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We analyze ensembles of random matrices capable of describing the
transitions between orthogonal, unitary and Poisson ensembles. Scaling
laws found in complex Hermitian band random matrices and in additive
random matrices allow us to apply them to represent the changes of the
statistical properties of quantum systems under a variation of external pa-
rameters. The properties of spectrum and eigenvectors of an illustrative
dynamical system are compared with the properties of ensembles of ran-
dom matrices. To describe the motion of the eigenvectors of the matrix
representing a dynamical system under a change of external parameters
we define the relative localization length of the eigenvectors and analyze
its properties. We propose a criterion for selection of generic basis, in
which statistics of eigenvector components might be described by random
matrices. The properties of products of unitary matrices, representing
composed quantum systems, are investigated.

PACS numbers: 05.45. +b, 02.50. +s, 24.60. Ky

1. Introduction

The properties of quantum analogues of classically chaotic systems have
attracted the attention of physicists for over a decade. In the pioneering
work of Casati et al. [1] it was shown, on the basis of a numerical analysis
of the kicked rotator, that quantum effects limit the diffusion in the momen-
tum space characteristic of classically chaotic systems. This observation led
to a thorough investigation of analogues of other classically chaotic systems
and several similarities and differences between the properties of classical
and corresponding quantum systems have been revealed (see [2-4] and refer-
ences therein). The term chaos has a precise definition in classical mechanics
based on the divergence of neighbouring trajectories in phase space [5, 6]
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and the positiveness of the Lapunov exponent. Since the concept of a sin-
gle trajectory loses its meaning in quantum mechanics a generalization of
the definition of chaos for quantum systems is not simple. Some efforts in
this direction have been only partially successful [7-10]. One usually ap-
plies, therefore, a phenomenological method, analyzing various properties of
quantum systems [4, 11, 12] the classical analogues of which display chaotic
behaviour.

Numerous studies of chaotic quantized systems have shown [11-15] that
the statistical properties of the spectra and eigenstates of dynamical systems
are well described by ensembles of random matrices. The theory of random
matrices was developed by Wigner, Porter and Mehta in order to explain the
complicated structure of compound nuclei [16-18]. In spite of a lack of a pre-
cise proof, it is known [11] which ensembles of random matrices correspond
to a given quantum dynamical systemm. Time independent, autonomous
systems are described by Hermitian matrices of Gaussian ensembles (GE)
(17, 18], while time dependent, periodically driven systems are character-
ized by unitary matrices of circular Dyson ensembles (CE) [18, 19]. For
both categories one of three universal ensembles is appropriate depending
on the symmetry of the system: the orthogonal ensembles (GOE and COE)
describe systems with an antiunitary symmetry (generalized time-reversal
symmetry) while the unitary ensembles (GUE and CUE) characterize sys-
tems without such symmetry {11, 20]. The third class, the symplectic en-
sembles (GSE and CSE), correspond to systems where so-called Kramers’
degeneracy occurs (half integer spin and exactly one antiunitary symmetry)
[11, 21).

It is worth emphasizing an essential difference in the search for chaos
in classical and quantum systems. Studying classical dynamics we analyze
the time evolution of the system to find the sign of the largest Lapunov
exponent. On the other hand in quantum mechanics a relevant piece of
information might be extracted by studying the properties of the station-
ary solutions of the corresponding Schrédinger equation. A complementary
approach based on the investigation of the time evolution of wave packets
in quantum models was developed only recently [22].

Simple statistical measures of the spectrum (level spacing distribution
P(s)) have universal properties and are the same for various quantum sys-
tems with the same symmetry properties [20]. On the other hand, an inves-
tigation of the long-range correlation of the spectra measured by the number
variance £2(L) or the spectral rigidity A3(L) displays for larger values of L
some relevant deviations from the predictions of the random matrix theory.
These differences are found [23] to be system specific and are linked to the
existence of periodic orbits in classical phase space [24].

Recent years have brought a deeper understanding of the fundamen-



Parametric Eigenbasis Dynamics 969

tal concepts of quantization of classically chaotic systems. The Gutzwiller
theory of periodic orbits {25, 26] has made it possible to find a semiclassi-
cal approximation for the smoothed level density in a quantum spectrum
[27-30]. The Einstein-Brillouin-Keller (EBK) quantization conditions are
suitable for integrable systems only [31, 32]. Quantization conditions appli-
cable to classically chaotic systems based on the periodic orbits have been
found [33-36]. The wave packet propagation technique was proposed and
further developed by Heller [22, 37]; other semiclassical methods of quan-
tization are based on an adiabatically switched perturbation [38-42] or on
building an approximate integrable Hamiltonian [43, 42]. In spite of these
considerable achievements several problems of the semiclassical quantiza-
tion of classically chaotic systems remain unsolved (see [42] and references
therein) and the field still offers a challenge for theoretical physicists.

The study of quantum chaotic systems, sometimes called quantum chaol-
ogy [44, 45], is of great interest not only from the theoretical point of view.
Recent experiments on the microwave ionization of Rydberg atoms [46-50]
and on the structure of hydrogen atoms in a strong magnetic field [51-56]
have shown the connections between quantum chaology and atomic physics.
The problems of quantum chaos are present in the theory of nuclear struc-
ture and nuclear reactions (see [57, 58] and references therein), Ericson
fluctuations (59, 60] and chaotic scattering [61-64]. Quantum chaology is
also linked to solid state physics via the phenomenon of Anderson localiza-
tion in disordered media [65, 66] and the theory of conductance fluctuations
[67-69]. The recent investigation of ahsorption spectra in microwave res-
onators [70-72] provided an interesting possibility for a complementary ex-
perimental verification of theoretical predictions concerning the properties
of quantized billiards. The eigenfrequencies of a resonator in the shape of
the Sinai billiard display level repulsion [70], a characteristic to quantum
chaotic systems [73, 13] and GOE matrices [18]. The probability of finding
clustered eigenfrequencies is larger for a rectangular resonator [72] and the
spacing statistics is closer to the Poisson distribution typical of classically
regular systems [74, 11].

The transition from regular motion to chaos in classical systems is well
understood [6, 12, 75]. Consider an integrable system, described by a Hamnil-

tonian Ag, and the perturbed system

The Kolomogorov-Arnold—Moser (KAM) theorem states that for small, but

non-zero values of the control parameter A, the nonintegrable system A is
non-chaotic [76-78]. Ounly if the perturbation strength exceeds a critical
value A; are the last KAM tori broken and full scale chaos occurs [6, 79]. A
rough estimate of the critical parameter value is provided by the Chirikov
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resonance overlap criterion [80]. More accurate results might be obtained
applying the renormalization technique [82-84]. In spite of considerable
efforts, attempts to generalize the KAM theorem for quantum mechanics
have been only partially successful [84, 85] but the role played in quantum
models by analogues of the classical KAM tori is well established [86, 87].

The changes of the properties of a quantum system with the pertur-
bation parameter A may be well described by a novel method called level
dynamics, introduced by Pechukas [88]. In this approach, eigenvalues of
the quantum system are considered as a set of interacting classical parti-
cles, while the parameter A plays the role of a fictitious time. Changes
of eigenvalues with the control parameter are regarded as the dynamics of
the classical system consisting of point particles [89-92, 11]. It has been
shown that such a dynamical system is integrable and a sufficient number
of integrals of motion exist. The level dynamics of an autonomous quan-
tum system corresponds to the generalized Calogero-Moser system (93] of
classical particles moving in one-dimensional unbounded space {94]. A peri-
odically driven quantum system is described by a unitary Floquet operator
with eigenphases moving along the unit circle. In this case the level dy-
namics leads to the integrable Sutherland model [95]. Integrability of the
level dynamics means that knowing the initial conditions of the particles
for A = 0 (the eigenvalues of the unperturbed system), one may get the
position of the interacting particles (hence the eigenvalues of the quantum
system) for an arbitrary value of the fictitious time A. Moreover, it is known
[96] that the thermodynamic equilibrium of the interacting particles mov-
ing along the unitary circle corresponds to the state of a quantum system
described by the circular unitary ensemble of random matrices.

In order to measure to correlations between the spectra of quantum sys-
tems obtained for different values of the system parameters, the parametric
number variance has been introduced [97]. Complementary information on
the level dynamics may be obtained by studying the distribution of curva-
tures [98-101], defined by the second derivative of the energy levels with
respect to the perturbation parameter. The curvature distributions for all
three universality classes are known [102]. Investigation of avoided ctossings
between adjacent levels provides an additional possibility for characterizing
the level dynamics [103]. Distribution of the minimal distances of avoided
crossings [104-106] or the related distribution of the exceptional points [107]
allows us to distinguish between different universality classes or to study the
transitions between them [108, 109].

In order to investigate the motion of energy levels under the changes
of parameters, we may use autonomous quantum systems such as the hy-
drogen atom in an uniform magnetic field of varying strength [97, 105} and
quantum billiards with varying geometry [97, 99, 101] or periodically driven
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model systems such as the kicked top [100, 108] and kicked rotator [101].
Complementary investigations have been carried out directly with random
matrices representing the Hamiltonian (1) [20, 98, 102]. In order to analyze
the level dynamics of a fictitious quantum system one may take the matrices
Ap and V from the same ensemble and vary values of the parameter A. On
the other hand, taking the matrices Ag and V from different ensembles one
can study the transitions between them [11, 20].

The set of three universal ensembles (orthogonal, unitary and sym-
plectic) describing quantum chaotic systems might be enlarged by defining
a fourth class of diagonal matrices containing real random numbers gen-
erated according to a Gaussian distribution. Such matrices give (in the
limit of large matrix size N) the Poisson distribution of eigenvalues and are
therefore suitable for representing quantum analogues of classically regular
systems [11]. By taking the matrix A¢ from this ensemble and the matrix
V from GOE we may construct an additive model of random matrices de-
scribing the transition between Poisson and orthogonal ensembles [110-113].
The scaling properties of this ensemble have been demonstrated [114]: the
statistical properties of the spectrum of random matrices depend only on a
scaled perturbation parameter A = AV/N. In this way the additive model of
random matrices provides a family of level spacing distributions interpolat-
ing between the Poisson and GOE distributions and labeled by the scaled
parameter A. The explicit form of this distribution is not known, but the
formula obtained for 2 x 2 matrices gives a reasonable approximation useful
for fitting to numerical data [113, 114].

Another ensemble of random matrices interpolating between the Poisson
and GOE consists of N X N matrices with non-zero elements inside a band of
width b [115]. Each element is drawn independently according to Gaussian
distribution with zero mean and the variance dependent on N and b [116].
By varying the width b of the band from 1 to IV one can study the transition
between Poisson and Gaussian orthogonal ensembles [115-118]. The band
random matrices also possess a scaling property: the statistical properties
of the eigenvalues [116-118] and eigenvectors [119, 120] depend on the single
variable z = b2/N. A fair approximation to the level spacing distribution
P.(s) was recently proposed [4, 118]. This distribution has been found to
be useful for describing the properties of the quantum dynamical systems
represented by matrices with a band-like structure, e.g. the quantum kicked
rotator [1, 4, 121].

Apart from the families of distributions originating from ensembles of
random matrices (additive matrices [113], band matrices [118, 122]), there
exist several other distributions interpolating between the Poisson and GOE
level spacing distributions. A simple formula proposed by Brody [16, 17]
is based on the assumption that for small spacings s the levels repel each
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other as P(s) ~ s9, where the parameter ¢ varies from zero to unity. In spite
of lack of precise physical arguments supporting this hypothesis the Brody
distribution seems to have had the greatest success in fitting experimental
and numerical data [4, 123]. Furthermore, its generalization [124] has been
used to develop an approximation of the distribution P,(s) characteristic of
band random matrices [118]. Another family of interpolating distributions is
due to Berry and Robnik [125], who have proposed to perform a convolution
of Poisson and Wigner distributions. Theirs distribution is parametrized by
a relative weight r € (0, 1) proportional to the fraction of the phase space of
the corresponding classical system occupied by the regular islands of stable
motion. Some other similar distributions have been proposed (4, 123-127]
but it is not at all known to what dynamical quantum systems they apply.
Moreover, it is not clear, which properties of quantum systems with varying
parameters are universal and which are system dependent.

a Dynamical Systems b Random Matrices

CHAQTIC CHAOTIC
o op. NO
T-R1 T-RI &
b
1a i)
Regular Poisson

Fig. 1. Sketch of the transitions in the space of: a) quantum dynamical systems;
b) random matrices. For further explanations see the text.

In this work we continue the investigation of the link between the para-
metric changes of quantum dynamical systems and transitions in the space
of random matrices. In particular, we investigate the dynamics of eigenbasis
of a quantum systermn under a change of external parameters. Fig. 1.a is a
schematic representation of the space of quantum dynamical systems. The
lower rectangle symbolizes the analogues of classically regular systems. The
two circles above stand for the subsets of classically chaotic systems with
and without time-reversal symmetry. Note that the borders of these sets,
represented by sharp lines in the picture, should be rather diffuse, since the
transition to/from chaos in classical systems often occurs in a continuous
way [5, 6]. Each of the points A, B,C, D, E, F in the picture represents a
single quantum system, while the paths connecting them stand for trajec-
tories in the space of dynamical systems or the level dynamics with respect
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to the change of a parameter A.

