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A stroboscopic maps approach for continuous dynamical systems has
been elaborated and generalized. For an impulse perturbation, the map
equivalent to a given equation can be found analytically for a large class of
systems, in the limit of the impulse width going to 0. This technique can
be used for analyzing dynamical systems in which the perturbation has
an impulse form, or can be joined with the Generalized Modulated Kicks
Approximation to model a system with continuous or noisy perturbation.
The validity of a “naive” method of finding the map is discussed.

PACS numbers: 03.40.-¢

1. Introduction

The paper is devoted to an analysis of linear and nonlinear dynamical
systems with a time dependent perturbation in a form of a series of short
impulses. The choice is well supported by both natural and mathematical
examples (cf. eg. [1]). Many physical, chemical or biological systems exhibit
pulse nature of evolution or can be acted upon by a perturbation of such
form. In some cases, investigation of a response of the systems with respect
to the periodic or aperiodic impulse perturbation may lead to a definition
of new characteristics [2-5]. It is also useful to approximate time-dependent
perturbations, originally not having the impulse form, by a series of “kicks”
(6-functions) with finite or zero distance hetween the impulses [6, 7]. This
technique may be applied either to regular or to stochastic perturbations.
The first case, when a regular, time-dependent perturbation is replaced
by series of kicks, is known in quantum optics as the Modulated Kicks
Approximation (shortly MKA) [8-10]. For a stochastic perturbation, this
approach may be dated back to Langevin and Haken [11-14].
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In the paper we are building, in a systematic way, a formalism of a
stroboscopic map approach to the systems with impulses [15], based on the
continuous impulses approximation scheme. The stroboscopic maps are well
known and widely applied in the MKA as well as in the dynamical systems
theory (“kicked rotator” [16-18], and others), but it can be also applied
to the systems with noise (cf. [19-21]). For many systems the method
simplifies the simulations by making part of the work analytically done,
even if the original system cannot be analyzed by other methods (including
Fokker-Planck equation). The method of the continuous approximation
of the delta function forms a standard approach in the theory of special
functions, and alternative approaches for one-dimensional special cases are
standard in the theory of stochastic processes. Nevertheless, up to the
author’s knowledge there has been no attempt to discuss the correctness of
the way the stroboscopic map is constructed. As it will be shown below,
the “naive” way of solving such problems may lead to significant errors.

The problems appear because impulses are usually considered to be
of an infinitely short duration (§-functions). However, from physical point
of view, é-function is only an approximation of a continuous process of
finite duration. The validity of the approximation depends on the relation
between the natural time scales of the system and of the perturbation.
From mathematical point of view, calculations with é-functions may lead to
some problems when not properly carried on, because some expressions with
special functions (like §) are not well defined. In both cases (physical and
mathematical) it is natural to consider impulses as continuous functions,
and — after calculations are done — to perform the limit procedure of the
impulse width going to 0. The problem discussed here is very similar to the
one encountered in the theory of Brownian motion [12, 13].

In the paper we discuss the formalism for one- and multi-dimensional
systems, show how to solve the problems with the zero-width impulses, and
finally touch the case of the finite-width impulses.

2. One-dimensional case

Consider a 1-dimensional dynamical system described by a variable z
and an equation of motion

¢ = f(z) + c(t)g(z), (1)

where f(z) determines a free (unperturbed) evolution and c(t)g(z) is a
time dependent perturbation (regular, chaotic, stochastic, continuous or
impulse). Eq. (1) is general and includes many applications. Moreover, the
results obtained here can be generalized to the cases when (1) is not valid,
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at least in some approximation (e.g. adiabatic approximation). f and g are
assumed to be sufficiently smooth (analytical).
Suppose that ¢(t) has a form

oo

c(t) = enbalt—tn). (2)

n=0

¢, are numbers and § 4(t) is a universal shape function of the impulses,
equal 0 outside the interval (—A/2, A/2), continuous with continuous first
derivative on [-A/2, A/2] and normalized to 1.

t, are moments in time, ordered (¢, > t,—7 for all n), t, — t,—1 =
T, may be a constant (T, = T), a regular or a stochastic function of n.
Impulses are assumed to be well separated, i.e. T, > A for all n. Although
we assume that the shape function does not depend on n, our method can
be applied to a more general case.

Eq. (2) may be considered as a continuous version of a singular pertur-
bation

o(t) =) enb(t —tn), (3)

§(t) being Dirac function. This form is commonly used in MKA and in the
shot noise theory, as well as in theory of dynamical systems identification.
The impulses form the reference system of moments in time and make
it natural to consider values of the dynamical variable z at times correlated
with impulses. This leads us to a concept of a stroboscopic map. Denote

et =z(t, + A/2),
(4)

zo =z(tp, — A/2).

