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Equations of gravitation in the Lobachevsky space are formulated.
The problem of the gravitational field of point mass in the Lobachevsky
space is solved. In the Newtonian (nonrelativistic) case, this problem
was posed and solved by Lobachevsky himself. In the relativistic case,
one should first find adequate equations for the metric describing the
gravitational field and then find their solutions. These equations are found
by the author on the basis of the theory, developed by him, with two
affine connections; one called Christoffel and the other, background. The
latter is given by the equations of motion of free material particle in
the Lobachevsky space. It is independent of the light velocity c. The
static spherically symmetric metric found here depends on the ratio of
the gravitational radius yMc~2? of mass M to the Lobachevsky constant
k for the visible world. In the limit k — —oo it turns into the well known
Schwarzschild metric. The world line of a planet is geodesic with respect
to this metric. The relativistic Kepler problem in the Lobachevsky space
is reduced to a nonlinear differential equation.

PACS numbers: 04.20. Cv, 04.20. Jb

Lobachevsky, the creator of the non-Euclidean geometry, did not con-
sider the geometry alone. Having no doubt about the self-consistency of the
new geometry and being convinced in its validity, he posed the problem of
astronomical verification of the geometry of our visible world. Supplement-
ing the data on parallaxes of stars by his own observations, he found out
that the constant k specific of the non-Euclidean geometry is larger than
the distances from the Earth to the nearest stars [1, p. 207-210]. This un-
satisfactory result did not, however, prevent him from posing the problem
of what kind of changes will occur after introducing the new geometry in
mechanics {1, p. 261]. The second problem inevitably follows the first one
as soon as one starts considering celestial bodies under the conditions of the
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928 N.A. CHERNIKOV

non-Euclidean geometry. But having introduced the new geometry into ce-
lestial mechanics, Lobachevsky went further and posed the problem of what
changes this introduces into Newton’s law of gravity. He himself answered
this question giving a fundamental solution to the Poisson equation in the
non-Euclidean space [2, p. 158-160].

Those were completely new problems and Lobachevsky’s idea that “one
should not doubt that the forces produce all by themselves: the motion, ve-
locity, time, mass, even distances and angles ... when it is true that forces
depend on the distance, then lines can also depend on angles” (2, p. 159]
leads us far beyond the scope of the Newtonian mechanics and theory of
gravity. With this idea in mind one can go even far beyond Einstein’s the-
ories.

In our previous paper [3] the nonrelativistic Kepler problem in the
Lobachevsky space was solved. In the present paper, a new approach to
the theory of gravity, based on Lobachevsky’s geometry is expounded. We
start with an elementary presentation of Lobachevsky’s differential geom-
etry and end up with the exact solution of the Schwarzschild problem in
the Lobachevsky space and consideration of the geodesic lines of the metric
found here. The last results allow us to pose the relativistic Kepler problem.

The first of December of this year is the 200-th anniversary of the
birthday of N.I. Lobachevsky. The author presents this paper as well as
the previous one to celebrate this great day.

1. Introduction of Lobachevsky’s theory

Lobachevsky’s geometry is completely defined by the metric
g Y p y

dI* = Lopde®dz?, (1)
which in spherical coordinates p, 8, ¢ takes the form
di? = dp® + r*(d0* + sin® 0dp?), (2)
where
7 = ksinh £. (3)

Straight lines in the Lobachevsky space are geodesics with respect to affine
connection with the components

Lf:u = %Laa((')#Lc,,, +0uloy —05L,y), (4)

where L*7 is the cometric tensor determined by the metric tensor L, and
unit affinor 53 from the condition

L% L5 = 63 (5)



The Relativistic Kepler Problem in the Lobachevsky Space 929

0, is the partial derivative with respect to the coordinate z#. Geodesics
are determined from the system of equations

d dz® dat dz¥

o4

et Az 1,2, 3}, ;
dldl TR Ta e {l2,3) (6)

It is interesting that the components (4) remember all about the metric
(1) they have been generated hy. Indeed, they compose a tensor

L3, =0uLys - 0,Lis+ Li,Lys— LysLyg, (7)
which equals
—2
wvp = (Lupby — L,g6g)k™". (8)
Consequently,
L, =3k LSs (9)

