domains
the classical regime still remains in power, at some other places topological
anomalies take over, dimensions of tangent spaces to space-time at certain
points change, the metric signature varies, the metric itself becomes de-
generate, etc. Such a situation could picturesquely be called a geometric
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space-time foam, and the theory of differential spaces turns out to be a good
mathematical tool to model it.

We are entitled to believe that, when approaching closer and closer to
the critical quantum threshold, the above picture hecomes more and more
“foamy”, space-time domains modeled by manifolds shrink to zero, and pos-
sibly some “radically singular” differential spaces (perhaps non-embeddeable
in any (pseudo)Euclidean space) control the situation. And finally, the
“quantum phase transition” takes place. It could be imagined to consist in
changing from a commutative algebra defining the corresponding differential
space to a non-commutative algebra assuming the responsibility for a suit-
able theory of quantum gravity and other physical fields (for an interesting
proposal of such a “phase transition” see [16]).

In the present paper I study the “geometric space-time foam” stage
of the above sketched picture of the early world’s evolution (as regarded
backwards in time). The attention is focused on the Lorentz metric and its
foamy behaviour at the epoch during which the smooth manifold structure
of space-time begins to break down. The theory of differential spaces allows
us to offer a set of strict results (in the form of proved theorems) regulating
this behaviour. It goes without saying that these results could be important
as far as the search for the full theory of quantum gravity is concerned.

An important result is that a (pseudo)Riemannian metric can locally
exist on space-time modeled by a differential space only if the local dimen-
sion of the latter (i.e. the dimension of the tangent space at a given point)
is finite and, consequently, if the differential space in question can locally
be immersed in a (pseudo)Euclidean space of a sufficiently large dimension.
These conditions cover many intuitively non-smooth situations in which the
manifold structure of space-time is violated; we shall call themn singulari-
ties (or singular regions). The Lorentz metric in singular regions is defined
by pulling it back from the Minkowski space in which the given differen-
tial space is locally immersed. If such a differential space is Hausdorfl it
is called d-locally Minkowskian differential space. We prove that the set of
non-singular points of any d-locally Minkowskian differential space is open
and dense in it (in the natural topology of differential spaces), and that its
singularities can have only the form of edges and vertices of a “lattice of
crystals”, on the faces of which the dimension is constant (strict descrip-
tion of this rather intuitive image is given in Section 5). These geometric
facts could be important as far as the quantization of the Lorentz metric
on space-time is concerned. In more radical situations (e.g., when the local
dimension of the differential space becomes infinite) no metric (in the above
sense) exists and, if necessary, one would have to look for other ways of
gravity quantization.
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The organization of our material is the following: The first two sec-
tions are of an introductory character: in Section 2, the fundamentals of
the theory of differential spaces are briefly reviewed and, in Section 3, C*
functions and C* r-forms on differential spaces are introduced. Sufficient
conditions of the local existence of a Lorentz metric on differential spaces
are established in Section 4, and the properties of d-locally Minkowskian
differential spaces are discussed in Section 5. The question of how locally
defined metrics could be “glued together” to form “global metric fields”
is answered in Section 6. Finally, Section 7 contains a discussion of the
physical significance of our results.

2. Preliminaries of differential spaces

Theories of differential spaces are based on the following algebraic strat-
egy. Let A be a non-zero commutative algebra over a fixed field K (in the
following always equal to IR or C). Let further A* be a dual of A as a vec-
tor space (over K), and A C A* the algebraic dual of A, i.e., the set of all
homomorphisms {¢ : A — K}. Every algebra A admits a representation as
a function algebra, the so-called Gelfand representation. A representation

of A, pA: A— K#, is called Gelfand representation of A if it is given by
pA(2)(¢) = ¢(z), ¢ € A, ¢ € A. The set on which functions are defined
can be reconstructed from the algebra A as a set M C A of its maximal
ideals. The Gelfand representation of A is universal in the sense that any
other representation of A is equivalent to its subrepresentation [19]. Differ-
ent such subrepresentations lead to different theories of differential spaces
[9]. The rest of the present work is based on the theory of differential spaces
proposed by Sikorski {26, 27, 28].

Let us consider a non empty family C of real functions on a set M
with the weakest topology 7¢ in which these functions are continuous. A
real-valued function f, defined on A C M, is said to be a local C-function
if, for every p € A, there exist a neighbourhood B in the topological space
(A, T4), where 74 is the topology in A induced by 7¢, and a function g € C
such that g|B = f|B. The set of all local C-functions will be denoted by
C4. It is obvious that C C Cy4. If C = Cy4, the family C is said to be
closed with respect to localization.