The right part of the figure represents the space of random matrices:
the lower rectangle stands for the diagonal matrices of a Poisson ensem-
ble, the circles above it for the orthogonal and unitary ensembles. Points
A',B',C',D' E', F' represent single matrices and lines joining them rep-
resent the transition between random matrices, or more generally, between
ensembles of random matrices. Further on we will be concerned with two
basic questions: (7). Which transitions in the space of dynamical systems
possess some universal features?, and (v/). To what extend are we able
to find a one-to-one correspondence between the transition in the space of
dynarmical systems and the transitions between random matrices?

In fact, one could imagine the two pairs of pictures: one symbolizing on
the left hand side the space of autonomous dynamical quantum systems and
on the right hand side the space of Hermitian random matrices (Gaussian
ensembles). The other pair would portray the space of periodically driven
quantum systems and the space of unitary random matrices (circular en-
sembles). Note that to simplify the above schematic diagram we have not
taken into account quantum systems with the Kramers’ degeneracy [11] and
the matrices pertaining to the symplectic ensemble.

This paper is organized as follows. Section 2 is concerned with random
matrices. In the first subsection we present a brief review of the properties
of classical ensembles of random matrices. In the next subsection we study
the additive model of random matrices in more detail, analyzing how the
eigenvectors of a matrix change with the variation of the parameter A. In
order to measure these changes in a quantitative way we introduce the rel-
ative mean entropy of the eigenvectors and the relative localization length.
Band random matrices are discussed in the following subsection. We define
and analyze an ensemble of complex Hermitian band random matrices ca-
pable of describing transitions between Poisson, Gaussian orthogonal and
Gaussian unitary ensembles. Defining the generalized localization length of
eigenvectors, we demonstrate the scaling features of this model.

In Section 3 the statistical properties of quantum-dynamical systems
are discussed. The first subsection is concerned with eigenvalues, the next
with eigenvectors and the last with level dynamics. In Section 4 we analyze
an example of dynamical system: the model of a periodically kicked top
[15, 128-131]. The first subsection is concerned with some properties of
the classical model. In the next, we compare the behaviour of the quan-
tum model under variation of the parameters of the system and transitions
between Poisson and orthogonal ensembles of random matrices. The level
spacing distribution, the eigenvector statistics and the mean entropy during
the transition are discussed. We analyze the distribution of eigenvectors
represented in a basis generated from the eigenbasis of the system by a
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generalized rotation. Moreover, we provide a simple criterion for selection
of generic basis, in which eigenvector statistics might be described by the
canonical ensembles of random matrices.

In the next subsection the transition between the orthogonal and uni-
tary ensembles is analyzed. In particular, we link this transition with the
breaking of time reversal symmetry in the corresponding classical model
and extend the results obtained previously in references [132-134]. The
properties of products of unitary matrices, which correspond to composed,
periodical quantum systems are investigated. We conclude in Section 5 by
summarizing our results and presenting a list of open questions.

2. Random matrices
2.1. Canonical ensembles: orthogonal, unitary and symplectic

There exist three Gaussian ensembles of matrices studied by Mehta [16,
18] (GOE, GUE and GSE), which are invariant under orthogonal, unitary
and symplectic transformations, respectively. They are closely related to
three circular ensembles of unitary matrices (COE, CUE, CSE) introduced
later by Dyson [19]. The density of quasi energy eigenphases of all three
circular ensembles is uniform in the interval (0,2r), while the density of
eigenvalues of the Hermitian matrices pertaining to any of the Gaussian
ensembles is given by the famous semicircle law of Wigner [16]. In order to
study the statistical properties of the spectrum in this case the technique of
spectral unfolding is needed [135, 20], which compensates the changes of the
density with energy. Interestingly, the theory of random matrices predicts
the same statistics of eigenvalues and eigenvectors for the corresponding
Gaussian and circular ensembles {17, 18].

The nearest level spacing distribution P(S), often used to characterize
spectral fluctuations, is well approximated by the so-called Wigner surmise:

rS?

Py(S) = SSexp[- ], (2)
Py(5) = %52 exp [—%—] , (3)
- ()l 8

for the orthogonal, unitary and symplectic ensembles, respectively [17]. It
is worth noting that other measures of the statistical properties of the spec-
trum, like the two point correlation function R»(5), the spectral rigidity
A3(L) and the number variance £?(L) also have identical forins for both
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the families of Gaussian and circular ensembles (in the limit of large matrix
size N) [18].

Relevant information on the ensemble of random matrices is carried
not only by spectra of matrices, but also, independently, by their eigenvec-
tors [16]. Numerical diagonalization of a matrix provides N eigenvectors
|Yr), k =1,...,N, each described by N components cfc,l =1,...,N. The
eigenvectors are represented in the basis, in which the random matrix is
constructed. We are interested in the distribution of squared components
yL = |ck|?. To simplify the notation, we shall omit the indices labeling each
squared component y. In the limit of large matrices the distribution of the
squared moduli of components P(y), called eigenvector statistics, is given
for both kinds of ensembles by the same chi-square distribution {17, 136]

_ (B2 y NPT By
Pﬁ(y’“r(ﬁ/2)<y><<y>) exe [~ 307] )

where the number of degrees of freedom f is equal to 1,2 and 4 for OE,
UE and SE, respectively, and (y) denotes the mean value of the eigenvector
component. For the orthogonal ensemble (4 = 1) this formula reduces to
the Porter—Thomas distribution [16]

1 y
Ply) = ——=exp (- 5=)- (6)
27 (y) ( 2<y>)
A single eigenvector of a random matrix v might be characterized by
the Shannon entropy Hj [115]

N
Hi=-) yiln(y}). (7)
1=

This quantity varies from zero for a totally localized eigenvector (one com-
ponent equal to unity and all others to zero) to In(N) for a delocalized
eigenvector with all components equal to 1/N. The entire matrix A4 is char-
acterized by the mean entropy

1 N
(H) = & > Hy. (8)
k=1

For random matrices representing a member of a canonical ensemble the
mean information entropy can be found analytically [137] and expressed by
means of the Digamma Function ¥ [138]

Eﬁ:sp<ég+1)—¢<§—+1), (9)
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with 8 = 1,2 and 4 for OE, UE and SE, respectively.

A matrix pertaining to the Gaussian orthogonal ensemble might be eas-
ily constructed on a computer by means of a generator of pseudo-random
numbers. It is a real, symmetric matrix with elements generated indepen-
dently according to a Gaussian distribution with zero mean and the variance
a?j = (1 4+ 6;;)/N [17]. A schematic diagram of such a matrix is depicted

Fig. 2. Scheme of the random matrices: a) Poisson, b) GOE, ¢) band matrices,
d) additive model. Real symmetric matrices consist of random numbers generated
according to a Gaussian distribution with zero mean and variance ¢?, as depicted
for each element of the N x N matrix.

The Gaussian unitary ensemble consists of complex Hermitian matri-
ces. The real and imaginary parts of each element are generated inde-
pendently according to a Gaussian distribution with zero mean and the
variance (05)2 =(1+6;;)/2N and (ain)Z = (1-4;;)/2N, respectively [17].
The Gaussian symplectic ensemble contains real quaternion matrices of di-
mension 2N X 2N. They might be decomposed [18] into a sum of four terms
A = Ageg + A161 + Azeq + Aszes, where ¢;; 1=0,1,2,3 are the Pauli ma-
trices, Ag is a real V X N symmetric matrix, A;; 7=1,2,3 arereal N x N
antisymmetric matrices and Aje; stands for the tensor product [18].

As a fourth universality class, one can consider the diagonal matrices
of real random elements in the case of Gaussian ensembles (or the unitary
matrices with random eigenphases in the case of circular ensembles). Both



Parametric Eigenbasis Dynamics 977

ensembles display Poisson statistics in their spectra
P(s)y=e"* (10)

and are appropriate to for the description of classically regular systems
[11]. The scheme of a matrix representing the Gaussian Poisson ensemble
is shown in Fig. 2.a.

2.2. Interpolating ensembles: additive model

Simplest ensembles of matrices interpolating in a continuous way be-
tween the canonical Gaussian ensembles may be based on assumption (1).
In order to keep the eigenvalues of the matrix 4 in a bounded range of the
energy axis it is convenient to modify [113, 114] equation (1):

A_A0+AV
IRV

Taking for Ay the diagonal random matrices and for V' the membhers of the
Gaussian orthogonal ensemble we define an ensemble of random matrices
interpolating between Poisson ensemble and GOE. A scheme of such an
additive random matrix is shown in Fig. 2.d. The diagonal real elements
of the matrix are taken with a Gaussian distribution with zero mean and
variance o2 set to [113]

(11)

o2 = (1+%). (12)

The variance characterizing the off-diagonal elements reads

2
o JE (13)
F7ON(1+ A2)

Note that the above variances are determined up to an irrelevant scale factor,
which settles the radius of the semicircle distribution of the level density in
the limiting case of an orthogonal ensemble [17]. Increasing the value of
the parameter A from zero to infinity, one may study the transition from
Poisson to GOE, represented schematically in Fig. 1.b by the path A’ — B’
in the space of random matrices.

Motivated by a possible application to the description of the semiclassi-
cal regime of quantum dynamical systems we are interested in large random
matrices defined by equation (11). In this case we are unlikely to get an
analytical expression for the joint distribution function of eigenvalues or the
level spacing distribution in a general case [20]. However, it is possible to



978 K. ZYCZKOWSKI

obtain analytical results for the model of 2 x 2 random matrices. For the
case of the transition Poisson — GOE the level spacing distribution P(s)
may be expressed [113, 114] in terms of a modified Bessel function Iy(z)
and a Tricomi function {138, 139] U(a, b, 2) as:

PFPO(s) = (s“(—i\ﬁ) exp (— Fhv )/ (=2®=223) ( ()\)) dz ,

(14)
where u(A\) = /7U(=1/2,0,A%). The above distribution reduces to Poisson
e™® for A = 0, while the Wigner surmise (2) is approached in the limit
A — oo. For all intermediate values of A, the distribution (14) exhibits
an linear repulsion of eigenvalues, i.e. Py(s) ~ s/A, for s < A « 1. This
distribution was shown to be useful for describing the spectral properties
of large random matrices [114]. The best fit of the distribution (12) to the
numerical data obtained from random matrices delivers the fitting value Aj.
A detailed investigation has shown that the transition speed differs from one
part of the spectrum to the other, so the best fit parameter Ay is different
for a group of eigenvalues taken from the wings of the spectrum and for a
group of eigenvalues taken from its center. Taking this fact into account
and analyzing each part of the spectrum independently, a scaling relation
has been found [114], A; = A;()), where the scaling parameter X is equal

A=VNX. (15)

Because of the above scaling relation the additive model of random matrices
might be used to describe the behaviour of dynamical systems. A possible
application to quantized, pseudointegrable systems was recently proposed
[72, 140, 141].

In a similar manner, by taking for V' the complex random matrices
pertaining to the unitary ensemble, one can study the transition Poisson —
GUE. The level spacing distribution ohtained for the 2 x 2 complex matrices
in the case of this transition reads [142]

oo 2
9 a2 exp [—/\z - ——]
PfU(s) = s‘/;r—%\-e [—ws ] /smh sza - : dz, (16)
0

where the coefficient a(A) is expressed by the error function erf(z), the
exponential integral Ei(z) and a hypergeometric function 2 F>(a, b, c; z) 138,

139]
= 1o ) ()
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(a2 :
Y [E_(Q_f_). + @A2F2(1/2,3/2’3/_2; Az/2)] - (17)

Formula (16) reduces to the Poisson distribution for A = 0 and the Wigner
surmise (3) with quadratic level repulsion, characteristic to the unitary en-
semble, is obtained in the limit A — oco. In Fig. 1.b this transition is
represented by the path E' — F'.

The additive model (11) is also useful for studying the transition GOE-
GUE. The level spacing distribution obtained for 2 x 2 matrices reads {142~
145]

P/{)U(s) =s 2 ;/\2 a® exp [— 822a2]erf[f£—} , (18)

where

= T 2 () 22T

This distribution, being a generalization of the Favro-McDonald formula
[146], reduces to the equation (2) for A = 0 and to the equation (3) in the
limit A — oo. The above distribution obtained for the 2 X 2 matrices was
found to be applicable to the description of statistical properties of large
matrices interpolating between orthogonal and unitary ensembles [143]. The
transition between orthogonal and unitary ensembles is of great physical
interest, since it corresponds to the hreaking of a generalized antiunitary
symmetry in a dynamical system. The influence of time reversal symmetry
breaking for the statistical properties of the spectrum was first observed
in nuclear physics [16]. Similar results were obtained by analyses of the
conductance fluctuations of mesoscopic systems in an external magnetic
field {60, 67, 68]. In addition the OE-UE transition has been studied for
model dynamical systems like billiards in a magnetic field [147], Aharonov-
Bohm billiards, the coupled spin system [148], or the periodically kicked top
(134, 143].