This is nontrivial as in the limit
k — oo (10)
the components (4) forget much about the limit metric

Eaﬁdl‘adlfﬁ = lim L,gde*dzP. (11)
k— o0

In this case, the limit tensor
wop = OuByg = 0B s + B Ejg = By Blg, (12)
composed, like (7), of the components of the limit connection
EZ, = %E““(B#EU,, +0,Egy — 05 E,,, (13)

equals zero. Consequently one can find such coordinates y through which
the connection (13) will be represented as

dr< Ozyo
Q= e T 14
Euv Jy° OzrdzV (14)

In the y coordinate map the components of the metric tensor E,pz are
independent of the coordinates. This is probably all we can say about the
metric (11) if only the connection components with the zero curvature tensor
(12) are known.
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However, we can add that the metric (11) defines the Euclidean geom-
etry as in spherical coordinates it takes the form

E,pdz®dzP = dp? 4 p*(d6? + sin? 0dp?). (15)

Meanwhile, the connection (14) is invariant with respect to affine substitu-
tions

y” = A%9" + B° (16)

and defines only the affine geometry rather than a much richer Euclidean
geometry.

2. The Lobachevsky geometry and the Lorentz group
Four functions

z = ksinh £sinfcosep, y =ksinh£sinfsing,
z = ksinh £cosf, wu=coshf (17)

of the spherical coordinates p, 8 and ¢ define the three-dimensional surface
in the four-dimensional centro-affine space with the Cartesian coordinates
z, y, z and u. The latter is the hyperboloid cavity

k2 — 2% —y? - 2t = k7, (18)

in which v > 0. In the Cartesian coordinates it is defined by the equation

2 4 2+ 2
Sy AT (19

We have obtained the one-to-one (or, as it is called now, bijective) mapping
of the Lobachevsky space onto the surface (19). Differentiating the functions
(3) and (17) we get
dz? + dy? + dz% = dr? + 72(d6? + sin? 8dp?),
kidu = rdp, dr = udp. (20)

Hence, we find that in the coordinates z, y and z Lobachevsky’s metric (2)
equals
di* = dz? + dy® + dz% - k% du®, (21)

where du is the differential function (19) so that

(k2 + 2% + y? + 22)k2du® = (2dz + ydy + 2dz)?. (22)
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Consequently, the internal geometry of the surface (19) in the four-
dimensional pseudo-Euclidean space with the metric (21) coincides with
the Lobachevsky geometry. Therefore, isometric transformations of the
Lobachevsky space are given as linear transformations of the coordinates
z, y, z and u conserving the quadratic form in the left-hand side of equal-
ity (18) and not changing the sign of the coordinate u. By the Poincaré
definition transformations of that type form the Lorentz group. Thus, the
Lorentz group is isomorphic with the group of isometries of the Lobachevsky
space.

According to (21) and (22) the metric tensor components of the
Lobachevsky space in the coordinates z, y, and z equal

Log = cap — k_zu_zmaa:ﬁ, (23)

where c5 are constants (in the present case equal to 1 for a = § and 0 for

a # f),

To = Cooz’ . (24)
Consequently,
1(0uLloy +0uLoy — 05Ly) = —k *u"%2,L,, . (25)
The components of the cometric tensor in these coordinates are equal to
LoP = 9B 4 f=2p908 (26)
where ¢c*7c,5 = 65 . Therefore,
L%, = u?2™. (27)
Consequently,
LS, = —k7*2%L,,. (28)

A simple form of the components (23) and (28) allows one to prove easily
equality (8).

According to (6) and (28), in the z, y and z coordinates straight lines
in the Lobachevsky space are determined from the solution of the system of
equations

det dzV

————k—zmaL,w—a—l——&l—:o, a € {1,2,3}. (29)

Calculating the second derivative of the function (19) we get

d du =2 dzH dz¥

Sy, 30
dl di wbw=r =0 (30)
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Now, denote by
r={2,y,z,u} (31)

the vector of the four-dimensional centro-affine space in which the surface
(19) is the Lobachevsky space. The quadratic form (21) is denoted by
(dr, dr). In this notation the surface (19) is given by the conditions

(r,7) = —k*, u>0, (32)

and Eqs (29) and (30) are written in the form

dl di

d dr 5 (dr dr
ke (—, =) = 3
’(dz' i) (33)
Hence, it follows that a straight line of the Lobachevsky space lies at the
intersection of the surface (19) with the two-dimensional plane of the centro-

affine space, passing through the center r = 0.