A family C of real functions on M is said to be closed with respect to
superposition with smooth Fuclidean functions if, for any n € IN and any
function w € C*°(IR"™), f1,...,fn € C impliesw o (f1,...,fn) € C.

A family C of real functions on M which is both closed with respect to
localization and closed with respect to superposition with Euclidean func-
tions is called a differential structure on M. A pair (M, C), where C is a
differential structure on M, is called a differential spuce (d-space for short).
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The differential structure C on M is treated, ex definitione, as the set of all
smooth functions on M. It can be easily seen that C is an algebra, in fact
a subrepresentation of the Gelfand representation of A.

For a given set Cy of real functions on a set M, there is the smallest
differential structure C on M such that Cy C C and 7¢, = 7¢. C is said
to be generated by Cy; one writes C = Gen Cy. If Cq is a finite set of real
functions, C is said to be finitely generated.

Differential geometry is developed on differential spaces in a similar
manner as it is done on differentiable manifolds. Let (M, C) be a d-space.
A tangent vector to (M, C) at a point p € M is defined to be a linear
mapping v: C — IR satisfying the Leibniz condition

v(af) = a(p)v(B) + B(p)v(a),

for any a, 8 € C. The set of all tangent vectors to (M, C) at p is called the
tangent space to (M, C) at p and denoted T, M. Vector field on a d-space
(M, C) is a mapping

Vipo Vp)eT,McC | T,M.
gEM

Vector field V on (M, C)is smooth if, for every f € C, the real function
V()f): p— V(p)(f) is an element of C.

The concept of dimension is not a part of the d-space definition, but
one can sensibly speak of the dimension of the tangent space T, M (in the
usual sense). In the theory of d-spaces it is sometimes called local dimension
of (M, C) at p, and, of course, it can vary from point to point. The global
differential dimension of (M, C) is defined to be the real number n such
that (1) n = dim T, M for every p € M, and (7:) for every p € M and every
vector v € Tp, M, there is a smooth tangent vector field on (M, C) such that
V(p) = v. The theory of dimension of d-spaces in terms of the algebra C
has been fully elaborated by Multarzyndski and Sasin [17, 18].

Differential spaces form a very rich family of objects (every subset of R™
is a d-space but there are many d-spaces which cannot be embedded in any
R™, irrespectively of n), and in practice one should often constraint oneself
to a subfamily of d-spaces. Such an important subfamily, which will be used
below, is formed by d-spaces of class Dy. A d-space (M, C) is said to be of
class Dy if, for every point p € M, there exists an open neighbourhood U
of p (in 7¢ topology) and a differentiable manifold NV such that: (i) U C N,
(it) dimTpM = dim N, (i) C°(U) = (C*°(N))y. This subfamily was
originally introduced by Walczak [30] as consisting of those d-spaces which
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satisfy the diffeomorphisimn theorem?; it has turned out to be important in
many applications.

3. C* functions and r-forms on d-spaces

Lorentz metric on a manifold M can be defined as a 2-form (two-
covariant tensor field) on M with a suitable signature. One can define
Lorentz metric on a d-space (M, (') in a similar way. For doing so, let us
first review basic notions and facts concerning r-forins on d-spaces. The
concept of smooth r-form on a d-space (in its local interpretation) was first
introduced by Kowalczyk [13], and that of C'* r-form by Sasin [22]. We
shall need a few inttoductory concepts.

Let (M, C)be a d-space. The disjoint union of tangent spaces T, M, p €
M, is denoted by TM, and the differential structure on TM generated by
the set

{aom: ae C}U{da: aec C}

by TC, where, as usual, # : TM — M is the projection, and da: TM — IR
is given by da(v) = v(a), v € T,M, p € M, for every a € C. The pair
(TM, TC) is called the tangent d-space (or tangent bundle) to the d-space
(M, C).

Now, we define the rt® Whitney sum of tangent d-spaces to a d-space

(M, C) to be the pair (T"M, T7C), where

T™M := {{v1,...,vr) ETMx ... xTM:n(v1)=...=7n(v)},

r times

TC := {TCX XTC}T'r]w.
r times
It is assumed that T°M = M and T°C = C.
A function f: M — IR on a d-space (M, C) is defined to be of class
C* if, for any p € M, there exist an open set U € 7., p € U, and functions
fiyoo s fn€C, 0 : R™ - IR, o being of class C'*, such that

fIlU=00c(f1,..., fa)IU.