The continuity of § 4 guarantees that
z(t, £ A/2+0) = z(t, £+ A/2 - 0).

The stroboscopic map is given by subsequent relations: ... — zF

n—1
z, — z}t — .... The first step can be solved easily. The evolution from
tn—1+ A/2 till t,, — A/2 is given by the unperturbed equation

&= f(z). (5)

We assume that (5) can be solved analytically or numerically to get a
relation

—

z, = F(:c;t_]; tn—1stn), (6)

with F being the solution of (5) at time t, — A/2if z(t,—1+ A/2) = z:_l.
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The full evolution may be considered on a single impulse level; the
equation from ¢t = t, — A/2to t, + A/2 is given by

€= f(z)+ cnba(t —ta)g(z). (7)

For most nonlinear f,g and general §(t), Eq. (7) cannot be solved
analytically. However, in some cases it is possible to simplify it, when the
limit A — 0 is considered (approximations of §-function).

Rewrite Eq. (7) in a integral form

t
z(t) =z, + / [f(z(‘r)) + enba(r — tn)g(z('r))] dr. (8)
th—A/2
This equation can be formally solved by an iteration method. The first
approximation is z(t)(o)y = =,, . The subsequent approximation is obtained

by putting the previous one into the right-hand-side of (8) and evaluating
the equation, i.e.

t
e(t)(re1) =25 + / [f(“’(")(r)) +enbalr - tn)g(-’c(")(r))] dr, (9)
tn—A4/2

with r indexing the subsequent iteration steps. This procedure converges
for f,g and é 4 fulfilling the regularity conditions stated above.

In the limit A — 0 some terms on the right-hand-side of (9) may be
neglected, being of order of A, AZ, ... and other terms may be put together
to get the formula

et = G(z,cn) +0O(4Y), (10)
where O(A?) denotes terms of order A? and higher, and G is given by the
implicit relation

G(z, ,cn)

Equivalently, G is a solution of the equation

z=cpda(t—tn)g9(z), (12)



Dynamical Systems with Impulses ... 1065

at t, + A/2 with an initial value z; at t,, — A/2 . In (12) the variables can
be separated and the equation is easier to handle than Eq. (7), as there are
no singularities in it (4 — 0), and only one characteristic time scale (of g)
instead of two (A times g and f) in Eq. (7).

In the limit A — 0, the precise form of § 5(t) does not play any role.
Therefore, if § 4(t) is treated as an approximation of §-function, the result
(10) is independent of the particular approximation, and therefore correct
and well defined from the mathematical point of view. This will be discussed
in details in the next section.

The results just obtained are valid in the limit A — 0 which must be
taken first, at the level of a single impulse. In particular that means that
tn—tn—1 = Ty is bounded from below by A for any n. Further in this paper
we will show how to find the corrections of order of A, AZ,... However,
if the limit A — 0 is taken first, the iterations of the stroboscopic map
match exactly the solution of the equation (1) (if no other approximations
are made), even for long times. On the other hand, if A is finite or some
approximations are used (as in the next section), the map has a finite time
range of validity.

The same result may be obtained easier in the 1-dimensional case, if f,
g, and c fulfill additional assumptions. If e.g. (11) can be solved analytically
(as here) and the solution is invertible, one can change the variables in (1)
in such a way that the dependence of the second term on z disappears, and
then solve the equation. The method presented here-is more general, and
includes e.g. the case of g(z) periodic in z.

The relations (10) and (6) form the stroboscopic map for (1). The
above results can be easily generalized to the case when more than one
perturbation is present in the system, each in a form of (2), i.e.

zH_Z (Dt (J) (z), (13)

where

D)y =5 P ba(t-19). (14)

3. Singular perturbation

For continuous impulses Eq. (1) is not singular. However, if we use §-
functions, as in standard MKA, we may encounter mathematical problems.
Consider Eq. (7) with é(t) instead of § 5(t) (we assume ¢, = 1 and n fixed)

i = f(2) + 8(¢ - ta)g(z), (15)
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around t,, (¢ # t,,). To solve the equation we must determine the integral

th+A4/2
2(tn+0) ~ 2(tn ~ 0) = lim / §(t—ta)g(z)dt,  (16)
, th—A[2
with 2(t) being the solution of Eq. (15). However, as 2(t) has a discontinuity
at t = tp, and so has g(z(t)) (except for the case when g(z) = const), the

right-hand-side of (16) cannot be simply evaluated.
Eq. (10) gives us the result

2(tn + 0) — z(tp — 0) = G’(:c(tn ~ 0), 1) — 2(tn — 0). 7).