3. Velocity space in the special theory of relativity

In the four-dimensional space-time of the special theory of relativity
the velocity of a material point can be represented by a bhundle of time-like
paralle] straight lines. The combination of all these bundles is the three-
dimensional space of velocities. In that space, the absolute geometry hased
on all the Euclidean postulates except for the fifth one is realized.

In the Lorentz case, we arrive at the Lobachevsky space of velocities
assuming that the constant £ is equal to the light velocity ¢, and the distance
p is equal to the rapidity of a particle s. In this case, the quantities (17) are
equal to the components of the four-velocity of a particle. The components
of the usual velocity of a particle in the Lorentz case equal

vy = ctanh Zsinfcosy, vy = ctanh Isinfsing, vz = ctanh?cosf.
(34)

In the Galilean case ¢ = oo and the space of velocities is Euclidean.
Instead of the surface (19) in this case there appears the hyperplane u = 1.
As for the Galilean group, it is isomorphic to the group of isometries of the
Euclidean space.

So the light velocity plays the role of the Lohachevsky constant in the
space of velocities. This is the essence of the special theory of relativity. It
is interesting that the perimeter of a circle in the Lobachevsky space is a
particle momentum; and the area of the circle, its energy.

As in cosmic rays one can observe and at accelerators achieve rapidities
much exceeding the light velocity ¢, in the high energy physics one cannot
do without the Lobachevsky geometry.
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4. Newton’s theory of gravitation in Lobachevsky space

The Lagrange function of a material point, if it is influenced only by
the gravity force with the potential U, equals
dz# da*

—_— - U. 35
dt dt v (35)

_ 1
A—§ K

Consequently, the Lagrange equations of motion are

dat da?

d dz"?
5 Lau"""“ -1 .uL v T T duUz ) 3
a dt) 2(Oalur) = e F 0 (36)
1.e. 4 dee izt dev
* o 2222 L L9,U = 0. (37)

dt dt Y dt dt

Here we have introduced the absolutely stationary (at rest), according to
Newton, Lobachevsky space and the absolute, according to Newton also,
time ¢t which is equivalent to denial of the Euclidean postulate of paral-
lel lines in the visible world. In this case, the special relativity principle
becomes invalid though the principle of kinematic relativity is conserved.

In the space-time § x T with the coordinate map «!, 2%, 23, ¢4, where
z? = t, the absolute time gives the differential form @ = dt. Writing down
this form as

O = 0,dz*, (38)

we introduce in § X T the covector field with the components
=0, 0,=0, 0;=0, 04=1 (39)
and the factorizing metric
0,,dz%de® = 00O . (40)
The factorizing time tensor determined by it equals
0, = 0,0, (41)

The introduction of the Lobachevsky geometry defines in .S X T the cometric
tensor A% with the components equal to

ReB =B pet =g, pP =g, aY =1 (42)

hetg, =0, (43)
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the time tensor and cometric tensor are coupled by the condition
0., =0. (44)

The equations of motion (37) define in § x T the affine connection.
Indeed, they can be written as equations of geodesics
dz™ dz™

d dz®
Coyre, =2 o (45)

dsds T as s
by substituting s = At + B, where 4 and B are constant. Hence, we find

re, =L

)

Iy =L*8,U, I'Yy=0, I =0, Ij,=0. (46)

Consequently, the world trajectory of a material point in the gravitational
field U is a geodesic line in the world § x T with respect to the affine
connection (46).

Essentially, the world trajectory of the material point, which is not in-
fluenced by any forces, is a geodesic line with respect to the affine connection
with the components Iv“fﬁm are equal to (46) for U =const. Thus, we have
two connections at once.