It can be checked that the set F*(M) of all real C'* functions on a
d-space (M, C) is a linear algebra. A real valued function f on (M, C) is
smooth if f € C.

! Which says: If (M, C) and (N, D) are d-spaces and f: M — N is a smooth
mapping, p € M, and df is an isomorphism, then f is a local diffeomorphism
in a neighbourhood of p.
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Let (M, C) be a d-space generated by Cy, C = Gen Cy. It can he
shown [22] that a real valued function f on (M, C) is of class C* on (M, C)
iff for any p € M there exist a neighbourhood U € 7. of p, functions
fise..fn € Cy, and a C* function o : IR™ — R, n € IN, such that

fIU =00 (f1,..., f)IU.

Now, we are ready to define r-form on a d-space (M, C) .
Definition 3.1. A C* function w: T"M — R is called a C'* r-form on a
d-space (M, C) if the mapping

wp 1= wl(TpM X XTp M)

r times

is a r-linear, for any p € M. An r-form w on a d-space (M, C) is smooth if
weTC.

For further use let us define a C* r-form on a d-space (M, C) to be
non-degenerate if for any p € M, v € T,M and 1 < j < r, the relationship

W(v1,.. 0, V521, U, Vjy. ., Upey) = 0,

for any (v1,...,vr—1) € TpM, implies v = 0.
For any mapping F : (M, C) — (N, D) and a smooth r-form w on
(N, D), F*w is the smooth 7-form on (M, C) defined by

Frw(vy,...,vs) = w(Fovy, ..., Fovg),

for any (v1,...v.) € T™M.

An important fact is that every C* -form on (M, C) can be regarded
as a C* r-form on the Euclidean d-space (IR™, £,,) pulled back to an open
set in M. This fact can be given the form of the following
Proposition 3.2. Let (M, C) be a d-space generated by a family of func-
tions Co, C = Gen Cp, p € M, and let w be a C* r-formon (M, C), 7 < k.
There exist:

(i) a smooth mapping F: (M, C)—(IR", £,) with coordinates Fy,..., F,

€ CO, nc ]N!

(ii) a C*¥ r-form 6 : T"R™ — IR™ on (IR™, £,), and
(iii) an open set U € 7., p€ U,
such that

wlry H(U) = F* 0=, 1 (U),

where 7y : T"M—M is defined by (v1,...,v,)—p=7n(v1)=...=7(v,). W
Sketch of the proof. The d-space T"(IR™, £,) can be identified with the
d-space (m(r+])na g(r—{-—l)n) by

(v15e ey vp) = (T1(P)y - -y Tu(p), dri(v1), . oy dmn(v1),
cooydmy(ve), . drg(vn),
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where m; : T"IR™ — R"™, is defined by m;(vy,...,v;) =v;, i = 1,...,7.
w is a C* function on T™ M, and consequently there exists a neighbour-
hood U € 7. of p, and a function ¢ : RTD™ R such that

wIW;](U): o(Fyomg,...,Fpomg,dFyomy,...,dF, o7y,
e ,dFy on',,,...,anowr)lﬂ'(;-l(U).

The C* r-form 6 : T"TIR™ — R™ defined by

= 0o
0= oL de;, ® ...Q dz;
(r+1 1 1y
i .;:l 3$n+i18:cgn+i2 .- 'awrn+ir (et ’
where ¢, (71 1), : R™ — R{D7 is given by
bn(r+ ) (215, 20) = (21,...,20,0,...,0),

satisfies the conditions of the proposition (for details see the work by Sasin
[22]). O

From above proposition it follows an important
Corollary 3.3. If there exists a non-degenerate C* r-form w (r < k) on a
d-space (M, C), then there is an open neighbourhood U € 7, of any point
P € M such that the d-space (U, Cy ) can be immersed in a Euclidean space.
Moreover, dim T, (M, C) < +oo, for any pe M. B
Proof. The mapping F|U of the above proposition is a smooth immersion.
Indeed, since w is non-degenerate, and

wrg (U) = F*o|my 1(U),

therefore F., is a monomorphism for every ¢ € U (otherwise F*QIWO'I(U)
would be degenerate). Hence,