The additive model (1) might also be used to study the level dynamics
inside a given ensemble. For example, by taking both matrices Ay and V in
equation (11) from the orthogonal ensemble, we may mimic the parametric
dynamics of classically chaotic dynamical systeins, represented in figure la
by the path B — . This method was used to find universal distributions of
curvatures for parametric motion in the orthogonal, unitary and symplectic
ensembles [98]. Similar results were obtained by studying an alternative
level dynamics defined by [102],

A = Ag cos(t) + Vsin(7), (20)
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where both matrices belong to the same ensemble. A suitable substitution
A = tan(7) shows that equations (20) and (11) are equivalent. Note that
in this model all eigenvalues are restricted to a certain energy interval, or
speaking in the language of level dynamics, the “gas of particles” is confined
(11].

The eigenvector statistics of the additive random matrices interpolating
between Poisson and GOE was studied in reference [114] and an approximate
formula, based on 2 x 2 matrices, was proposed

Ply) = 220V4 + A2
(y) = \/ﬂw(A2+4y(4+/\2))a'

The factor a = (IV —1)/N takes into account the fact that the diagonal
elements of the diagonalizing matrix are excluded. For small values of the
perturbation parameter A this formula has been shown [114] to be useful for
describing the eigenvector statistics of arbitrary large matrices. In contrast
to the scaling properties of the spectrum (14), the eigenvector statistics of
the additive model does not depend on the matrix size N, at least for small
values of the parameter A.

The eigenvector statistics depends, in an obvious manner, on the basis
in which the eigenvectors are expanded. In the case of additive random
matrices it is natural to use the basis in which the matrix itself is con-
structed (i.e. the eigenbasis of the matrix obtained with A = 0). On the
other hand, one may also apply for this purpose any other orthogonal basis
{|lgi),i=1,..., N}. In this case the components of eigenvectors are equal
¥y = [{¥r(X)]e:)|?, and the explicit dependence of the eigenvectors {|¢y)}
on the parameter )\ is displayed. It is instructive to chose the hasis {|p)}
as the eigenbasis of the matrix A(A + AX) and consider the distribution
Pp »(y) of components of the “rotated” eigenvectors

y = [(Dr(M) %A+ AN (22)

The above defined statistics of rotated eigenvector components Pa x(y) be-
comes singular for AXA — 0, but it is interesting to observe, how it depends
on the rotation parameter AX. Denoting Az = A; + AX, we will also use
an alternative notation for the statistics of rotated eigenvector components
Py, 2, (y). In this notation the distribution is symmetric with respect to the
change of the parameters, Py, x,(y) = Px,x,(y), and singular for A; = Az.
The distribution Py »(y) may thus symbolize the eigenvector statistics of
the additive model A ~ Ay + AV in the standard basis used to construct
the matrix itself.

Figure 3 presents the eigenvector statistics for the additive model of
random matrices. In order to make the differences between various distri-
butions P(y) more visible we use a logarithmic scale for the component y.

(21)
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Fig. 3. Eigenvector statistics for the additive model of random matrices obtained
for 200 matrices of size 100. a) “chaotic” case — statistics Ps ¢,0.0(y) well described
by Porter-Thomas distribution; b) “regular” case — Py 1 0.0(y) and the distribution
(21); ¢) “chaotic” case and rotated basis Ps g 4.9(y).

The normalization (y) = 1 enables an easier comparison of the statistics
obtained for matrices of different size N. Figure 3.a is obtained for A = 5.0.
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For such values of the perturbation parameter A, the matrix A has the
properties of GOE and the eigenvector statistics is well approximated by
the Porter-Thomas distribution (7), denoted by the dashed line in the pic-
ture.

For small values of the perturbation parameter, only one component of
each eigenvector is of the order of unity, while all others are some orders of
magnitude smaller and are responsible for a dominant peak of the distribu-
tion P(y) located at [114] y,, ~ 2log;4(A) — 1. Such a case is displayed in
Fig. 3.b, obtained for a sample of 200 random matrices of size N = 100 with
perturbation parameter A = 0.1. The solid line stands for the distribution
(21), drawn for the same value of A without any fitting parameters. Note
a small peak at log;¢(y) ~ 2 = log;4(/V), which corresponds to a group of
“diagonal” eigenvector components of the order of unity.

The significant difference between the two figures may provoke one to
claim that the shape of the distribution P(y), characterizing the additive
random matrices, can be used as an absolute criterion for the GOE proper-
ties. This is not the case, as is demonstrated in Figure 3c. The probability
distribution depicted here is obtained for the same value of the parameter
A = 5.0 as in Fig. 3.a. The only difference between these two cases lies in
a rotation of the basis: Fig. 3.a presents the distribution Ps g,0.0(y) while
Fig. 3.c shows the distribution Ps ¢ 4.9(y). Observe that the latter distri-
bution, obtained for matrix A close to the GOE regime, is quite similar to
the similar to the one depicted in Fig. 3.b for a small value of the pertur-
bation parameter A. Best fit of the distribution (21) gives in this case the
value Ay = 0.013. A similar effect has also been ohserved for the eigen-
vector statistics of a matrix Ag taken from the GOE and analyzed in the
eigenbasis of A = Ag + A A4, for a GOE matrix A; and small values of the
parameter A. In other words, the eigenvector statistics of a GOE matrix A4,
describing quantum chaotic systems, in a “wrong” basis (being to close to
the eigenbasis of A) may look like the eigenvector statistics of a matrix with
a Poisson level distribution, characteristic of classically regular systems. In
the following sections of this work we discuss further the problem, in which
basis is it “appropriate” to study the eigenvector statistics of a quantum
dynamical system?

The distribution of components of rotated eigenvectors Pa »(y) might be
characterized by the mean entropy of eigenvectors (Hp ), defined in analogy
to equations (7) and (8). Let us measure the entropy of rotated eigenvectors
(Ha) with respect to the mean entropy of eigenvectors of the orthogonal
ensemble H; given by (9) and introduce the relative entropy v = (Ha)/H;.
Figure 4 presents the dependence ¥ on A\ drawn in a log-log scale for two
values of the matrix size N and the parameter A;. Standard method of the
perturbation analyses gives a simple relation ¥ ~ (AX)2. This behaviour
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810(A)\)

Fig. 4. Relative entropy of eigenvectors for the additive model of random matrices,
depicted against the rotation parameter AAX for a} Poisson-like case A; = 0.001
with N = 100 (0), N = 10 (A); b) Wigner-like case A; = 1.0 with N =100 (),
N =10 {x).

is visible in the picture for small values of the rotation parameter AA. For
larger values of AX the perturbation approach breaks down and differences
between the cases of Poisson matrices (A\; < 1) and GOE-like matrices
(A1 > 1) are clear. Independently of the value Ay, characterizing the ma-
trix A, for large enough values of the parameter A;, describing the basis
in which the eigenvector statistics is calculated, the entropy of eigenvectors
of the matrix 4 tends to the value typical to GOE. The size of the matrix
N influences slightly the value of the entropy v of eigenvectors, and conse-
quently determines the magnitude of the rotation parameter AX needed to
produce delocalized eigenvectors.

2.3. Interpolating ensembles: band matrices

Hamiltonians of such quantum dynamical systems as atom in magnetic
field [54-56], atom in microwave field [49, 50}, the kicked top [1, 121, 149],
kicked oscillator [150], and quantum bhouncer [151, 152] are represented by
matrices with a band like structure. This observation stimulated a search for
an ensemble of band random matrices capable of describing the transition
between Poisson and orthogonal ensembles [115-117]. Note that controlling
the character of the random matrix by varying the size of its band is entirely
different from adding an extra term representing the perturbation. The
difference is shown schematically in Figure 2, where Fig. 2.c corresponds
to the band random matrix and Fig. 2.d represents the additive model.
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The approach of band random matrices might therefore be regarded as
complementary to the earlier model of additive random matrices.

In this section we discuss a generalization of the ensemble of real sym-
metric band random matrices investigated by Casati ef al. [116] and com-
plex band matrices discussed by Camarda [153]. Our model enables us to
characterize all three transitions between Poisson, orthogonal, and unitary

ensembles. The complex Hermitian band matrix A;; = A}J- is defined by
(154]:
Aij = (6 +1G;) O —[i - ), 4i=1,...,N, (23)

where b is the bandwidth and ©(.) denotes the unit step function. The
symbols £;; and (;; represent statistically independent random variables
distributed according to a Gaussian distribution with zero mean and vari-
ances ag and a{j, respectively. The parameter ¢ measuring the effective
size of the imaginary part of the off-diagonal matrix elements is determined

by the condition

e= 2 ], (24)
(05)°
J
All eigenvalues are kept in the constrained energy interval by imposing a
normalization condition Tr(A4%) = N + 1. The variances of the real and
imaginary parts of the matrix elements can be thus expressed by the pa-
rameters of the model, N, b, and ¢:

(o) = %g‘(“g‘(]’\],\ljb—lll)(l + 6:5) (25)
and
(aifj)z _¢ : 1 bm(j{f\fjbljL 1)(1 - 8;;). (26)

For a diagonal random matrix (b = 1) the density of eigenvalues is Gaussian
and the level spacings are distributed according to a Poisson distribution,
independently of the parameter ¢. In the opposite limiting case of the full
matrix (b = N), variations of the parameter ¢ correspond to the process of
time reversal symmetry breaking in a dynamical systemn and to the transition
between orthogonal and unitary ensembles of random matrices. Several
aspects of the GOE-GUE transition have already been studied [142-145].
In particular, it is known that the speed of this transition depends on the
size of matrices N. However, a scaling parameter v, which determines the
transitions speed independently of V, might be found. In the case discussed
the theory of Pandey and Mehta [144] leads to a simple result v = N(c —
1)/(2 — ¢). Our numerical data confirm existence of such scaling parameter.
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For ¢ = 1 the variances of the imaginary part of the matrix elements
ol vanish and the real matrix A belongs to GOE and displays linear level
repulsion. For larger values of the parameter ¢ the matrix elements are
complex but the variance of the real part is greater than the variance of the
imaginary part; the probability distribution of the matrix elements on the
complex plane is represented by an ellipse. An increase of the parameter ¢
corresponds to squeezing along the larger axis of this ellipse. In the limiting
case of ¢ = 2 the variances of the real and imaginary parts of the off-
diagonal elements are equal and the complex matrix A pertains to GUE
and exhibits quadratic level repulsion. Thus in both limiting cases the
value of the parameter ¢ coincides with the degree of level repulsion.

Our preliminary results [154] show that for arbitrary values of the pa-
rameter ¢ the level spacing distribution might be approximated by the dis-
tribution Py(s) proposed by Izrailev {124, 155]

Pys) = 4 (-’;f)texP [“”232 - (B - %) s] : (27)

16

The constants A and B are determined by the normalization of the dis-
tribution [~ Py(s)ds = 1 and of the mean value [~ sPy(s)ds = 1. The
above formula gives the Poisson distribution for ¢t = 0 and for t = 1 and 2
provides fair approximations to the exact GOE and GUE distributions. It
is worth to note that in the limit of large values of z (full matrices) it is
justified to apply the formula (18) characterizing the GOE-GUE transition.
In this case this distribution provides a better approximation to the numer-
ical data, however, the distribution (27) may be used in the entire range of
the parameters b and ¢ (or  and v) in order to characterize the nature of
the level spacing distribution.

Our numerical results obtained for complex Hermitian band matrices
(¢ = 2) show that the fitted value of the parameter ¢t depends only on
the scaling parameter ¢ = b2/N as in the case of real symmetric matrices,
studied in ref [118]. It is interesting to compare the results obtained for
¢ = 1 (transition Poisson-GOE) and ¢ = 2 (transition Poisson-GUE). We
observed, for any value of the scaling parameter z, that the value of the
fit parameter ¢, obtained in the latter case is approximately twice the pa-
rameter t; got in the former case. Both transitions are therefore correlated
and the scaling parameter 2 controls the transitions Poisson-GOE (fitting
parameter ¢; varies from 0 to 1) and Poisson—-GUE (fitting parameter ¢
varies from 0 to 2) in the same manner.

The eigenvector statistics P(y) may be described by the mean entropy
of eigenvectors (H) given by (7) and (8). For real symmetric matrices
characterized by v = 0 (or ¢ = 1) it is convenient to compare the mean
entropy with the mean entropy f; of the matrix belonging to GOE. This
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leads to the definition of averaged scaled localization length of eigenvectors
(116] B
o = exp((H) — Hy). (28)

This quantity does not depend on the size of matrix N and takes values
between 0 for diagonal matrix and 1 for GOE. It has been reported that
the scaled localization length 7y [116] and the eigenvector statistics [120]
depend only on the scaling parameter 2 = b%/N. A simple approximate
relation, proposed in Ref. [116],

no = az/(l+az), a=1l4, (29)

seems to be valid for all values of 2 simnaller than 10.