When there are two connections (say I' and I'), then for each tensor
field two covariant derivatives V and V are to be composed. For the vector
and covector fields one assumes that

VnT® = 0T + T T™, VeuTn = 0nTn = TinTe,

Vo T® = 8T + I8 T, VnTn = 0mTn — 1%, T, . (47)
The difference
Prt:zn = Fvc:zn - GaTnavann (48)
is called the affine deformation tensor.
In the present case, the affine deformation tensor equals
P = —0,0,h0,U. (49)
For each affine connection I’ one can define the torsion tensor
SZ‘LTL = F::Ln - Frcllm (50)
and the curvature tensor
?nnb - amFZb - anrv?lb + Fsls ib - 7%5 T‘jlb . (51)
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It is obvious that

S'ﬁtn‘*'s'zm:()’ RZ b+Rn'mb:0' (52)

mn

All the affine connections considered here (for instance, (46)) satisfy the
condition
Lo =Thms (53)

so that their torsion tensor equals zero, and the curvature tensor obeys the
algebraic identity
R; mnb + Rbmn Rnbm =0 (54)

and the differential identity
VkR(rlnnb + V'nRzmb + vm-R%kb =0. (50)

Moreover, we will consider only the equiaffine connections. For them the
contracted tensor of curvature

Rmn - Rsmn (56)
is symimnetric, t.e.,
ann = an . (57)

Another contraction of the curvature tensor equals zero:

s
Rmns

=0. (58)
In the case (46) the curvature tensor equals

wvs = Liupy Ria=0, Rjp=0,
R%, = 0,U% + L, UY, R

mnb — Y

where

U = L*°9,U, (60)

and the contracted curvature tensor, according to (8) and (9), equals
R,, = —-2k7%L,,, R4g=AU, Ry =0, Rse =0, (61)

where

A= L*(8,0, - L%,8,). (62)

Note that the gravitational potential U is a scalar function in the Loba-
chevsky space with the metric (1), U® is the vector in this space, RZ‘M
is the covariant derivative of the vector U® generated by the connection
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4), R® . is the curvature tensor (7) for the connection (4), and A is the
wvp

differential Laplace operator generated by the metric (1).
Now, let us recall the connection resulting from (46) for U = const. and

denoted by I'% . We will call it the background one. The curvature tensor
R? ., of the background connection and the contracted tensor R,,, result

from (59) and (61) for U = const.

Consequently, 5

Rm.n - Rm.n = 071L07LAU . (63)
It is obvious that the equation

Rpn — Rmn = 47"7]\477111. 3 (64)

where M,,, is the mass tensor equal to
Moy = pbin0,, , (65)
and p is the mass density, is equivalent to the Poisson equation
AU = 4znyp (66)

in the Lobachevsky space.
Note that v is the gravitational Newton constant. Mass, embedded in
a region of the Lobachevsky space, is equal to the integral

m:///p\/fd;lzldmzd:c3 (67)

over the region where L is the determinant of the matrix (L., ).
It is interesting to note that the gravitational equation (64) includes the

contracted tensor of curvature R, of the background connection Ivﬂ,‘;n. In
the limit (10) Eq. (64) turns into
Ryn = 47r7A/l1:'L7L7 (68)

in which nothing reminds the background connection. The thing is that in
the limit (10) the contracted tensor of curvature R,,, equals zero. In fact,

the complete tensor of curvature B¢ . also equals zero in this limit.

5. Fundamental solution to the Poisson equation
in the Lobachevsky space

In the sphere of radius p for small values of p/k one can approximately
use the Euclidean geometry. The mass density M lying at the origin of
coordinates z, y, z (see (17)) equals

p = Mo(z)d(y)o(z), (69)
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where §(z) is the Dirac function as is these coordinates

VI=1, (70)

u
at the origin of coordinates u = 1. The solution satisfying the Poisson
equation
AU = 4nyMé(2)o(y)d(=) (71)
and the condition
lim U =0, (72)

p—oo

is called the fundamental one.

Lobachevsky has shown [2, p. 159] that the “attractive force” is directed
towards the center and is reciprocal to the area of the sphere; moreover, if
the radius of the sphere p, then its area equals 477?, where the quantity
r equals {3). Consequently, in the spherical coordinates the fundamental
solution has the following partial derivatives:

ou , OU au
- — T 5 =0 3 — =10 3 73
op 90 e (73)
where A is some constant. Integrating (73) we get
A
U:—zcoth%JrB, (74)

where B is an integration constant. From condition (72) it follows that
B = A. As in the small vicinity of the source, the function turns into the

Newton potential U = —yMp~1, A = yM. Consequently,

U= 72‘/1 (1 — coth —E) . (75)

Note that outside the source the fundamental solution satisfies the Laplace
equation
AU = 0. (76)

In accordance with (62)

AU = —=0, (VLL*d,U). (77)

1
VL

In the spherical coordinates the operator (62) equals

— sinf— +

_ 19,0 1(1 9 9 18_‘-’)
sinfl 00 0 sin? 0 dp?