Fug : Tg(M, C) - Tpy(R", &)
is an isomorphism onto the image, and consequently

dimT,(M, C) = dim F.o(Ty(M, C)) < dim Tp(g)(R", &n) = n. O

4. Local existence of (pseudo)Riemannian metric on d-spaces

Definition 4.1. A C* 2-form g : T?M — IR on a d-space (M, C) is said to
be a (pseudo)Riemannian metric on (M, C) if, for any p € M, the 2-form

gp = 9|TpM x T, M
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is symmetric, non-degenerate and has the signature (m, n). If the signature
is (1, dim T, M —1), the (pseudo)Riemannian metric is said to be the Lorentz
metric. If a (pseudo)Riemannian metric is defined on U € 7, p € U C M,
it is said to be a pseudo(Riemann) metric (defined locally) at p. Corre-
spondingly, we shall also speak of (locally) (pseudo)Riemannian or Lorentz
d-spaces.

It is evident that if (M, C) is a differentiable manifold the above defi-
nition reproduces the usual (pseudo)Riemannian metric on a differentiable
manifold. On differentiable manifolds such a metric locally always exists.
The sufficient condition of the local existence of a (pseudo)Riemannian met-
ric on a d-space is given by the following:

Theorem 4.2. Let (M, C) be a Hausdorff d-space, U € 7., p € U. A C*
(pseudo)Riemannian metric g exists (locally) at p if a d-subspace (U, Cy)
is finitely generated, i.e., C = Gen{f,..., f,}. M

Proof. A d-space (U, Cy) is finitely generated iff there is a smooth mapping

¢ : (U, CU) - (QS(U)’ (gn)¢(U)) )

Where gn den0tes Coc(mn) and ¢) = {fla"'?fn) : U hand IR.n is deﬁned by
é(p) = (fl(P), . "fn(p)), such that

(f)* : (gn)g‘)(U) s C

is an isomorphism of linear algebras [25]. Since (R", £, ) is paracompact, a
(pseudo)Riemannian metric n always exists on (R™, £,) and g = ¢*7 is the
(pseudo)Riemannian metric on (U, Cy). Indeed, for any p € U, there exists
a set of generators ¢ = (fi1,..., fn) such that (¢.), : T,M — Typ)M is a
bijection, and consequently g = ¢*7 is non-degenerate on (U, Cy). (Notice
that the signature can change when pulling back the metric from (R", £,)
to (U, Cy).) O

From Corollary 3.3 it irnmediately follows that if a (pseudo)Riemannian
metric exists locally at p € U C M then dimTyM < oo, for any ¢ € U. One
should also not forget that the mapping ¢ : (U, Cu) — (¢(U), (En)g(v)) of
theorem 4.2 is smooth in the sense of the d-space theory, and consequently
the theorem refers to many situations which would intuitively be qualified
as non-smooth. This is illustrated by the following
Example 4.3. Let (M, C) be a d-space such that M = {(z,y,z) € R® :
2 = 0Vy = 0} and C is the differential structure on M induced from
(IR3, £3). One can easily see that

g = (=(drs)? + (dmy)* + (dmp)?),
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where ¢ is the inclusion and =;, i = 1, 2,3, are projections onto coordinate
axes, is a Lorentz metric on (M, C) which is a disjoint union of two 2-
dimensional Minkowski space-times: (My, g1) and (M, g2}, where

It can be proved [22] that if (M, C) is a connected d-space of constant
differential dimension, and g is a (pseudo)Riemannian metric on (M, C),
then the signature of g is constant on (A4, C). This is evidently not true for
a d-space of non-constant differential dimension (z.e., such that dim T, M is
not the same for all p € M), although in such a case the signature of g can
still remain Lorentzian [i.e., (1,dim T, M — 1)].