(17) was obtained by approximating 6(t) by a series of smooth functions
54(t) parametrized by A with §4(t) — 6(t) when A — 0 (in a weak sense
of the limit). The result is independent of the particular choice of the
approximating functions.

In most cases, (17) gives different results than the ones obtained by a
“trivial” integration (16), i.e. under the assumption that in the limit A — 0
the impulse becomes so short that g(z) does not change. Then we have

&= f(z) +6(t - tn)g(2(tn — 0)), (18)
instead of Eq. (15) and

2(tn + 0) — z(tn — 0) = g(2(tn — 0)). (19)
Although (19) is wrong for g(z) being non-constant, it is so much sim-
pler than (17) in applications, that it seems to be interesting to find whether
(19) may be sometimes used as an approximation for (17). For g(z) = const
the results are identical. If g is small for all , namely if such a scaling con-
stant € may be found that g(z) = €g(z) with € < 1, corrections are of order
of €2 and higher (this can be proved by evaluating the integral in (16) and
estimating the terms). These corrections are not important on the level of
one impulse, but they become important for a long time analysis. When
n (“time”) becomes of order of 1/¢, the map constructed by the exact (in
the limit A — 0) prescription (17) and tle map given by (19) may produce
different results.

4. Two- and more-dimensional systems

The mathematical difficulties mentioned in the previous sections of the
paper do not appear in a certain class of higher-dimensional systems. For-
tunately, all up-to-date applications of MKA belong to this class. Consider
the standard system to which the MKA is usually applied
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=y,
{ (20)
¥ =f(z,9) +c(t) g(2).

The system (20) is of a great importance, because it forms the Hamil-
tonian equations for a particle moving in one dimension under the influence
of two forces, one of which (c(t) g(z)) depends explicitly on time and on the
“coordinate” z, but does not depend on the "momentum” y . Eq. (20) is
also equivalent to a Schrédinger equation for an atom in an external field
varying in time according to ¢(t), being the standard application in quan-
tum optics. Usually f(z,y) = —7y + u(z), c(t) = Acos(wt) and g(z) is
given by a nonlinear potential V(z): g¢(z)= -8/ 0z V(z). Applying MKA
to such a system we approximate c(t) by a series of kicks like (3) and find
an approximate stroboscopic map [6, 7]. The latter is usually done (implic-
itly) by the method analogous to the “naive” integration. The correctness
of this approach in the case of Eq. (20) can be verified in the same way as
in Section 2.1 (iteration method). In the limit of infinitely short impulses,
t.e. for A — 0, we get the part of the stroboscopic map for the perturbed
evolution as follows

et ==z,
(21)
Yn =¥n +cng(zy)-
This can be supplemented by the appropriate map obtained by the solution
of the unperturbed equations. For this system the corrections of order
Al, A?%,. .. can be also easily found (see below).

On the other hand, if g in Eq..(20) also depends on y, we are back in
the more complicated case which we studied in Section 2.1 of the paper.
Then, “naive” integration leads to results different from exact ones (if the
latter can be obtained), and the continuous approximation method must be
used. This result may be generalized as follows.

If in a set of equations

€r) = f({((,)}) + zcszr)J(t - tn)g(r)({i(a)}) ) (22)

n

(r,s=1,...,N), the condition

99 ({€s)})
(e
holds for all » = 1,..., N and almost everywhere on the interesting set of

possible £(,), then the “naive” integration gives the same results as the con-
tinuous approximation method (and as the exact solution of the equations

=0, (23)
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with é-functions, if such a solution can be found). However, if (23) is not
fulfilled, we cannot use the simple method based on the “naive” integration,
and the exact results are given by solving the set of equations differing from
Eq. (22) by setting all f = 0 (which is the essence of the result presented in
Section 2.1 of the paper).

This theorem shows that in some cases the simple method of solving
singular equations might be incorrect (like in the case of a generalization of
Eq. (20) to the case when g depends also on the “momentum” y).

5. Finite impulse width

The iteration method presented ahove can be applied not only in the
limit A — 0, i.e. if the terms of order A!, A%, ... are neglected, but also in
the case of a finite impulse width. However, the applications of the results
are strongly limited by the fact that the stroboscopic map is obtained in an
approximation, and therefore valid for finite times only (of order 1/ AM+1
where M is the highest power of A kept in the expansion).