Complex matrices with the same variances of the real and imaginary
parts of elements are characterized by ¢ = 2 or v = oo. In order to describe
the properties of the eigenvectors of matrices in this case we define the
localization length 1., by comparing the averaged entropy of eigenvectors

(H) with the entropy H» of GUE,

Neo = exp((H) — Hy). (30)

Throughout the transition Poisson-GUE the localization length no =
Noo( NN, b) varies form zero to unity. Our numerical experiments show that
oo depends on the same scaling variable z = b?/N.

The localization length might he generalized for the interpolating case
determined by 0 < v < oo:

Ty = exp [(H(N,b,v))—FI(N,b::N,U)]. (31)

Note that in the particular cases of v = 0 and v = oo the generalized
localization length 7, reduces to the previous definitions (28) and (30),
applicable to the cases of orthogonal and unitary ensembles respectively.

We performed a detailed investigation of the model described above by
analyzing complex band random matrices of size varying from 100 to 1000.
The number of constructed matrices was determined hy the requirement of
accumulating at least 25,000 eigenvalues or 3*105 eigenvector components
in each sample. We found the existence of the same scaling parameter
z = b2 /N for arbitrary values of the parameter v, which controls the effects
of time reversal symmetry breaking. Moreover, the functional dependence
of the generalized localization length 7, on the scaling parameter & might
be approximated by the relation (29) with parameter a depending on v.
Figure 5 presents this dependence for real symmetric matrices and complex
Hermitian matrices for several sizes of matrices N. The entropy (H) was
averaged over the half of eigenvectors corresponding to eigenvalues from the
center of the spectrum.
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Fig. 5. Mean entropy of central eigenvectors for the complex Hermitian band
matrices plotted against the scaling variable 2 = b*/N for ¢ = 1.0 (transition

Poisson-GOE — lower curve) and ¢ = 2.0 (transition Poisson-GUE — upper
curve). Solid lines represent formula (29) with o fitted. Matrix size N equals to
100 (o), 200 (), 400 (o), and 800 (A).

Scaling laws found in complex band random matrices enable us to treat
this model as a possible candidate for an ensemble of random matrices
describing changes of the properties of quantum dynamical systems during
the processes of time reversal symmetry breaking or transitions between
regular and chaotic dynamics. Note that the same scaling parameter z
describes, for arbitrary value of the parameter v, statistical properties of the
eigenvalues of Hermitian band random matrices (level spacing distribution),
as well as the properties of eigenvectors (localization length).

3. Statistical properties of quantuin dynamical systems
3.1. FEigenvalues

The correspondence between the character of the dynamics of classical
systems and the statistical properties of the spectrum of their quantum
analogues is well established [11, 12, 20]. The level statistics of the spectrum
of a generic classically regular systemn is given by the Poisson distribution [74,
156, 157], while classically chaotic systems display level repulsion and the
level distribution well approximated by one of the Wigner surmises (2)—(4),
depending on the symmetry of the system. However, there are exceptions
from this rule.



988 K. ZYCZKOWSKI

The spectrum of the quantum one dimensional harmonic oscillator is
equidistant, so the level distribution is singular: P(s) = §(1). Furthermore,
the spectrum of the two-dimensional harmonic oscillator with incommen-
surate frequencies is closer to a Poisson distribution, and this distribution
is approached for the large number of degrees of freedom of the oscillator
[158]. Likewise one of the simplest integrable systems — the square bil-
liard — does not possess a Poisson spectrum. For a rectangular billiard
the degeneracy is shifted, and in the generic case of incommensurate sides
of the billiard the level statistics might be approximated by the Poisson
distribution [159-161].

There exist also integrable systems which display a spectrum charac-
teristic of canonical ensembles of random matrices. A specific example of
a regular system with a GOE-like spectrum was proposed in [162]. This
model consists of a particle moving in a one-dimensional potential well,
which might be considered as a distorted quadratic well of the harmonic
oscillator. It seems even possible to construct in a similar manner a reg-
ular, integrable system displaying any given statistical properties of the
spectrum. It has been also pointed out [163], that due to finite numerical
accuracy one may find a Wigner-like level distribution in the spectrum of
quantized integrable systems.

We have mentioned some examples of regular systems which do not
display Poisson statistics in their spectrum. On the other hand there exist
classically chaotic systems which do possess a Poisson-like spectrum. This
feature is associated with the effect of dynamical localization [65, 164], and
was found in the model of the quantum kicked rotator [121, 165-167]. It is
also known [168] that the elongated, composed billiard build of several parts
of arbitrary shapes joined together by narrow channels, displays a Poisson
level distribution. This fact may bhe easily understood, when considering
the limiting case of infinitesimally narrow channels. The original composed
billiard can be than considered as a set of decoupled chaotic billiards. The
spectrum of this system is thus equivalent to the superposition of several
GOE spectra and has therefore the Poisson-like properties.

The above list of some exceptional cases does not mean that there is
no link at all between the dynamics of classical systems and the spectral
properties of their quantum analogues. The level spacing distribution of
typical quantized chaotic systems conforms with such a high accuracy to the
exact distribution resulting from appropriate ensembles of random matrices
that even small discrepancy between the numerical data obtained for a
dynamical system and the approximate Wigner surmise was reported [169].
In addition, quantities measuring long range correlations of the spectra of
quantum dynamical systems, such as the spectral rigidity As(L) or the
number variance %?(L), were found to be faithful to the predictions of
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ensembles of random matrices, at least for small values of the range L

(20, 23).
3.2. Eigenvectors

The statistical properties of the eigenvectors |1;) of a Hamilton operator

A representing a quantuin dynamical system can be described by the distri-
bution P(y) of the squared components y = [(¢;]{)|?, where [{),/=1,...,N
is an arbitrary orthonormal basis in N dimensional Hilbert space. The
eigenvector statistics P{y) has an obvious advantage compared to the level
spacing distribution P(s) measuring the properties of the spectrum: the for-
mer statistics contains an N times larger sample of numerical data than the
latter. This superiority is, however, balanced by an important deficiency:
the eigenvector statistics is basis dependent. For example, if the basis {|{)}
is taken as the eigenbasis of the Hamiltonian ,Z, the eigenvector statistics
is singular and carries no information at all. Moreover, there exists no one-
to-one correspondence hetween the statistical properties of eigenvalues of a
Hamiltonian matrix and the properties of its eigenvectors. It is possible,
in fact, to construct a matrix A, representing some Hamiltonian with any
wished eigenvector statistics, independently of level spacing distribution.
Let A, denotes a diagonal matrix, described by a level spacing distribu-
tion Py(s) and U stands for an unitary matrix with elements characterized
by a distribution Pp,(|U;;|?). The rotated matrix A, = U A4,U possesses
thus the eigenvector statistics P,,(y) independently of the level spacing dis-
tribution Py(s). This simple example shows that one has to be cautious
analyzing and interpreting the distribution of eigenvectors of a dynamical
system. It is not at all clear, how to select, for a given quantum system,
an “appropriate basis”, which allows us to extract form the statistics of
eigenvectors a relevant information concerning the dynamical properties of
the system.

The eigenvector statistics has often been calculated in the eigenbasis of
the unperturbed Hamiltonian {170, 171]. It has been observed [4, 171] that
in an appropriate basis, the eigenvector statistics for a quantum chaotic
system (for a large dimension N of Hilbert space) can be described with
great accuracy by a Porter-Thomas distribution (6), or, depending on the
symmetry of the system, by a x? distribution, typical of canonical ensembles
of random matrices [16, 18, 172]. We shall call such a basis random with
respect to the system. In order to describe the eigenvector statistics for the
transition from chaotic to regular dynanics it has been proposed to use the
same x% distribution and allow the number of degrees of freedom § to take
any rational value between zero and unity [173, 136]. There are no strict
physical arguments supporting this conjecture. However, this distribution
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seems to reproduce in a qualitative manner the behaviour of the eigenvector
statistics with values of the parameter S decreasing parallel to the corre-
sponding classical transition from chaotic to regular motion. In a descriptive
language, a matrix of eigenvectors, “dense” it the case of classically chaotic
motion, becomes “sparse” for dynamical systems corresponding to regular
motion.

The most natural application of the Porter Thomas distribution (6)
refers to the eigenvectors of a Hamiltonian ;4\, describing an autonomous
dynamical system, or a Floquet operator f‘, representing a time-dependent
periodical system, in some fixed basis. In a similar manner, this distribution
describes the statistical properties of an expansion of some arbitrarily chosen
state |¢) in the eigenbasis of the operators A or F. Let us consider an
observable B. The arbitrary state |¢) may be generated from an eigenvector
[¥i) of A by ~

9 =~ (32)

(il BB[:)

This choice of the state |¢) is made because its components (¢r|d) ~
(d)QEW),) define transition strengths by y = [(¢¥|¢)|>. The strengths of
transitions between the eigenstates of a quantum systern might be mea-
sured experimentally in some cases. Results ohtained in the absorption ex-
periments in nuclei [17] and atoms [55] show that the measured probability
distribution of transition strengths agrees with predictions from ensembles
of random matrices. Similar results were also obtained by numerical anal-
ysis of model quantum systems such as coupled spins [173, 174}, coupled
Morse oscillators [175] and the kicked top [136]. Several features of the
matrix element distribution are universal for all quantum chaotic systems
and may be explained by means of ensembles of random matrices. In addi-
tion there exist system-specific properties of matrix element distribution. A
semiclassical theory [176, 177], linking them to the classical periodic orbits,
has recently been developed [178].

The problem of selecting an “appropriate” basis for the eigenvector
statistics of the given Hamiltonian A is closely related to the question, of
which operators B can have their matrix element distribution described by
the predictions of random matrices. None of the operators commuting with
the Hamiltonian belong to this group, since their matrix representation in
the eigenbasis of A might be diagonal. This observation suggests that a
partial answer to this question may be obtained by measuring the degree of

noncommutativity between the Hamiltonian A and the observable B. Such
a method has recently been applied [179] for the case of periodic systems

~

described by a unitary Flogquet operator F.



Parametric Eigenbasis Dynamics 991
Let B() denote the image of B after | periods of a system F
BY = FYBF!, (33)

We apply the standard definition of the scalar products in operator space
(A|B) = Tr(A'B), and define a random operator. An operator B is random

with respect to the system described by the unitary evolution operator F’,
if it is orthogonal to its images for any time [, z.e.

(BWIFTBOFEYy = 9. (34)

It has been conjectured, and by a numerical simulation verified [178],
that the distribution of matrix elements of an aperator B random with
respect to a system Fis given by the X:é distribution which is characteristic
of random matrices.

Note that the above reasoning might also be generalized to autonomous
systerns described by a Hermitian operator A. In a similar manner we may
treat the problem of describing the distribution of the eigenvectors of a
Hamiltonian system //fl represented in the eigenhasis of an operator A,.

Eigenvector statistics may also be used to study local properties of
the quantum system. To that end it is convenient to take coherent state
|az), localized at a point & of classical phase space, and to examine its
expansion in the eigenbasis of the system. It has been observed [132] that
there exists a correlation between the number of relevant components of
the coherent state in this expansion and the character of the dynamics of
the corresponding classical system in vicinity of the point £. Moreover, the
circumstances under which the distribution of the components of a coherent
state might be described by the X% distribution has heen analysed [180,
181]. Note that in contrast to the eigenvector statistics, the distribution
of components of coherent states in the eigenbasis of the system is defined
without any arbitrariness {(except for the definition of coherent states).

The distribution of the components of a coherent state in the eigenbasis
of a system carries information concerning the structure of the eigenfunc-
tions. Typical eigenfunctions of a quantum chaotic system are irregular and
do not display any spatial structure [182-184]. However, it has been discov-
ered by Heller [185] that some eigenfunctions exhibit structures correlated
with periodic orbits in the corresponding classical system. These objects,
called quantum scars, have been investigated in numerous recent papers [22,
186-193]. It has been proposed that the distribution of the components of
coherent states be analysed in order to detect quantum scars [194]. Dis-
crepancies between the observed statistics of the components of a coherent
state |az) and the Porter-Thomas distribution tell us about a localization
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of eigenstates in the vicinity of the point Z, and thus allows us to assert that
some eigenstates of the Hamiltonian are scarred by a classical periodic orbit
passing close to the point #. It has heen conjectured that the presence of
quantum scars may influence not only the eigenvector statistics but also the
statistical properties of the spectrum and the curvature distribution [102].