In the case of differentiable manifolds any (pseudo)Riemannian met-
ric can always be locally reduced to the Minkowski (or Euclidean) form.
This fact, interpreted as the statement that any gravitational field can be
locally transformed away (the so-called principle of equivalence), has im-
portant consequences for relativistic physies. Since, in the general case of
d-spaces, a Lorentz metric can exist also on intuitively “non-smmooth situ-
ations” (see above example 4.3), the question arises what could be saved
from the “locally Minkowski” property. A partial answer to this question is
the following:

Let (U, Cy) be a d-subspace of (M, C') such that Cyy=Gen{ f1,..., fu},
U¢€ ., pe€ U, andlet a C* Lorentz metric ¢ exists at p. Since (U, Cy)
is finitely generated, the smooth mapping ¢ appearing in the proof of the-
orem 4.2 must be a diffeomnorphism and (U, Cy) of class Dy, provided ¢ is
Hausdorff (25]. Moreover, if dim T, M = n and g is of the Lorentz signature
(1, n — 1), then there exists an open neighbourhood V € 7. of p, V C U
and the Minkowski metric 7 (of signature (1, n — 1)) on an open subspace

of (R™, £,) such that

glmg (V) = ¢ nlmy (V)

where ¢ = (fi1,..., fn) [22]. In the sense of this equality we can say that any
locally Lorentz, Hausdorff, finitely generated d-space retains locally some
Minkowskian properties; such d-spaces will be called d-locally Minkowskian
d-spaces. It has been shown [25] that every Hausdorff, locally finitely gener-
ated d-space is of class Dy and, consequently, every d-locally Minkowskian
d-space is of class Dg. In the next section we shall study the structure of
d-locally Minkowskian d-spaces.
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5. d-locally Minkowskian d-spaces

An interesting question arises: to which extent d-locally Minkowskian
d-spaces differ from smooth manifolds? If we agree, for the purposes of the
present study, to call all those regions of a d-space in which the manifold
structure breaks down singular regions (or singularities), we want to know
which kind of singularities can occur in a d-locally Minkowskian d-space.
To make our question more precise, let us introduce the following:
Definition 5.1. Let (M, C) be a d-space. A point p € M is called a
regular point of (M, C) if there is a neighbourhood U € 7. of p such that,
for every ¢ € U, dimTyM = dimT,M. A point p € M is called singular
point of (M, C) if it is not a regular point of (M, C) .

Let OM denote the set of all singular points of (A, C'), and M; the set
of all regular points of (M, C) such that the dimension of tangent spaces
to (M, C) at these points equals ¢ (for details see the works by Domitrz [3]
and Kowalczyk [14]).

Lemma 5.2. Let (M, (') he a d-locally Minkowskian d-space. The set of
all regular points of (M, C) is open and dense in M (in the 7. topology). Il
Proof. From definition 5.1 it follows that if a peint p € M; then an open
neighbourhood U € 7, of p is contained in M;. Therefore, M; is open in M.

The remaining part of the lemma will be proved by induction. Let
p € M and dimTp,M = 0. The set {p} € 7. is a neighbourhood of p;
therefore p is a regular point.

Now, let us assume that the set of all regular points, such that the
dimension of tangent spaces to {M, C) at these points is less than n, is
dense in M. Let p € M be a point such that limT,AM = n, and let
U € 1., pe U. From the fact that (M, C) is of class Dy it follows that
there exist a neighbourhood V of p and a differentiable manifold (N, D)
such that for any ¢ € V one has dimT M < dimT,M = n. lf p is a regular
point the theorem is proved. Let p € M be a singular point. Definition 5.1
tells us that there exists a point ¢ € U NV such that dim T, A < n and,
by assumption, ¢ belongs to the closure of the set of all regular points in
(M, C) . Therefore, V NU € 7. is a neighbourhood of q. We have shown
that a regular point belongs to U. []

Taking into account that if for every p € M, dimT,M = n, then (M, C)
is a d-space of a constant differential dimension [10], one can easily prove
[3] the following:

Theorem 5.3. If (M, (') is a d-space of class Dy, then A can be presented
as a disjoint sum

o0
M=]J M;juoM,

1=Uu
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wheret? = 0,1,2,.... Each M; is a d-space of class D of constant differential
dimension ¢ and open in M; M is a boundary set of M. [

This theorem tells us that each d-locally Minkowskian d-space has lo-
cally the structure of a lattice of “crystals” the faces of which are Dy d-spaces
of constant differential dimensions, and singularities have form of edges and
vertices. In this sense example 4.3 presents a “typical” situation.

In a d-locally Minkowskian space-time (i.e., space-time modeled by a
d-locally Minkowskian d-space) singularities (in the sense of definition 5.1)
could prevent the gravitational field from being locally transformed away,
but since such a space-time is of class Dy it can always locally be regarded
as a part of a manifold (in the sense defined at the end of Section 2) in
which, as usually, the gravitational field can locally be transformed away.
This could be considered as the equivalence principle generalized to the
intermediate phase between the classical and quantum regimes.