Suppose now that we treat (2) “literally”, i.e. not as the approximation
of a process, but rather as a perturbation with finite impulse width and finite
time interval between impulses. The following results can be then obtained
with the use of the iteration method.

Let us start with the more complicated, one-dimensional case. Suppose
that there exists an invertible transformation 2 — z(z) such that

T da:l
z(m):/ m (24)

Existence of this transformation is closely related to the possibility of solving
the integral equation (11); however, the integral equation may be solvable,
but the transformation may not bhe invertible (when e.g. g is periodic).

The method presented here is a special case of a more general method
which has already been mentioned. The idea is to change the variables
in the equation Eq. (2) in such a way that the resulting equation can be
easily solved, even with a time dependent term (here our goal is to make
the time- and coordinate-dependent term independent of z). However, it
should be stressed that this method works under several assumptions (e.g.
g — positive) only, and cannot be easily generalized to higher dimensions.
The iteration method, shown in the previous sections, does not require such
assumptions.

The transformation (24) linearizes the second term in Eq. (1) and the
equation becomes

5= n(z) + c(t), (25)
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where

f(=)

z) = ==t . 26
7(z) 9@ o) (26)
The equation (25) is needed only for finding the part of the strobo-
scopic map describing the evolution during the impulses (i.e. the z;; — z}

relation). The “free” part may be obtained by solving the equation (5).
The iteration method based on the assumption that impulses are short

and high gives the result

. a2 T
=z 4en+A [A / d‘rn(z,“{%—cn / drlﬁd(rl))] +0(4%), (21)
-4/2 —4A/2
which might be translated into = after evaluation of the integral. Terms of
order A% and higher can also he found by the same method.
For two-dimensional systems considered in the previous section of the
paper, the procedure of finding corrections of order A! and higher is much

simpler. Then, we do not need to transform the equation into a linear form
and the following result can be obtained for z-variable

23 = 25 + Ay + dug(27)) + O(4%),
vF = yn + cng(zy)

A/2 T
1
+ A4 Y / drf( Z,,Y, +9(z;) / dTlcn5A(7'1))
—-4/2 ~A[2
dg (1) -
(&) g (097 et
+ 0(4?Y), (28)

for the system of equations (20). The numbers cg),dmen are given by
integrals of 7 and §4(7), e.g.

Af2
) = "‘2‘ / dr (T + A/2)6a(7), (29)
—A/2

and for the symmetric shape functions §4(t) = §4(—t), can be evaluated
as follows: c( ) en /2, dyn = cn /2, en = cn /6. Moreover, for the special



1070 A. KLECZKOWSKI

case f(z,y) = —7y + u{z), which is often used, the only remaining integral
of §4(71) in (28) may be evaluated in terms of d,, and the result depends

on general parameters csll) ,dyn,€en,...only and not on a particular shape of
d4(t). Again, corrections of higher order of A may be found.

The range of applications of the ahove results is rather limited, first by
the time limit (length of iterations of order 1/ A%), and second, by compli-
cations in evaluating (27) or (28). However, it should be stressed that the
remark concerning the limited range of time interval where the approxima-
tion methods may be applied, is valid for most of the numerical methods
(see [22, 23]).

Concerning the theorem given in Section 2.2 of the paper, we may add
that the result (27) and the method of obtaining it are typical for systems
for which the condition (23) does not hold. In this case the transformation
of the variables is needed and in many cases the corrections cannot be found.
On the other hand, when (23) holds, the correction can be obtained without
additional assumptions, like for Eq. (20).

The iteration method can also be applied to a wider class of equa-
tions with impulse-like perturbation (resulting from either physical reasons
or from GMKA), e.g. for integro-differential equations. In this case the
resulting stroboscopic map has “memory” properties [24].

6. Final remarks

The approach to an analysis of dynamical systems with time-dependent
perturbations as presented here is formed by two basic techniques:

e The singular approximation: a given time-depending signal is approxi-
mated by a series of impulses with suitably chosen weights. The tech-
nique has been known and applied in different areas, especially in quan-
tum optics, but the range of applications may be widened to include
stochastic and chaotic perturbations.

e After the perturbation is represented in the form of é-like impulses, the
stroboscopic maps formalism can be used to transform a continuous
dynamical system into a discrete map. It is shown that for a large
class of systems this transformation can be carried out in the analytical
way. The stroboscopic map can be then analyzed by standard methods
of discrete dynamical systems or easily simulated on the computer. It
should be stressed that the formalism presented above is not limited
to the case of equidistributed impulses (as the standard stroboscopic
maps approach), but can also be applied to the case when the interval
between impulses is a dynamical variable and changes in time.
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