3.3. Parametric dynamics

Let us discuss the motion of the eigenvalues of the Hamiltonian (1),
considering the parameter A as a fictitious time [88, 89]. The eigenvalues
{2z} of the Schrédinger equation,

ANPR(N) = 26V 9x(A)); k=1,...,N, (35)

might be interpreted as positions of the particles moving in a one dimen-
sional space, while the derivatives dz;/dX play the role of the momenta of
the particles. We denote the diagonal elements p; the matrix V by

Pe(A) = (M) (N)) (36)

and the scaled off-diagonal elements Ly, by

Lii(A) = [2k(A) = (A @r(A)[V]9r(N)) - (37)

If V pertains to the orthogonal ensemble, one may find a representation in
which the coupling strengths L, are real. For V belonging to the unitary
ensemble the coupling strengths are complex, and in the case of the sym-
plectic ensemble, L;; have a quaternion structure. Introducing a unified

notation, we write L, = Z?_l L( Y with [ = 1,2, and 4 for the orthogonal,
unitary and symplectic cases, respectively.

Assuming that for A = 0 no degeneracy in the system A occurs and
that for arbitrary values of the parameter A the eigenvectors are orthonor-
mal, (¥ (A)¥(X)) = 8y, it is possible [88-91] to derive a set of equations

governing the motion of the eigenlevels {z;,k =1,...,N}:

d:ck

‘B_/\' = Pk » (38)
dpy, Ll

—_— = 39
dA 2; (zp —z)3° (39)

|

Ly, 1 1
D = 2 Lunl "‘( n o) ”(mz—mn>2)' (40)

n#k,l
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The above equations of motion might be generated from the following Hamil-

tonian

Hom =% pi+ ZZ , (41)

k=1 kZli=1 Tk~ ll

which describes the dynamics of a set of N classical interacting particles.
This is known in the literature [94, 195] as the generalized Calogero-Moser
system (CM). The motion takes place in 3(N — 1)N/2 + 2N dimensional
phase space and the system has heen shown to be integrable [94]. Note
that the motion is unbounded in space and, in the limit A — oo, particles
may escape to infinity. On the other hand, quantum systems of the form
of equation (11) or (20) lead to level dynamics equivalent [11, 197] to the
classical Hamiltonian

[

mCM—%ZPMH +§}:Z k"ml (42)
k=1 k;élzl

This modified Calogero-Moser Hamiltonian differs from (41) by an harmonic
oscillator potential ), $i/2, which is responsible for binding the gas of
particles together.

The level dynamics approach might also be used for periodically kicked
systems represented by an unitary Floquet operator ﬁ'g and a Hermitian
perturbation operator f},

F(X) = Fyexp(iAV). (43)

The role of the particles is played in this case by quasi-energy eigenphases
¢y defined in the interval (0, 27) by

F(\)[r(N) = explive(Al[vs(A)); k=1,...,N. (44)
It is necessary to modify equation (37) for this case and to define the cou-
pling strengths L;; as [11]

Lu(h) = sin (52 ) (paIT1(). (45)

The level dynamics is described by a set of differential equations analogous

o (38)-(40),

depy
Tk _ 46
d\ Pk ( )
[ er—

dpy, z cos 2 )
- = LyLjp——r—%, (47)
= sin? ((£6521)

1

dL
Wkl:% Z Lk”L"l< ‘2 (tpk_‘f’n) _sin2 (;__;_&)) =
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The above system of equations of motion might be generated [11] from the
classical Hamiltonian

8 (z)}

N N
:%Zpi+%zz )’ (49)

k=1 k#1li=1 sin’ (¢r — @1

This Hamiltonian is strictly integrable and is known as the generalized
Sutherland system [94, 95]. Its generalization has been proposed [198],
which would correspond to quantum periodically driven systems.

Since the classical Hamiltonians H representing the level dynamics are
integrable, it is possible to get the equations of motion for each eigenvalue
z;(A) (or eigenphase ¢;(A) ) of the quantum system under investigation.
However, it has been shown [199] that it is usually easier and more efficient
to diagonalize a N X N matrix numerically than to solve a set of B(N —
1)N/2+42N coupled ordinary differential equations. The standard technique
of obtaining the levels of a quantum system by diagonalizing the matrix
representation of its Hamiltonian, seems, for practical reasons, to be more
useful than the level dynamics. On the other hand, it is worth noting
that the eigenvalues of a non-integrable quantum systermn, can, in principle,
be obtained by analysis of an appropriate integrable classical Hamiltonian
describing the motion of the energy levels.

The systems of differential equations (38)-(40) and (46)—(48) are called
level dynamics. In addition to the parametric motion of the eigenvalues, they
describe the rotation of eigenvectors in orthogonal (unitary or symplectic)
space. Differentiating equation (44) with respect to the parameter A and
multiplying it by an eigenvector (i, | we get

dW)k) —iVak
1= exp[—i(er — on)]

(¥l (50)

This relation enables us to obtain an estimate of the magnitude of com-
ponents of the eigenvector |1, (A;)), in the eigenbasis representation of

F’(/\ + AX). For small values of the rotation parameter AX the squared
off-diagonal component y = |[{(1x(A)|¥n(A + AX))|? reads

|an]2
2(1 — cos[py, — o))

= (A)N)? o((AN)?). (51)

This equation shows that the eigenvector statistics in the rotated basis
Pa(y) is correlated with the level spacing distribution, which determines
the cosine term, and the distribution of the elements of the perturbation
matrix |Vi,|?. Moreover, it explains why the Shannon entropy Ha of a
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rotated eigenvector is proportional, for small values of AA, to square of the
rotation parameter.

4. A representative dynamical system -— the periodically
kicked top

4.1. Definition and properties of the model

The time evolution of a periodically driven system is described by a

unitary Floquet operator F. In the case of a periodically kicked system,
described by a Hamiltonian

n=-++oo
A=Ay +kV > 8(t/te - n), (52)

n—=-—-oc

the form of the operator Fis particularly simple:

F= exp(~ik17)exp(—it0;1\0). (53)

The perturbation operator V is assumed to be Hermitian, tg is the perturba-
tion period, and the kicking strength k plays the role of the fictitious time A
in the level dynamics (43)~(49). Studies of the quantum signatures of chaos
were initiated with an analysis of the quantum kicked rotator [1]; after a
decade it is one of the best known quantum models {2, 3, 12, 50, 65, 121,
149, 164-167]. Apart of a peculiar case of quantum resonance [200-202],
the quantum dynamics of the kicked rotator is described in an infinite-
dimensional Hilbert space. In order to perform a numerical investigation of
the system a technique for producing a finite sized unitary matrix of a finite
size is required. This problem does not occur for those quantuin models for
which the Hilbert space might be decomposed into independent subspaces
of finite size. The model of the periodically kicked top [15, 128, 129] belongs
to this class and is extensively used to study various aspects of quantum
chaos 1, 9, 100, 102, 108, 130-134, 179, 203-207]. Since several versions of
the model, pertaining to all three different universality classes, are known
[15, 21, 132}, we have chosen this systemn for numerical investigation.

The three components fh i=1,...,3 of the angular momentum oper-
ator J are the dynamical variables of perlodlcally kicked top models They
obey the commutation relation {J,, J; BRI kJ;\ The operators Ag and V,
defining the Floquet operator (53), are arbitrary functions of Jl, i=1,2,3.
If both operators are linear functions of one component, the resulting dy-
namics is integrable [11]. On the other hand, if at least one of the operators
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Ay and V is quadratic in j;, for sufficiently large values of the kicking
strength k the corresponding classical system is chaotic [15].
We shall thus be concerned with the simplest version of the model

defined by
X0=sz; V:—Z (54)

F, = exp(—= Y exp(-ipJ.), (55)

where p and k are the parameters of the model. The eigenvalue j(j + 1) of
the operator J 2 fixes the dimension of the Hilbert space N as N = 25 + 1.
It is convenient to analyse the system in the eigenbasis of the operator fz,
]j)m>am:“j,"',j' N -

The perturbation operator V, quadratic in J,, does not couple states
|7, m) of different parity and the operator F, breaks down into a block diag-
onal form of size 7 and 7 + 1. Both subspaces are dynamically independent
and numerical calculations can he performed separately for each parity. For
even integer j an additional symmetry appears for p = 7/2 and the j + 1
parity is decoupled into blocks of sizes j/2 and 7/2 + 1.

The semiclassical regime of the model is achieved for j > 1. It is
difficult to handle matrices of size greater than, say, 2000 and to perform
an exact numerical analysis of this regime of the model. On the other hand,
it is easy to find [15], in the limit 7 — oo, a classical system corresponding
to the model (54). The normalised vector X = J/j lies, in the limit, on
the unit sphere and the time evolution can be given by a map for the three
components (X,Y, Z) of the angular momentum vector. The classical map

X' = M(X) reads [15]

X' = X cosp~—Ysinp,
Y' = (Y cosp+ Xsinp)cos(kX') — Zsin(kX'),
Z' = (Y cosp + X sinp)sin(kX') + Z cos(kX'). (56)

The above transformation maps the position of the top between suc-
cessive kicks. Since the norm of vector X is conserved the dynamics of the
system can be represented hy a two dimensional phase space, equivalent
to a sphere. In the case of zero perturbation parameter k the system is
integrable and the classical map (56) represents a rotation along the z axis.

For non-zero values of k, a chaotic layer appears in the vicinity of the
unstable fixed points in the phase space. Sufficiently large kicking strength
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breaks down the last KAM lines and the domains of chaotic motion are
connected. The critical value of the perturbation strength k. increases with
the parameter p in the interval p € (0,7 /2). For p ~ 7/2 chaotic dynamics
dominates for k£ ~ 3.0, while for ¥ = 6.0 the entire phase space is covered
with chaotic motion (r = 1.0).

Classical chaotic dynamics might be characterized by the Lapunov ex-
ponent A, measuring the exponential divergence d(t) of neighbouring tra-
jectories in phase space. We iterated the map (56) for several initial values.
In order to estimate the value of A we used the standard definition [5, 6,
12, 208]

A= lim lim =In d(T).
T—ood(0)—0 T  d(0)

(57)

Numerical efficiency was improved by an application of Bennetin’s “saw-
tooth” technique [209]. A fair approximation to A is provided by taking 103
iterations of the map; the results obtained become stable for 10° iterations.
To characterize the entire dynarical system we averaged values of A over
the phase space, excluding the islands of stability. The average was cal-
culated for all values of A greater than a threshold, (settled arbitrarily to
0.01), which initial points localized into regular islands. Since the number
of chaotic trajectories increases with the kicking strength, the accuracy of
the estimation of A is worst for small values of k.
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Fig. 6. Classical kicked top. Average value of Lapunov exponent A, plotted against
the kicking strength for p = 0.4(+), p = 0.7(¢), p= 1.0(A), p = 1.3(0).

Figure 6 presents the dependence of the Lapunov exponent on the kick-
ing strength k for four values of the parameter p = 0.4,0.7,1.0,1.3. The
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kicking strength is represented on a logarithmic scale. As shown in the pic-
ture, a straight line gives a reasonable approximation in each case. A linear
best fit gives the following values of the slope: 0.39,0.59,0.73,0.80, in the
order of increasing p.

1.0 CoR " TTTTTTTTTTTTTTTT T ke

r
0.8

0.6 dﬂb‘
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¢
0.2
0.0 I~
0.0

0.4

0.2

0.0, 0.4 0.8 1.2

Fig. 7. Fraction of the classical phase space covered by chaotic dynamics ({) joined
by solid line} plotted a} against kicking strength k for fixed p = 1.3; b) against
parameter p for fixed & = 4.0. Entropy of eigenvectors v of the corresponding
quantum model obtained in (a) for j = 200(Q), 7 = 160(A), 7 = 100(+), 7 =
70(¢)}, 7 = 40(x} and in (b) for 7 = 200(Q), 7 = 150(A), j = 100(+), 7 = 50().

The classical map is periodic with respect to the parameter p, since
M(p,k) = M(p+ 27, k). The quantum dynamics described by the operator
(55) is also periodic with respect to the parameter k& and the period is equal
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to 4mj. In the limit j — oo this quantity tends to infinity, so the classical
map M is not periodic in k. In spite of this difference in the role played by
both parameters, one may fix the value of k and treat p as a perturbation
parameter. Analyzing the dependence of the Lapunov exponent on p we
found a similar logarithmic relation A4 ~ log(p) (for p < 1 with large enough
values of k). This observation is consistent with the well-known properties
of the standard map [6]. It has been shown that in the limiting case of
p — 0, B - oo the quantum kicked top tends to the quantum kicked
rotator, provided that the product pk is kept constant [204]. A similar
relationship exists between the corresponding classical models. In this limit
the classical kicked top becomes equivalent to the classical kicked rotator
with the kicking strength K equal to pk. For the standard map, which
governs the dynamics of the kicked rotator, the Lapunov exponent A grows
logarithmically with the kicking strength K [208].