6. Global existence of Lorentz metric on d-spaces

For physical reasons explained in the introduction, we are interested

in patching together (pseudo)Riemannian metrics of different signatures,
possibly even degenerate ones (in some regions), rather than in creating a
“smooth field” of the Lorentz metric on a given d-space. Consequently, we
shall first discuss “gluing together” r-forms of class C'* defined locally on a
d-space.
Lemma 6.1. Let (A, C 4) be a d-subspace of a finitely generated Hausdorff
d-space (M, C),p € A, and i : A — M the inclusion map. The existence
of a C* r-form g on (A, C 4), implies the existence of a C* r-form § on
(U, Cy), where U € 7., U C M, p € U, such that

*glrg (ANU) = gln, N (ANTU). A

Proof. The set {a|A : a € C} generates C4, and on the strength of
proposition 3.2 there exist a smooth mapping F : (U, Cy) — (IR™,&,), a
C* 2-form 8 on (R™, £,) and U € 7. such that

glmg N(ANU) = (F(ANU)) x5 (ANU).

By putting § = F*0 the conclusion follows. []

Theorem 6.2. Let (M, C) be a d-space such that to any of open coverings
of any of its open d-subspaces a C* partition of unity can he subordinated.
If a C* r-form g exists on a d-subspace (4, C4) of (M, C), then there
exists a C'* r-form § on an open d-subspace (U, Cy)of (M, C), AC U,
such that ¢ = ¢*§ where i : A — U is the inclusion map. If A is closed in
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M, the C* Lorentz metric exists globally on M (i.e., one can take U = M).
]

Proof is a combination of lemma 6.1 with the standard procedure of using
partitions of unity [13] (for the partition of unity definition adapted to the
theory of d-spaces see Appendix). []

Of course, theorem 6.2 applies, in particular, to a C* 2-form § which
could be assumed to play the role of a Riemann metric on (M, C). Let
us notice, however, that the theorem does not guarantee that g will he
nondegenerate. By abusing terminology, we shall continue to call it a metric
on (M, C) (we shall also use the term degenerate (pseudo)Riemannian
metric on (M, C)).

Let us assume that a (proper) Riemannian metric exists on a d-subspace
(U, Cy) of a d-space (M, C), and let T,U be a tangent space to (U, Cy)
at a point p € U. A one-dimensional vector subspace Q, of T,U is called a
direction in TpU. The function Q: p— @, p € U, is called a direction field
on (U, Cy). If one additionally assumes that a C* direction field exists
on (U, Cy), one can show, by using standard methods, that a C* Lorentz
metric exists on (U, Cy) [5]. In particular, this remains true if instead of
(U, Cu) we take (M, C).

Let us finally mention that (pseudo)Riemannian metrics on a d-space
(M, C), understood locally in the sense of definition 4.1, can be collected
together to form a sheaf of metric tensor fields (M, C) [23, 24]. If (M, C)
is of constant differential dimension this sheaf will be a locally free sheaf of
modules.

7. Discussion and comments

In the foregoing sections rigorous geometric results have been presented
referring to the transition period between classical and quantum regimes
when the (Lorentz) metric structure still makes some sense but the smooth
manifold description of space-time breaks down. Indeed, such a picture
slowly emerges from partial results obtained by various authors.

First, let us notice that if gravity quantization involves topology changes
{(and this is nowadays commonly believed) some metric singularities are un-
avoidable (under reasonable conditions). Indeed, from Tipler’s [29] theorem
it follows that if a space-time interpolates between two compact spacelike
hypersurfaces of different topology, there is no smooth (in fact even C?)
Lorentz metric on this space-time satisfying the conditions of the theorem,
Consequently, the Lorentz metric must be somewhat badly behaved [11].