_r~3p Op 2



938 N.A. CHERNIKOV
6. Theory of gravity with two connections

In the Einstein theory of gravity, the principal geometric object is the
cometric

9°°0.0, (79)

defined in space-time X. It is of normal hyperbolic type. In the vicinity of
every point z € X one can choose the coordinates

=z, 2=y, 2=z, 2t=1¢, (80)
so that at the point z the quadratic form (79) becomes equal to
9°%0,0, = 0,01 + 8205 + 0385 — ¢ 28404, (81)

where c is the light velocity. Like in the special theory of relativity, the light
velocity c is the Lobachevsky constant in the space of velocities. But in the
general case we should now speak ahout the space of velocities of a particle
at the given point z € X.

The time tensor in the Einstein theory equals

bap = —¢ gas - (82)
It is coupled with the cometric tensor by the condition
Basg®® = —c726". (83)

Another derivative geometric object of the cometric (79) is the volume ten-
sor
dV = €gpmndz® A dz® A dz™ A dz™, (84)

where
1234 = ¢ '/ —g, (85)

and g is the determinant of the matrix (g,).
The third derivative geometric object of the cometric (79) is the
Christoffel affine connection

Fﬁm = %gas(amgsn + 8n93m - asgmn), (86)

through which one can determine the Riemann—-Christoffel tensor (51), Ricci
tensor (56) and then the Hilbert scalar

R=¢*Ry (87)
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and the Einstein tensor
Gmn = Ripn — %Rgmn . (88)

The latter together with the mass tensor M,,, enters into the gravitational
equations

Gmn = 8TYMmn , (89)
which are transformed into
Ronn = 87y (Mo — 3M0m0) (90)
where
M= —c?g*®M,,. (91)

As it is known, Hilbert derived gravitational equations (88) indepen-
dently of Einstein, taking the variation

S = / Gonbg™™dV (92)

of the integral
W= /RdV. (93)

Though independent of the choice of the coordinate map, the Hilbert
integral does not contain any information on the gravitational field energy.
Therefore, Einstein substituted for it the integral

= /[JdV, (94)

where

L=gm™™(Ire,re —rers . 95)
mbtan

sa-mn

which satisfies the necessary condition
6F = §H . (96)

The Einstein integral (94) depends on the choice of the coordinate map,
and thus, it differs disadvantageously from the Hilbert integral (91) but
contains information on the gravitational field energy. Using this integral
Einstein determined the so called pseudotensor of the gravitational field
energy which, like the integral that generated it, depends on the choice
of the coordinate map, which is in disagreement with his requirement to
formulate the laws of Nature independently of the choice of coordinates.
This point is in the focus of a seventy years old discussion.
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The introduction of the energy pseudotensor cannot be justified also
from the point of view of the tensor analysis unless one introduces one more
object — the background affine connection f,‘jm independent of the cometric
tensor ¢g2®. Having introduced this connection, let us replace the Einstein

integral (94) by
- / cav, (97)

where

v

b a ps
L= gmn( 1?1bPa.n_' PsaP'mn)’ (98)

and P%,,, is the affine deformation tensor (48). Variation of the integral (97)

at the fixed background connection equals

5l = / (Smn — 35Gmn)bg""dV (99)

where . .
Sm.n - Rm.n - %(Rnuz + ann)y (100)
S =g%S,,. (101)

(It is assumed here that the background connection is symmetric but not
necessarily equiaffine.) Therefore, the gravitational equations (89), and cor-
respondingly (90), are replaced by

Smn — %ng.n = 8?71‘47,“1, (102)
or, which is the same,
Smn = 87"7(-/‘/177171 - %A’[Omn) . (103)

As one can see, equations (89) are conserved provided that

“ %

Riypn+ Ron = 0. (104)