For a fixed value of p the fraction of the phase space r covered by layers
of chaotic motion increases monotonously with the perturbation parameter
k. Such dependence is presented in Fig. 7.a for p = 1.3. Nurnerical data,
marked by stars, are joined by a solid line. The area of chaotic motion
grows rapidly at & = 2.0 and accomplishes the half of the phase space at
ko.s ~ 2.2. For k = 3.0 only some minor islands of stability exists, while the
transition from to chaotic motion is practically completed at £ ~ 4.0. For
P < 1 the characteristic value kg 5 is approximately equal to 1.4/p, while
for 1.2 < p < 1.8 the dependence ky 5 on p is weak.

Figure 7.b shows complementary results obtained for a fixed value of
k = 4.0 with changing values of the parameter p. The percentage of chaotic
trajectories r starts to grow at p ~ 0.2 and achieves 50% for pg.5s ~ 0.35.
Thus the qualitative nature of the dependencies of 7 on each of the two
parameters k and p is similar.

4.2. Transition Poisson-orthogonal

For the model of orthogonal kicked top, defined by the Floquet oper-
ator (55) there exists a generalized time-reversal symmetry T, such that
TFO = F IT. The symrmietry operator T, expressed by the conjunction
operator Kcitp) = c*|¥)*, reads [15]

T = ePleeimlz 7 (58)
Due to the existence of the antiunitary symmetry T = —1, the Floquet

operator F, pertains to the circular orthogonal ensemble [15, 132] under
the conditions of classical chaos. It has been verified [15, 169] that for
large enough values of the parameters p and k the level spacing distribution
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P(s) complies with the distribution typical of the orthogonal ensemble. It
has also been shown [171] that the eigenvector statistics of F,, (calculated
in the eigenbasis of the unperturbed system), is given by the distribution
characteristic of the orthogonal ensemble, which in the limit 7 — oo tends
to the Porter-Thomas distribution {136]. The mean Shannon entropy (H)
of the eigenvectors of F,, characterizing the distribution of eigenvectors,
accurately agrees with the value f, calculated according to expression (9)
for the orthogonal ensemble.

For zero kicking strength k, the matrix F, is diagonal and belongs to
the Poisson ensemble. Thus the variation of the parameter k in the defini-
tion (55) allows us to study the transition hetween Poisson and orthogonal
ensembles based on the parametric dynamics of a quantum system. The
computed value of the mean entropy might be used to characterize the
properties of a quantum system during the transition. In addition to the
classical quantity 7, Figure 7 presents the scaled entropy v = (H)/H;, ob-
tained from quantum calculations. The scaled entropy increases with the
size of matrix, which is governed by the quantum number j. This depen-
dence is, however, rather weak. The numerical results, obtained for p = 1.3
and j = 40,70,100,160, and 200 and displayed in Figure 7.a, are situated
close to a single line. Observe that an increase of the mean entropy occurs
for values of the kicking strength k which are smaller than the jump in the
fraction of the phase space covered by classically chaotic dynamics.

The data for the scaled mean entropy v, shown in Fig. 7.b, are obtained
for ¥ = 4.0 and j = 50,100,150, 200. All the points are also located along
a line, but the character of the two pictures is different. Only for p > 0.5
does an increase of 4 correspond to growth of 7 and might be interpreted
as a signature of chaos. Moreover, for small values of the perturbation
parameter p, the entropy does not tend to zero, as in Fig: 7.a. This fact
might be explained by considering the choice of basis used to compute the
entropy of the eigenvectors of F,. The eigenhasis of the operator fz, (the
eigenbasis of the system with & = 0), which is appropriate for analysing the
influence of growth of the kicking strength k, is not suitable for description
of the properties of the quantum system for small values of p. In this case
one could use instead the eigenbasis of Iz (the eigenbasis of F, with p = 0).
In other words, the values of vy close to unity at the upper left corner of
Fig. 7.b, are not correlated with the dynamical properties of the classical
system, but rather, with the choice of the basis used for computation of the
eigenvectors.

Let us discuss the properties of the spectrum of ﬁ’o during an increase of
the kicking strength. A preliminary investigation of the spectrum requires
about 10 levels. For a more precise analysis a sample consisting of circa
104 eigenvalues is needed, while a sample of order 10° levels allows us to
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distinguish the fine difference between the Wigner surmise and the exact
COE formula for the level spacing distribution [169]. Being unable to obtain
so many levels in a single quantum system, we decided to collect data for
several systems having similar properties. Doing this one has to compromise
between two contradictory factors: on one hand the difference in one system
parameter has to be large enough to assure the statistical independence of
both spectra. On the other hand, a large difference in a system parameter
between two systems makes the assumption of similar spectral properties
questionable. Moreover, it is not easy to verify the latter assumption by
analyzing the sets of levels of the two systems, each of which contains 100
levels.

In order to analyze the transition between the Poisson-like and Wigner-
like level spacing distributions we fixed the value of the parameter p, = 1.3,
and varied the kicking strength k. In the vicinity of p, the fraction of the
chaotic phase space r» and the entropy 7 depend only weakly on p. For
fixed classical parameters of the system p and k, the spectra obtained for j
and 7 + 1 are not correlated. In addition, the mean entropy of eigenvectors
v does not change dramatically with the quantum number j: the relative
difference of the entropy between j = 119 and j = 100 is of the order of
3% 107 3. Based on these observations, we took the risk of putting the data
from 300 matrices together (obtained for j = 100,101,...,119 and p =
1.23,1.24,...,1.36,1.37) in order to analyse the level spacing distribution
for samples containing about 32 000 spacings each.

Figure 8 presents histograms P(s) obtained for three different values
of k. Classically chaotic dynamics (7 = 1) for the systemn F, with k = 5.0
manifests itself in the Wigner-like level spacing distribution. For smaller
values of k the fraction r of the phase space covered by chaotic dynamics
decreases. Therefore it is natural to use the Berry—-Robnik distribution [125]

Py(s) = (1 — b)% exp(—s(1 — r))erfc(l/—f—)lzf)

y
3s wb?s?

+2b(1—b)+7rb ]exp(—s(l—b)~ ), (59)
where erfc(z) is the error function [139] and the parameter b, varying from
zero to unity, can be interpreted as the fraction r describing the dynamics
of the corresponding classical system. A best fit of the distribution (59) to
the numerical data, represented by dashed lines in the figure, is far from
satisfactory. Likewise, the distribution (14), originating from the additive
model of random matrices, is not adequate in this case. On the other hand

the Brody distribution [16]

Py(s) = (1+ q)B(q)s%exp ( — B(q)s' ), (60)
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P(S)

0 1 2 3

Fig. 8. Level spacing distribution of the orthogonal kicked top obtained from
300 matrices with p =~ 1.3 and 7 = 100,...,119. Solid lines represent the Brody
distribution and dashed lines the Berry-Robnik distribution. Kicking strength a)
k =4.0,b) k =3.0,and c) k = 2.5.

with B(q) = {T[(2 + ¢q)/(1 + ¢)]}' "9, represented in Figure 8 by solid lines,
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provides much better approximation to the level spacing distribution of the
kicked top. Best fit Histogram in Fig. 8.a, obtained for k = 4.0, gives
the Brody parameter b = 0.79. The average squared deviation per bin
x%/v is equal to 0.9 (in comparison to 4.1 for best fit of the Berry-Robnik
distribution), what gives a remarkable confidence level of the x? test of
order of 50%. For smaller values of the kick strength (k = 3.0 in Fig. 8.b
and k = 2.5 in Fig. 8.c) the quality of fit with the Brody distribution is not as
good (confidence level of order of 5%), but still better than with the Berry-
Robnik distribution. However for nearly regular classical dynamics (k ~ 1.5)
and a Poisson-like spectrum, the latter distribution is more accurate. The
level spacing distribution (88) gives overall similar quality of fit as the Brody
distribution. For all distributions considered the fitting parameter increases
slightly with the quantum number j.

In spite of the fact that physical arguments suggest to apply the Berry-
-Robnik distribution for a dynamical system with a mixed dynamics [125],
the simple Brody formula appears to bhe more useful for the quantized kicked
top. We have thus confirmed numerous earlier observations [123, 128, 210]
concerning an applicability of the Brody distribution for quantum systems
displaying a transition from regular to chaotic dynamics. On the other
hand, it seems that there exists no universal features of the transition be-
tween Poisson and orthogonal ensemble, and for different dynamical systems
different ensembles of random matrices are appropriate.

Parallel to the study of level distribution we analyzed the distribution
of eigenvector components. Figure 9 presents the eigenvector statistics in a
logarithmic scale for similar samples of data obtained for j = 100,...,119
and 17 values of p ~ 1.3. For k = 5.0 the corresponding classical system is
entirely chaotic, » = 1 and the eigenvector statistics P(y) is well described by
the Porter-Thomas distribution, represented in Figure 9.a by a dashed line.
In order to make easier a direct comparison of results obtained for various
values of j we used the normalization (y) = 1. With decreasing values of the
kicking strength (k = 3.5 in Fig. 9.b and ¥ = 2.5 in Fig. 9.¢), the distribution
of eigenvectors components becomes broader. The quantitative character
of the eigenvector statistics is reproduced by the Xfa distribution (5) with
0 < B < 1. Since this distribution is not capable to describe the highest
peak of the histogram, moving right with decreasing kick strength, we have
resigned to use it to fit the numerical data. Moreover, the distribution (21)
of additive random matrices, presented in Fig. 3, definitely fails to describe
numerical data of the kicked top.

The family of interpolating distributions recently constructed for eigen-
vector statistics of band random matrices [120] correctly describes only es-
sential features of the numerical data: for small values of k the histogram
becomes flat (in the logarithmic scale) and tends to the appropriately nor-
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Fig. 9. Eigenvector statistics of the orthogonal kicked top for p = 1.3 and a)
k = 5.0, b) k = 3.5, and ¢) k = 2.5. Dashed line denotes the Porter-Thomas

distribution typical of orthogonal ensemble.

malized 1/y distribution. It is worth to stress that the peaks of the eigen-
vector statistics, visible in Fig. 9.h and 9.¢, are not universal but depend on
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the choice of basis used to represent eigenvectors [136].

All the parameters characterizing the transition from order to chaos
in classical version of the kicked top with p = 1.3 and the transition from
Poisson to orthogonal ensemble for the corresponding quantum model are

collected in Table I.
TABLE 1

Parameters characterizing changes of the dynamics of the orthogonal kicked top
(55) with varying kick strength k. Classical system is described by the ratio r
of the phase space covered by chaotic layers and the mean Lapunov exponent A
computed outside islands of stability. Eigenvectors of the corresponding quantum
system (j = 100) are portrayed by the mean entropy v and by the mean localization
length 7. Spectrum is characterized by the best fit values of the Brody distribution
g, and of the Berry—Robnik distribution b. The average squared deviation per bin
x2/v describes the quality of each fit.

kick Classical Quantum  system
strength system Eigenvectors Eigenvalues

k r A v 7 g | XPv | b | X/
1.0 0.00 - 0.67 0.28 0.05 1.3 0.22 1.9
2.0 0.06 0.07 0.81 0.48 0.06 1.2 0.33 1.1
2.5 0.77 0.21 0.85 0.57 0.14 0.9 0.44 2.4
3.0 0.88 0.34 0.92 0.74 0.37 2.0 0.67 4.7
3.5 0.96 0.47 0.97 0.90 0.64 1.3 0.85 6.0
4.0 0.99 0.61 0.99 0.96 0.79 0.9 0.94 4.1
4.5 1.00 0.73 1.00 1.00 0.93 1.4 0.98 3.0
5.0 1.060 0.84 1.00 1.00 0.98 1.1 0.99 1.2

{.3. Figenvector stalistics in rotaled basis

Entropy of eigenvectors, used to characterize the quantized model of
the kicked top and displayed in Fig. 7, is calculated in the eigenbasis of
the unperturbed system. In order to analyze, to what extend the choice of
basis determines the properties of eigenvectors, we computed the eigenvector
components in rotated basis (22). The average overlap of the eigenstate
|i(k1)) of the operator F,(ky,p) with an eigenstate |1, (k1 + Ak) of the
operator I?’o(kl + Ak, p) is measured by the mean entropy v = (Hag)/Hi
defined in (8) and (9). Figure 10 presents the entropy in rotated basis
plotted in a log-log scale against the rotation parameter Ak for j = 50 and
p = 1.3. Results ohtained in the regime of classically chaotic motion for
k1 = 9.0 (x) and for k; = 6.0 (A) are similar. For small values of the
rotation parameter, the entropy displays a quadratic growth with Ak. For
a critical value A, of order of 1077, the entropy saturates and tends to
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the value Hy, typical of the orthogonal ensemble (y = 1). It means that
for the classically chaotic system, the eigenvector statistics agrees with the
Porter-Thomas distribution, provided the basis is rotated by a parameter
Ak larger than A.. Analyzing the model of quantum kicked top for several
values of the quantum number j, we have observed that the critical rotation
parameter A, is proportional to j 1. For smaller values of the kick strength
k1 = 3.0 (+) and k; = 0 (o) the COE limit is achieved for values of Ak
much larger than A.. The value ky = k; + Ak is than so large that the
classical dynamics for the kick strength &, is chaotic.