Moreover, in a Lorentzian approach to gravity quantization there seemns
to be no reason in restricting the action integral to smooth Lorentz metrics.
Horowitz [11] convincingly argues that “at least all metrics with finite action
(and probably more singular metrics as well)” should be included into it.
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It is also worthwhile to notice that the Ashtekar formulation of general
relativity makes sense if degenerate metrics are admitted. In such a case
the Ashtekar theory [1, 2] admits all solutions that are adimitted by gen-
eral relativity plus additional ones in which the metric is degenerate. As
remarked by Rovelli {21]: “The possibility of having a degenerate metric
in the theory is a crucial ingredient of the quantization attempts”. Dur-
ing the phase transition the geometric framework which has been studied
in the foregoing sections, generally relativistic physics should meet quan-
tum physical methods, and indeed something of this kind seems to occur.
Let us quote only almost at random chosen example. On the one hand, as
shown by Horowitz [11], in a first-order formulation the field equations of
general relativity remain well defined (in the limit) if the metric becomes
degenerate. On the other hand, Dray et al. [4] attempted to define the
wave equation on a manifold with the Lorentz metric adinitting some sorts
of singularities and demonstrated that the signature changes are connected
with the production of particles.

The study of the phase transition period between the classical and quan-
tum gravity regimes, both from the mathematical and physical point of view,
might be crucial for finding the correct version of the theory of quantumn
gravity. The approach adopted in the present work could help in tracing the
correct path. As we have seen in Section 2, differential geometry can he for-
mulated in terms of operations on an algebra of real functions; similarly, one
could use complex-valued functions to obtain a corresponding d-space theory
[9, 24]. It is tempting to develop a non-commutative differential geometry
by replacing the algebra of functions defining the differential structure by
an associative but non-commutative algebra, and construct with the help of
it a quantum gravity field theory. There are some attempts leading in this
direction; I shall only mention an interesting mmodel worked out by Madore
[16] since it beautifully fits into the conceptual framework of the differential
space theory.

Let us consider a d-space (S52, (), where S? C IR’ is a 2-sphere
gapz®2® =72, a,b=1,2,3, g,y = 8, being the Euclidean metric in IR?, and
C the differential structure generated by complex-valued functions which
have the polynomial expansion

f(2%) = fo+ faz® + 3 faa®+ ...,

where a = 1, 2,3. Now, we truncate all these tunctions to the first constant
term; the corresponding d-space generated by constant complex-valued func-
tions is just a point. We can say that in the zero order the sphere $? is
approximated by a single point. If we truncate all functions to the first
two terms we obtain a four-dimensional vector space. We change it into
a non-commutative algebra (by suitably defining product of its elements)
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M, of complex 2 x 2 matrices. To this end we make the transformation
2% — 2/ = ko?, where 0% are the Pauli matrices and « is related to
by 3x? = r2. As it is evident from this equation, the algebra M approx-
imates §2 in a very fuzzy manner: only two poles are distinguished. In a
similar way we continue to construct the series of non-commutative matrix
algebras M3, My,... better and better approximating the sphere S?. For

M, the relationship between & and 7 becomes r? = (n? — 1)x?, and for

~

large n one has « = r/n. Therefore, kK — 0 as n — oo. One can define
the constant k = 4rkr which has the dimension [length]? and bears a clear
resemblance to the Planck constant in quantum mechanics. If & — 0 one
recovers the d-space (S2?, C) as the commutative limit of the ahove non-
commutative matrix algebras. The field theory developed by Madore on
a “fuzzy sphere” indicates what can be ohtained by exploring possibilities
offered by the theory of differential spaces.

In the present work I have discussed the existence of (both local and
global) (pseudo)Riemannian metrics on d-spaces. In a similar way connec-
tion, curvature and torsion forms, and consequently a generalization of Ein-
stein’s equations, on d-spaces can be analyzed; this will be a subject-matter

of a forthcoming paper.

I cordially thank Dr Wiestaw Sasin for his reading the manuscript and
making valuable improvements.

Appendix
Partition of unity on differential spaces

Usually, one “glues together” local quantities to forin a global structure
with the help of partition of unity. The following definition adapts this
concept to the theory of d-spaces. ’

Definition. Let (M, C) be a d-space, and (A4,, s € §) an open covering

of the topological space (M, 7.). The family of functions {a; : t € T, ay €

FE(M)}, where F¥(M) C C is the set of all C* functions on M, is said to

be a C* partition of unity subordinated to the covering (A, s € §) if

(i) at > 0on M, forany t € T,

(ii) the family of sets {cl a; '{0, co]} is locally finite and each of the sets
cl a; 1[0, 00] is contained in a set A, belonging to the covering (A, s €

Sy,

(i) Y, ar=1on M.

teT

It can be shown that if a topological space (M, 7.) is locally compact
and paracompact then, for any open covering of this space, there exists a
smooth partition of unity subordinated to it (sce the book by Walczak and
Waliszewski [31]).
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