But to return back to the Einstein case itself, the background connection
should satisfy a stronger condition than (104). The fact is that the canonical
tensor of the gravitational field energy, given hy the Lagrangian (98), co-
incides with the Einstein pseudotensor provided that in a given coordinate
map the following equality holds:

Iy, =0, (105)
and, consequently 5
Ry ., =0. (106)
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On the contrary, if the condition (106) is fulfilled, then one can find such a
coordinate map in which the coordinate equality (105) is valid.
So the theory of gravity with two affine connections developed here
includes the Einstein theory as a special case with the condition (105).
Assuming that the action of sources of the gravitational field is inde-
pendent of the choice of the background connection, we get the equality

Vsg" " Mpmn =0. (107)

Therefore, from Eq. (102) we get the corollary
Vag" ™ (Rmn + Rum = §°° Rapgmn) = 0. (108)
It is interesting that the left-hand side of the last equality can be transformed

into
(Vs - Ps)[gsm(Rmn + Rn'm)] e gabvnRab 3 (109)

where

P, =P, . (110)
Therefore, if the background connection satisfies the condition
6.\5([277171‘}!'Iénnl):Ov (111)

then, according to (108), Eq. (102) results in

-

(R'm.n + Rn'm)(pnl = O, (112)

where 5
¢* = (Vs — P))g** =g¢g™" P>, - (113)

mn

The corollary (112) is a great interest in connection with the discussion of
harmonic coordinates as the condition of harmonicity can he written as

$ = 0. (114)

Therefore, the vector $% will be called the anharmonicity vector.

7. Choice of the background connection

In the case when there is no gravity we assume that

FT‘:"LR = j:"l?'ln " (115)
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This is a trivial solution of the gravitational equations (103). Indeed, in this
case everywhere on the manifold the mass tensor should be equal to zero,
and consequently, these equations should take the form

Sm = 0. (116)

The condition (115) means that the background connection can be rep-
resented in the form of the Christoffel connection. This connection should
necessarily be equiaffine. Consequently, Eq. (116) should take the form

Ronn = R - (117)

The theory expounded in Section 6 does not impose any other conditions
on the background connection and admits a large freedom in choosing them.

Let us use this freedom and assume that in the absence of gravity the
metric takes the form

gapdz®dz® = Lopde*dzP — 2dt?, (118)

where the components L,z are independent of the coordinate z2* =t and
form the metric (1). Consequently, the background connection is assumed
to be equal to the Christoffel connection, given by the metric (118), and we
find it to be equal to

fﬁu:Liu’ fﬁl:(),
e =0, g =0, It =90. (119)

It is interesting that the light velocity ¢ did not enter into the hackground
connection in spite of the fact that it explicitly enters into the metric (118).
Therefore, the background connection (119) coincides with the previously
chosen one, i.e., with the connection (46) for U =const.

Correspondingly, the curvature tensor of the background connection
equals the tensor (59) for U =const. z.e.,

annb =0 9 Uan = ’ R?fu&b = 0) R?nn‘l = 0’
“f;yﬁ = L%, 5 = (L,560 - L6 )k, (120)

The contracted curvature tensor of the background connection equals the
tensor (61) for U =const. t.e.,

~

Ry, =—-2k7%L,,, Rey=0, Ru=0, Ry=0. (121)
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It is remarkable that the covariant derivative of the tensor field (120)
with respect to the background connection (119) equals zero:

V Rm'n.b - (122)

Therefore, the condition (111) is fulfilled and we have the corollary (112)
that in the present case means

L, =0. (123)

As the determinant of the matrix (L,,) is not equal to zero, of four condi-
tions of harmonicity (114) three of them

F* = (124)

follow from the gravitational equations (103).