Log m(?‘)

Fig. 10. Mean entropy v of eigenvectors of operator F) represented in a rotated
basis depicted against the rotation parameter Ak in a log-log scale. Parameter p
set to 1.3, while the kicking strength k; = 9.0 (%)}, k3 = 6.0(A), k1 = 3.0 (+), k1 =
1.0{O).

It means, therefore, that each eigenvector statistics, carries not an abso-
lute piece of information about a single dynamical system, hut rather, ahout
two systems described by Hamilton operators determining two orthonormal
basis. Figure 11 shows the dependence of the mean entropy of eigenvectors
of the system ﬁl = F,(k1,p) calculated in the eigenbasis of ?’2 = Fo(ke,p)
on the parameter ky. Results obtained for k; = 0.0, represented by circles
in the figure, reflect the transition from Poisson—-COE, as in the figure 7.a.
The increase of the entropy 7 to unity at ky ~ 3.5 corresponds in this case
to the transition from regular to chaotic dynamics in the classical model.
Results obtained for other values of the parameter k;, which defines the
basis used to expand the eigenvectors, have a different character. In each
case: ke = 2.0 (A), k2 = 4.0 (X), and k» = 6.0 () the entropy exhibits dips
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at k3 ~ ko. Small values of the entropy in such circumstances cannot be
associated with the regular dynamics of the corresponding classical system,
but exclusively with the choice of basis used to represent the eigenvectors
of the quantum system.

Fig. 11. Dependence of mean entropy v of eigenvectors of on the kicking strength
ki. The value k; defining the basis used to represent the eigenvectors of Fy(ky) is
equal to ky = 0.0 (o), ko = 2.0{A}, k2 = 4.0 (x), k2 = 6.0().

A complementary information might be obtained by studying the eigen-
vector statistics P(y) in an rotated basis. We have fixed the values of the
kicking strength k of the orthogonal top F,(k,p) and used changes of the
parameter p to achieve the “rotation” of the basis. Figure 12 presents the
eigenvector statistics obtained for j = 100, p; = 1.7 and various values of
the kicking strength %k and the rotation parameter Ap. Histograms 12.a,
12.b, and 12.c show the statistics of a classically chaotic system (k = 9.0).
In the case of the rotation parameter Ap = 0.1, which exceeds the critical
value A, the eigenvector statistics complies to the Porter—Thomas distri-
bution, represented by dashed line. For smaller values of Ap the main peak
of the distribution is shifted toward smaller values of y (see Fig. 12.b and
12.c). The position of the center of this peak y,, depends on the rotation
parameter as ¥, ~ (Ap)?. Moreover, a peak at y ~ log,,(7) appears, which
corresponds to the diagonal elements of the matrix containing eigenvectors.
This features of the distribution of eigenvectors of the Floquet operator F,
in the rotated basis resemble the distribution (21) of the additive random
matrices. However, a better approximation to the histogram is obtained by
using the X%,(y) distribution (5) with # = 1 and the mean value £ = (y)

treated as a free parameter
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N-1, 1-
P(y) = N _gXeet N—_i&y— Nj. (61)

The size of the matrix IV is equal to j or j + 1, depending on the parity
class considered. The first term of the distribution (61) represents small,
off-diagonal elements of the eigenvectors matrix, while the second term de-
scribes IV diagonal elements with the module close to unity. Coefficients
standing before hoth terms are determined by the normalization condition.
Best fit of the mean value £ in (61) for different values of the quantum
number j and the rotation parameter Ap gives a simple formula

— CP
$= Gape

where the proportionality constant (', ~ 5.3. For the Porter-Thomas dis-
tribution, typical of orthogonal ensemble, the mean value of the eigenvector
component is set to unity, (y) = 1. Making use of the above relation we
may estimate the value of the minimal rotation parameter A p producing a
random basts, in which the eigenvector statistics conforms to the predictions
of random matrices:

(62)

Acp = ) (63)

with a constant ‘/Cp ~ 2.3. A similar relation holds also for the rotation

of the Floquet operator f‘c(p, k) along the k axis, with a fixed value of p.
If the difference of the kick strength ky — k. is greater than A .k =~ 8.5/7,
the eigenvector statistics is described by the Porter-Thomas distribution,
provided the classical system l?’(,(p, k1) is chaotic.

Histograms 12.d-12.f present the eigenvector statistics for the mixed
system, k = 3.0 with the rotation parameter Ap equal to 1071, 1072 and
1074, respectively. Note the change of the vertical scale, compared to the
upper figure. In the case 12.d the rotation parameter is so large that the
distribution P(y) is similar to the eigenvector statistics in the unperturbed
case, presented in Fig. 9. The solid line represents the X% distribution (5).
The best fit of the parameter 8 =~ .41 might be used to characterize the
results obtained. The shift of the main peak of the distribution occurring
for smaller values of the rotation parameter Ap and displayed in Figures
12.e and 12.f, is also governed by the formula (62). A slightly generalized
distribution (61) (with a real number 3 € (0, 1)), might be used therefore
as a first approximation of the distribution of eigenvector components in
rotated basis. For the case presented in Fig. 12.e (Ap = 107%) the best
fit of (61) gives £ = 10733 and 8 = 0.34, while for the histogram 12.f
£ =10753 and 8 = 0.33.
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Fig. 12. Eigenvector statistics of the kicked top with p = 1.7 in rotated basis.
Histograms a-c obtained in classically chaotic regime (k = 9.0), histograms d-f
obtained for classically mixed phase space (k = 3.0), and g-1 obtained for classically
regular dynamics (k = 1.0). Rotation parameter Ap is equal to 107! for a, d, g;

Ap=10"2for b, e, h, and Ap = 107* for ¢, f, i. Note the change of scale on
vertical axis.
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Data presented in Figs 12.h—-12.i are obtained for small kicking strength

= 1, for which regular dynamics dominates in the classical phase space
Hlstogram obtained for sufficiently large rotation parameter Ap = 107!
and displayed in Fig. 12.h, is flat (in the logarithmic scale), what agrees
to the X% distribution with B — 0. In a full analogy with the both cases
discussed before, for smaller values of Ap the main peak of the distribution
is shifted toward smaller values of y, what is compensated by an appearance
of a singularity at y = N, connected to diagonal elements of the eigenvector
matrix.

As follows from results presented in Fig. 11, a small value of the mean
entropy of eigenvectors of given quantum system, vy < 1, may be interpreted
as a fingerprint of classically regular dynamics. However, equally legitimate
is an interpretation that the basis used to represent the eigenvectors is close
to the eigenbasis of the system. Taking into account exclusively the mean
entropy of the eigenvectors it is thus impossible to figure out, which of these
two possibilities is the right one. Results shown in Figure 12 demonstrate
that this ambiguousness might be clarified by studying the nature of the
eigenvector statistics.
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Fig. 13. Entropy of eigenvectors v plotted against rotation parameter Ap for k =
11.0, p = 1.4 and j = 316(Q), j = 100(¢), j = 32(4A), j = 10(x). Numerical
data joined by solid lines. Corresponding smaller symbols, joined by dashed lines,
represent values of the coefficient p defined by (65).

In order to portray the changes of the minimal rotation parameter A.p
with 7, we analyzed the dependence of the entropy of eigenvectors y on
the rotation parameter and observed, for which values of Ap the entropy
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achieves the COE value. Solid lines in Fig. 13 present the dependence of en-
tropy on the rotation parameter (in a logarithmic scale) for j = 10, 32,100,
and 316. These values of j form a geometric sequence and in the logarithmic
scale the distance between subsequent numbers is approximately 0.5. Ob-
serve, that four solid lines in Fig. 13 have a similar behaviour and might be
put into a single curve by an appropriate shift along the horizontal axis by
a multiplicity of 0.5. This fact confirms the relation (63), which estimates
the value of Ap sufficient to assure the COE-like properties of eigenvectors.
Comparable conclusions might be drawn from a complementary and
more general reasomng The statistics of components of eigenvectors of a
unitary operator F;, represented in the eigenbasis of Fo complies to the
predictions of random matrices, provided both operators do not commute
and theirs eigenbasis are sufficiently different. To describe this difference
quantitatively we calculate squared norm of the commutator

| [F1, Fo) [P= 2(N — (B[ FI P Fy)), (64)

where N is the size of the matrix representation of the both operators. The
degree of commutativity between F1 and F might be characterized by a
coeflicient

p=1—Re(Te(FJF/FFy))/N . (65)

Trace in the above definition is equivalent to the scalar product (F»|F}) =
(F||F1), where in an analogy to (33) we denote F, = FlerFI and F| =
Fg Fi F;. The coefficient y is equal to zero for F; = F, and tends to unity for
orthogonal operators satisfying (Fy|F,) = 0. The values of s, obtained for
the orthogonal top with the same values of j, are represented in Fig. 13 by
smaller corresponding symbols joined by dashed lines. There is no reason
to expect that for a given spin length j the values of ¥ and p would be
equal. However, the sudden growth of the coefficient u coincides, for any j,
with the minimal value of the rotation parameter Ap, for which the entropy
tends to the COE value. Also in the other case, for which the rotation of
the basis is achieved by a variation of the kicking strength ko = k; + Ak,
the dependencies y(Ak) and p(Ak) are correlated and display behaviour
similar to this presented in Fig. 13. The condition

Re((Fy[F})) < N, (66)

might be thus considered as a simple criterion allowing to select a random
basis, in which the eigenvector statistics complies with the predictions of
canonical ensembles of random matrices. Note a similarity between the
definition (34) of an operator (Hermitian observable) B random with respect
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to the system ﬁg and the concept of a random basis, determined by a unitary
operator 1?’1.

For the considered model of orthogonal top (55) with F = f‘o(k,p;) and
Py = ﬁ’a(k,pl + Ap) the trace in equation (65) is taken of the operator 0 =
Fo(—k,—Ap) * F,(k, Ap). The trace Tr(0) equals N for Ap = 0, decreases
with growing rotation parameter, roughly speaking, as Zznz__j exp(imAp)
and tends to zero for A.p ~ w/2j. This simple approximation suits well
the observed relation (63). The condition (66), or in the specific case of
the kicked top, the relation (63), might be used to check the statistical
independence of spectra collected together in order to increase the statistics.
To prepare level distribution shown in Fig. 8 we put together data of several
systems Fy(p, k) with fixed k, the spin length j = 100, and the parameter
p varying by the step comparable to the minimal rotation A.p.

{.4. Transition orthogonal-unitary

Orthogonal top, defined by the operator (55), possesses the antiunitary
symmetry (58). This symmetry might be broken by an additional unitary
factor exp(idJ§/2j). Modified Floquet operator

- —idJ? —ikJ 2 -
fu = e ( 27 ’ ) o ( 221' ] ) “xp(=inls). 0

corresponds to an Hamiltonian, analogous to (52), with two subsequent

kicks, governed by operators J2 and ff. Such systemn does not have any
antiunitary symmetry and for sufficiently large values of the parameter d
operator F, can be described by circular unitary ensemble [15], provided
k#d.

By increasing value of the parameter d in (67) one may therefore in-
vestigate the transition COE-CUE. It has heen shown [113] that the level
spacing distribution during this transition is well approximated by the for-
mula (19), obtained for the additive random matrices. However, the fitting
parameter Af, which enters formula (19) and describes the speed of transi-
tion between circular orthogonal and unitary ensembles, scales as [134]

Ap =532 (68)

This behavior differs the transition hetween Gaussian ensembles of Hermi-
tian matrices from corresponding transition between circular ensembles of
unitary matrices.

The statistics of the eigenvector components in the intermediate case
might be approximated by the X,Zg distribution with 8 € (1,2). It has been

demonstrated [133] that the distribution
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b2
Puly) = =T (it (y bz~ b)> be(1,2)  (69)
bly) = 2\/m o 4 (b — 1) H s

provides much better fit to the numerical data. In the above formula I,

denotes the Bessel function of order zero. When b varies between 1 and
2 the distribution (69) is transformed from the Xfa:l distribution (OE) to

the x/23=__2 distribution (UE). The transition of the properties of eigenvector

statistics and the entropy of eigenvectors is controlled [134] by a scaling
parameter
A = jd?. (70)

During the transition between COE and CUE controlled by increase of the
parameter d the changes of the properties of the eigenvectors, characterized
by (70), occur faster than the changes of the properties of the spectrum
governed by (68). It means therefore that neither the additive model of
Hermitian matrices (4), nor the Dyson model of Brownian motion in space
of random unitary matrices [19], is capable of describing correctly the tran-
sition between orthogonal and unitary ensemble occurring in this exemplary
dynamical system.

Note that by a rotation procedure the matrix Fp, representing the or-
thogonal top (55), might be transformed into a symmetric forin. Taking
for the unitary matrix U = exp(ipJ./2) and defining F! := Ul F,U we get
a symmetric matrix F, = F'T with the same spectrum as F,. Squared
matrix U? is just equal to the second unitary factor of (55). Alternatively,
one may take for U another matrix exp(—:kJ2/45), which is correlated with
the first factor of the orthogonal top. Since the unitary top (63) consists of
three different unitary factors, such technique is not appliczﬂ)le any more,.
The only symmetric matrix representation of the operator F, is therefore
diagonal.

It is possible to symmetrize matrix F, in an artificial way and define a
symmetric matrix

W, = F,FT. (71)

Matrix W, represents a periodical dynamical system composed of four kicks

~ —idJ? k]2 -
W, = L z —i2pJ,
1 = exp ( 57 ) exp < 5 ) exp(—1i2pJ,)
—ik T2 —idJ 2
X exp Pe exp <] (72)
23 2j

Figure 14 represents the level spacing distribution of 400 matrices Wy
with parameter k varying from 10 to 14. Parameters p and d are chosen in
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b— n d
0 1 2 - 3
=}
Fig. 14. Level spacing distribution cumulated of 400 matrices W, = F, * FT.
Matrices representing unitary top F, for p=1.0,d=5.0k & (10.0, 14.0) belong to
CUE, while spacing distribution of matrices W] agrees with the COE distribution
represented by solid line.

such a way that matrices F,, have the properties typical to CUE. On the
other hand, as may be seen in the figure, the level statistics of symmetric
matrices Wy coincides with the exact COE distribution [18, 211] represented
by a solid line. The x> test gives an acceptable confidence level of 20%,
in contrast to 10~% obtained for the Wigner surmise (2). In addition, the
mean entropy of eigenvectors agrees to a remarkable accuracy with the value
resulting from formula (9) for 3 = 1. Also other unitary matrices composed
of several unitary factors F; in a way analogous to (72):

U=FF---F,---FL,F (73)

possesses, for generic values of the parameters, the properties of COE.
Furthermore, it is interesting to analyze products of two unitary matri-
ces, which represent the orthogonal top F, and pertain to COE. Operator

ik, J2 Lo T2
‘//‘72 = exp (——I—Iclji) exp(-ip]fz)exp (25—2—]3-) exp(—1ip2 Az) , (74)
2j 25
represents a dynamical system governed by two kicks of different strength
within a period p; + p2. We denote the differences in parameters by Ak =
ky — ky and Ap = py — p;- For Ap = Ak = 0 the matrix W, is equal
to F? and, due to overlapping of the eigenvalues of F, from the interval
(0,7) with these from the interval (7, 2x), the statistical properties of the
spectrum of W, differ significantly from these characteristic of COE. In a
rough approximation the level spacing distribution of W5 might be described
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by a particular form of the Berry-Robnik distribution [125] constructed by
superimposing two Wigner-like spectra and appropriate to describe the case
of two distinct chaotic domains in the classical phase space.

Let us keep one of the differences (Ak or Ap) equal to zero and allow
one the other one to take non—zero values. The matrix Wy can be then
transformed by a unitary rotation into a matrix W = UIW,U of the form
(73). For example if Ak = 0 we take U = exp(ip2J./2) and get a symmetric
form

—ipod. —ikJ?
W, = exp < 11;2 ') exp ( 12 Jz) exp(—ip1J;)
7

—ikJ2 -1 .
X exp ( 12]_ z ) exp ( ZP;J") ] (75)

Numerical investigation showed that for sufficiently large values of the dif-
ference Ap (or Ak), the matrix W, has in this case the COE spectrum.

PlS )_ e s o e —)

1
! 2 3
S

Fig. 15. Level spacing distribution cumulated of 500 matrices W, = Folky,p1) *

0

Fo(k2,p2). Matrices representing orthogonal top F, for pr = 1.7,p2 = 2.3,k €
(8.0,13.0), and k2 = k; +4.0 belong to COE, while spacing distribution of matrices
W, conforms to the CUE distribution represented by dashed line.

If both differences are not equal to zero the matrix Wy cannot be trans-
formed into the form defined by (73). Figure 15 shows the level statistics
made of 500 matrices W» with p; = 1.7, parameter k; varying from 8.0 to
13.0, the differences Ap = 0.03 and Ak = 0.2. In this case the numerical
data fit well to the spacing distribution of CUE, represented by a dashed
line. Moreover, the mean entropy of eigenvectors is close to the value char-
acteristic of the unitary ensemble. Values of the differences Ap and Ak
necessary to assure that W, has properties typical of CUE, depend on j
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and are of the order of the minimal rotation parameters A.p and Ak, re-
spectively. Keeping the parameter Ap constant and increasing the difference
Ak one can study the transition COE-CUE in an alternative way.
Analyzing a quantum systemn described by a N-dimensional matrix §
one usually looks for a unitary matrix Uy, such that Dy = UgSUO is diago-
nal, and examines the correlations between diagonal elements of Dy (spec-
trum) or the statistics of the elements of Uy (eigenvectors). Each column of
the unitary matrix Uy (eigenvector of §') has an arbitrary phase, since for any
diagonal unitary matrix D, the matrix U} := D,Uy diagonalizes also the
matrix §. In spite of this ambiguousness we found it interesting to analyze
the properties of an exemplary matrix Uy and to diagonalize it obtaining
D; = UltUgUl. Diagonalizing the resulting unitary matrix of eigenvectors

U, we define the diagonal matrix D, = U._)T U,U; and, by repeating this pro-

cedure further on, the diagonal matrices D;; = UZT_HUZUH.], l=1,2,...,.

Taking the for the initial matrix § the matrix F,, representing the
unitary top (67) and possessing the CUE properties, we noticed that the
matrix of eigenvectors Uy displays also the spectrum typical of the uni-
tary ensemble (independently of the choice of N arbitrary phases of eigen-
vectors). In addition, the mean entropy of eigenvectors constructing the
matrix U; is identical with the mean entropy of the eigenvectors of F,, col-
lected in Up. The same ohservations hold for other matrices of the sequence
U, Us .. .. Interestingly, the same properties has the sequence of matrices
U, | =1,2,..., generated from the matrix (67) with arbitrary values of
the parameter d (including d = 0, for which F, pertains to the orthogonal
ensemble). Further numnerical experiments suggest that for sufficiently large
number [ depending on a given non-diagonal unitary matrix Uy any matrix
of the sequence {U;, U4y, U4y, ...} has the properties of CUE.

5. Concluding remarks

We have analyzed two models of random matrices which interpolate
between canonical ensembles: I) — band random matrices, parametrized
by the band width b, and II) — additive random matrices, described by the
perturbation parameter A\. Both ensembles display the property of scaling.
For real, N-dimensional band matrices the scaling variable is ¢ = b2/N, for
the properties of spectrum [118], as well as for eigenvectors [116, 120]. We
have demonstrated that the same scaling law holds also for the model of
complex band matrices which interpolate between Poisson, orthogonal, and
unitary ensembles.

For additive random matrices the velocity of changes in the spectral
properties is proportional to A\/N, where the proportionality constant is
different for the wings of the spectrumn and its center [114]. For this model
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the scaling law governing the eigenvector statistics is different from the scal-
ing relation for the spectrum. The distribution of eigenvector components
P(y) can be characterized by the average Shannon entropy of eigenvectors
(H) or the closely related localization length 7.

Eigenvector statistics of real random matrices in the GOE regime
(b2/N > 1 or A > 1), calculated in the basis in which the matrix was
constructed, is given by the Porter—Thomas distribution and the Shannon
entropy complies with predictions of the orthogonal ensemble. On the other
hand, for an inappropriate choice of basis (for example, in the additive
model, too small a value of the rotation parameter AX determining the
closeness to the eigenbasis of the matrix), the eigenvector distribution of
this matrix looks similar to the eigenvector distribution of a Poisson-like
matrix (A < 1).

Quantized dynamical systems corresponding to classically chaotic mo-
tion might be described by canonical ensembles of random matrices: Gaus-
sian for the autonomous systems, and circular for time-dependent, periodical
systems. The choice of one of the three universality classes depends on the
symmetry of the system. Properties of spectra characterized by the level
spacing distribution P(s) or the spectral rigidity A3(L) and the number
variance £2(L) (for short range L) are universal for all quantum systems
(with restrictions to systems, for which the dynamical localization occurs).
On the other hand, the properties of eigenvectors are universal provided
the unitary operator F’l representing a periodical quantum system is repre-
sented in an appropriate basis. We call the eigenbasis of a unitary operator
F, random with respect to the system ﬁl, if Re((l?’g ﬁltf'zfﬁ}) <« N. We
conjecture that the statistics of components of eigenvectors of a classically
chaotic system, represented in a random basis, agrees with the prediction
of random matrices. This approach might e also generalized for Hermitian
matrices representing autonomous quantuin systems.

The model of the periodically kicked top provides an efficient tool al-
lowing us to construct unitary matrices typical of circular ensembles. We
investigated some of their algebraic properties. A product of two differ-
ent matrices typical of COE possesses the properties of CUE. Moreover, a
product of UUT, where U pertains to CUE, displays all features of a COE
matrix. An arbitrary matrix U; diagonalizing any CUE-like matrix Uy has
the properties of CUE. The same concerns a matrix Uy, 1, selected from the
set of all matrices diagonalizing the matrix U;. It seeins therefore that the
set of matrices with the CUE properties is invariant under the operation of
diagonalization.

Periodically kicked top is also useful to simulate transitions hetween cir-
cular ensembles of random matrices. The transition {rom Poisson to orthog-
onal ensembles corresponds to the classical transition from regular motion.
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The Berry—Robnik distribution, invented for such a case [125], approximates
the level spacing distribution obtained numerically less accurately than the
Brody distribution, created ad hoc {17]. Some aspects of this transition (the
character of the level spacing distribution and the eigenvector statistics, the
same scaling law for eigenvalues and eigenvectors) might be associated with
the model of band random matrices. On the other hand, some aspects of
the transition between orthogonal and unitary ensembles corresponding to a
process of the time-reversal symmetry breaking and realized by the unitary
kicked top (67), may by linked with the model of additive randomn matrices.
This model is known to be useful to represent some basic features of singu-
lar billiards [72, 140] or other pseudointegrable systems [141]. It is difficult
therefore, to demonstrate a superiority of one of the models of random ma-
trices as regards a possibility to describe parametric dynamics of quantum
system. The transitions inside a given canonical ensemble of random ma-
trices possess some universal features [102, 109]. On the other hand, it is
rather dubious that also the transitions between ensembles have universal
nature and one might, for example, discover a level spacing distribution,
interpolating between Poisson and Wigner distributions, applicable to all
quantized dynamical systems. One may try however, to specify a particu-
lar class of dynamical systems, for which the transitions hetween ensembles
have a common nature, and find an appropriate model of random matrices.
Further work is needed to verify this possibility.

There exist simple rules allowing us to construct numerically a Her-
mitian matrix belonging to one of the Gaussian ensembles [17]. Discussed
models of random matrices consist of Hermitian matrices and are suitable
to describe autonomous systems. Properties of time-dependent, periodical
systems, are described by the circular ensembles of unitary matrices. Be-
cause of the correlations hetween the elements assuring unitarity, creating
a matrix pertaining to one of the circular ensembles by means of a random
numbers generator is more difficult. In order to ensure a closer connection to
quantum periodical systems it is therefore important to solve this problem
and to define ensembles of unitary matrices interpolating between canoni-
cal circular ensembles. In context of the recent results revealing unexpected
scaling variable describing the transition COE-CUE in the kicked top [134]
it would be also interesting to compare the properties of the transitions be-
tween Hermitian matrices belonging to the Gaussian ensembles and unitary
matrices of the corresponding circular ensembles.

Each eigenstate of a quantumn system, described by a matrix of size N,
may be represented by a set of precisely N zeros of the Husimi distribution
of the state considered [131, 206, 212, 213]. Character of the distribution
of N? zeros in the phase space has heen linked to the behaviour of the
corresponding classical system. Parametric dynamics of a quantum system
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could be in this way described by studying the motion of the zeros of the
Husimi distribution in the phase space.

We focused our attention at the Hamiltonian systems described by Her-
mitian matrices with real eigenvalues or unitary matrices with complex
eigenvalues localized along the unit circle. On the other hand, there exist
some recent results concerning quantum chaotic systems with dissipation
[214-218]. It has been shown that under the condition of classical chaos
the distribution of the eigenvalues on a complex plane displays cubic repul-
sion [218], typical of the Ginibre ensemble [219]. Complementary results
have been obtained by an investigation of the chaotic scattering, since the
poles of the scattering matrix § exhibit cubic repulsion on a complex plane
[220]. Future study should be dedicated to a detailed analysis of ensembles
of non-Hermitian random matrices with complex eigenvalues interpolating
between universality classes, or, in the case of damped periodical systems,
non-unitary matrices. Furthermore, one could attempt to apply such en-
sembles of random matrices to describe parametric dynamics of quantum
systems with dissipation.
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