8. Solution of the Schwarzschild problem
in Lobachevsky space

Let us solve the equations

Rin=0, Rpa=0, Ry, =-2k"%L,,, (125)
assuming that
gapdz®dz® = F2dp? + H*dN? - V2dt?, (126)
where
df? = df* + sin® 0dy? (127)

and the functions V, F, H depend only on the coordinate p.
In this case, nonzero components of the connection (86) equal

_,dV dV
_1dF dH ,
rl,=F 1%, rj,=-F~ sz—p, iy = I'}ysin®6;
dH )
MG, =H'——=T%, TI'lL=-sinfcosb;
dp
dH
M3 =H1-"==r}, I} =ctf=r3. (128)

dp
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In the same coordinates nonzero components of the background connection
equals

I}, = -k sinh%cosh % , v313 = f’zl.z sin® 0 ;
f]""2:k“]coth‘,%:f221, v§3:—sin0c039;
Iv"fszk’lcoth%:fgl, I3, =cotf =T3,. (129)
Hence, we find the anharmonicity vector
1 d (VH? 2p
Pl = ——— | — — kFV sinh —
VEFH? [dp( 7 ) Isllllk},
=0, =0, & =0. (130)

According to (124), Eqs (125) result in the equality ¢! = 0, which is equiv-
alent to the equality
2p

R
In the limit (10) Eq. (131) turns into the well known condition of harmonic-
ity ([4, Eq. (57.08)]).

In this case, all nondiagonal components of the tensor R,,, are equal
to zero, and diagonal ones satisfy the condition

R33 = Ryasin® 6. (132)
Therefore, of Eqs (125) it remains to satisfy only the following three equa-
tions:

%(F'IVH?) = FVksinh (131)

Rss =0, Rqiy = -2k"%, Ryy = —2sinh? fk)— (133)

In this case we have

. d (H dV
Rsy = F 'H*Vv—{=
44 dp F )a
H

Booq_ L A(V dH)
BT YF A\ F dp )’

dH 1 d(FV) d°H

1 o
-H(R V72F?Ry) = — — ——1L — 134
5 (R + 14) b VE  dp ! (134)
According to (133) and (134) we get the following equations:
d*H H dH 1 d(FV
an_E_d LA, (135)
dp? k* dp VF dp
d (H? dV
— = —] =0, 136
dp ( F dp ) (136)
d ' 2
——(Yﬁ ﬂ) = FV cosh =2 . (137)
dp\ F dp k
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Before solving these equations let us prove immediately that they lead to
the condition of harmonicity (131). Let us consider the covariant divergence

V,Gt = 8,Gb — g6+ rbGe (138)

of the Einstein tensor
G® = Rq,9° — 1R8], (139)

which equals zero, as it is known. In the considered case, the tensor (139) is
diagonal and independent of angles and time. Therefore, the first component
of the covector (138) equals

ZI%SG%JFF&G}“FlllG%_Fgng’Fszng“Ffle- (140)
As in the considered case F33] = F;l, G3 = G%, then
d D) .
V,GS = 301 T (G - G3) + T (G~ GO (141)

Then, taking into account the following formulae
Gil=B-A4, Gi=A+C, Gi=A+B, (142)
where

A=H'F}H" - H(FV) Y(FV)],
B=V 'F'H*VHF'H') - H?,
C=V H*HF'V"Y, (143)

and the formulae
ry =H'H', r}=v1V (144)
for connection, one can easily see that the combination
VoGt = (B-A) +2H 'H'(B-24-C)-2V"1V'4 (145)

equals zero whatever the functions F, H, V be. If these functions satisfy
the gravitational equations (135), (136) and (137}, then

A=F 272 B= 2H—zsinh2£, C=0. (146)

Substituting these expressions into (145) we get

V,Gt = 2k 2H 2P~ W [k FV sinh 22 - (F~1VH2)'] . (147)
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Since we have proved that (145) equals zero, we have also proved the corol-
lary (131).
A solution of the system of equations (135), (136), (137) satisfies the

condition
FV =C, (148)

where C' =const.
Indeed, it follows from Eq. (136) that

,dV
H*— = BF, 149
ip (149)
where B =const. Substituting here the condition (148) we get
d 1y2 -2
—(3V*)y=BCH™*. 150
(v (150)
Substituting the condition (148) into (135) we get the equation
&HH 0 (151
dp? k2 )
whose general solution is
H = Pksinh 272 (152)

3

where P and p are integration constants. Substituting this solution into
(150), we get

ly2 = N - BCP~2k~! coth ﬁ%ﬁ , (153)
where /V is one more integration constant.

We have to consider only Eq. (137) but instead we can consider the
sum

— — | =V = 154
dp[(FV) dp(QV H )} FV cosh (154)

of equations (136) and (137), which is more convenient. Substituting here
the condition (148), we get the following equation:

2
E‘%(%V?H?) - Czcosh-zk—p. (155)

From (152) and (153) it follows that

ly2g? = [Nszsinh 2P BC cosh LZE—p}ksinh PLe (s6)
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Differentiating this function we get its derivatives
122 , 2, .1 2 . 2 .
—2—VH =NP k51nhE(p+p)—BC’cosh-];(p+p),

p+ ) — 2BCE " sinh %(p +4). (157)

1 " 2
(§V2H2> = 2N P? cosh +

Comparing this result with Eq. (155) we find that the integration constants
should satisfy the following conditions:

20 2p
9N P? cosh =2 — 2BCk™ sinh f - C?,

k
25 25
2N P2 sinh —k’—’ — 2BCk™! cosh f ~0. (158)
Hence, we find
2% 2%
9B = Cksinh ?”, 2N P? = C? cosh f (159)

Substituting this into (156) we get

VZH? = C?k?sinh P Z £ sinh 22 (160)

Hence, on the basis of (152) we get

Pk (161)

primh i (162)

It is interesting to verify that the condition of harmonicity (131) is
fulfilled. Indeed, according to (148) it means that

d

—(V2H?) = C%k smh— (163)
dp

k b
and according to (160)

2p

. (164)

VIH? = (' 2k? | cosh Qkp — cosh —
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Consequently, the condition (163) is fulfilled.
Thus, the metric (126), satisfying Eqs (125), is found in the form

P2E2{=71dE? 4 sinh®(€ + a)dN?} — CPP2Zdt?, (165)
where inh(¢ ) .
—  Sin - a p p
E=— == =, 1
sinh(€ + a)’ ¢ YTk (166)

At a large distance from the source, t.e. at large values of £, it should
asymptotically approach the metric (118), more exactly the metric

k2{d€? + sinh? £dN?} — cdt?. (167)
Hence, it follows that
C=c, P=exp{—a}. (168)

It remains to elucidate what is the parameter a equal to. We find it
from the condition that at large values of ¢ the connection (128) should
tend to the connection (46). In other words, all the components of the
connection (128) should tend to the background connection (129), except
for the component I'},, that should tend not to zero but to U', t.e.,

r}y - U =+yM(ksinh¢)™2. (169)

Note that the latter includes the very “attractive force” about which
Lobachevsky wrote in 1835 (p. 159).
This condition can be fulfilled as

FlFP'=_H'H' = %[coth(f + a) — coth(£ — a)],
H7'H' = k7! coth(€ + a),

HH' = kP?sinh(€ + a) cosh(€ — a),

1 ., sinh 2a

It

VV' =k 5 - 170
2" [kPsinh(€ + a))? (170)
Comparing (169) with (170) we get that
1 . M
—2—smh 2a = = (171)

As the gravitational radius yMc™? is much smaller than the constant k we
can approximately put
M
a= —,
kc?

|
Pt

(172)
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9. The Kepler problem in the Lobachevsky space

Let us consider now the relativistic Kepler problem in the Lobachevsky
space. In view of spherical symmetry we can put

6 = (173)

T
2
without loss of generality. The equations of motion of a planet in the case
(126) have the angular momentum

d
s
H =M (174)
and the energy
V\?%dt

integrals, where 7 is the proper time of the planet. The equation

dt\? dpz - dgoz
28N 2PN g2 0PY) _ 2
A(EY (%) () e

defines the derivative %7@ Taking into account equations (175) and (176)
and a condition FV = ¢, we obtain the equation

dp 2_ 22 2 {1V 2
(E) =E£°C -V He . (177)

Substituting (174) into (177) we get the differential equation for the trajec-
tory p = p() in the form

do\* ,, . VH\?
,ﬁ(%) =2 HY —VIHY - (“ ) . (178)
@ c

Substituting (152) and (161) into (178) we finally get

dp\* 7
pu? (i) = e2c? P4k* sinh? prp
de k

— ¢2P%k* sinh P ; P sinh3 2 e 12 k? sinh d ; £ sinh P

.
k 3

k

. (179)

In the limit (10) Eq. (179) turns into the well known equation [4, Eq.
(58.32)].
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