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Fifth order, O(3%), exact corrections to the non-singlet electron struc-
ture function in QED are presented. Calculations were performed in the
leading logarithmic approximation using the ad hoc exponentiation pre-
scription proposed by Jadach and Ward and a recurrence formula for the
elements of the Jadach—~Ward series. A comparison with existing third
order, O(B3%), solutions is also presented. The three next elements of the
Jadach-Ward series were calculated numerically and parametrized with
an accuracy better than 5-107% in the range of ¢ between 0.01 and 1.

PACS numbers: 12.20. Ds

1. Introduction

The leading logarithmic non-singlet electron structure function DN3(z, 8)
is defined as the difference hetween the densities of virtual electrons and
positrons in the initial electron. It can be found by solving the Gribov—
-Lipatov evolution equation [1]:

B
D¥(2,0) = 8(1-2) + } [ anD™(,n) & P()(a), (1)
0

where:

mn=3/$ﬂW) )

8
2
m;
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and

+ 22

3)

In equation (2) a(s) is the running coupling constant and s = Q? is the
energy scale characteristic for the process. In the case of a(s) = a we find
that:

P(z) =6(1- 2) (%+2lne)+@(l-—e-z)11_z .

Blo) = in s (4)
The convolution symbol @ stands for:
1
Pi(-)® P2(-)(=z) = //d:cldzzJ(z - z122)P1(21)Pa(z2) . (5)
0

We can rewrite equation (1) in the differential form:

11
NS (

aD____“__:E,ﬂ = %//dlldlza z — 111‘2)P(2’1)DNS(32"B) (6)
00

with the boundary condition
DNS(2,0)=6(1—-Q), (7)

which means that for s = m? the electron does not have any internal struc-
ture. More information about leading logarithmic calculations of the QED
corrections can be found in [2]. In reference [2] the perturbative solution to
the equations (6)—(7) up to third order in 3 has been calculated for various
prescriptions of ad hoc exponentiations.

The main result obtained in this paper is the exact solution to the above
equation up to the fifth order in 8. The accuracy of the solution is estimated
and the comparison with the existing third order solutions is presented. I
propose also an approximate solution up to the eighth order in 8 valid in
the range of 0.01< z <1 with accuracy of the order of 107%. An interesting
symmetry property of the solution is mentioned.

2. Solution to the GL equation

According to the prescription of the ad hoc exponentiation procedure
proposed by Jadach and Ward [3] we look for the solution to the Gribov-
~Lipatov equation in the following form:

N-1

D} (2,8) = Da(=,8) Y B éu(z) + O(BN ), (8)

n=0
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where the Gribov function reads:

exp |7(3-7)
r([12+4ﬁ/2) } g(l _ z)ﬁ/z—l (9)

and is a solution of equation (6) for z — 17. At the beginning we eliminate
the IR cut-off ¢ and arrive at the following evolution equation:

DG(z:ﬁ) =

__ODN;;z,ﬂ) = [% + %ln(l -z)— %—ln a:] D™5(z, B)
1
d 2
+ [ [(1 +5) D¥.0) - 2D"s(z,ﬂ)] . (10)
Substituting:
D?st(zaﬁ) = DG(w)ﬁ)sp(z’ﬂ), (11)
we get for &(z, B): ‘
aqs‘(;ﬂ,ﬁ) = 5 (31 +2%) - 8(2,8)] - }1n28(z, )
; ¢
1-y 1 1-=2 z? 1+ z2
+%z/dy(1—z) {y—w [1—3/ (Hy_z) ¢(y,ﬁ)—2¢(z,ﬁ)] S 1-y }
(12)
with the condition
#(1,8)=1. (13)

We can write the solution of the ahove equation in terms of a power series
in 8. Substituting:

o0 ﬂ n
#20)= 3 (5) tule), (14)
nz=0
one can derive a recurrence formula for the coefficient functions of the Ja-
dach-Ward series:

$o(z) = 3(1 +27), (15)
#1(z) = —1[2(1 - 2)* + (1 + 32%) In2], (16)
1 = 1
¢n+1(z) = m{%(l - 1')/\11(1’) — ¢n(:c)ln:c + %(1 - 23) kZ_::l(_n_-T)'

[ () [(45) H -t o

z
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where :
1 dy 11—y
Mniz) = -5 [ Far e (72) (18)

The above recurrence formula was first obtained in [4]. A,(z) can be ex-
pressed in terms of Nielsen’s polilogarithms:

M(z)=1-z+(1+2)Liz(l—2)—zlnz (19)
and for n > 2
An(2) = (-1)" M1 -2+ (1 +2)Sn1(1 —2) + 2Sa—12(1 - 2)].  (20)

Some of the definitions and formulas concerning the Nielsen’s polilogarithms
useful in following calculations are collected in Appendix A. Using the recur-
rence formula (17) one can calculate a few next coefficients of the Jadach—
—Ward series:
$2(z) =2 [(1 - 2)® + 1(1 - 42 + 32z%) In=

+ &1+ 72%)In?z + (1 -zz)Lizu-z)} , (21)
¢3(z) = — & [6(1 - 2)% + 3(5 - 242 + 192%)Inz
+31 -8z +72%)In%z + (1 +152%)In’ z
+ (6(1 - z%) + 4(1 + %) Inz) Lix(1 - )

+12(1 — 2®)Lig(1 — z) + 2(1 + 72%)512(1 - 2)], (22)
éa(z) =“§%4' [7(1 —2)? + 3(7 - 40z + 332%)Inz + 1(3-34z + 31z%)In’z

et O

eIl

+ §5(1 - 162 + 152%)In® =

+ 555(1 + 312%)In* z + 8(1 + 2?)Li3(1 - =)

+ (14(1 -2%)+8(1-z)®lnz+1(3+ 13:1:2)Ih2 .’I:) Liz(1 -z)

+ (24(1 - 22) + 16(1 + 22) Inz) Liz(1 — z) + 48(1 — 22)Lig(1 — 2z)

+ (41 - 8z + 72%) — (1 = 172%) Inz) §1 2(1 — z)

—24(1 - 2%)832(1 — =) - 5(1 — 2%)S1 3(1 - z)] . (23)
The coefficient ¢2(z) was first calculated in another way in reference {2]. In
order to estimate the accuracy of the fifth order solution I have calculated
numerically the next coefficient of the Jadach-~Ward series. The ratio of the

fifth to the sixth order perturbative solutions of the GL equation using the
Jadach-Ward ad hoc exponentiation prescription is shown in Fig. 1. One
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Fig. 1. The ratio of the fifth (D} 5) and sixth (DJ ¢) order exponentiated so-
lutions of the Jadach-Ward (JW) .type for the LL non singlet electron structure
function. The calculation was done for 8 ~ 0.11 i.e. \/s = 92GeV for the LEP
case.

can see that the accuracy of the fifth order solution is hetter than 1.6-10~7
in the hard limit and better than 1-10~% in the soft one (z > 0.8).

In Fig. 2 I compare existing third order solutions, exponentiated by
Kuraev-Fadin (KF) [8] (for the explicit third order result see [2]) and
Jadach—-Ward (JW) prescriptions. Both solutions are normalized to the
fifth order solution according to the JW exponentiation procedure. The
comparison shows that the JW prescription is closer to the exact result
than the KF one, especially in the soft limit.

In Fig. 3 I present all the calculated coefficients of the Jadach~Ward
series and the next three (¢s, ¢6, ¢7) which I have determined numerically.
I have parametrized these last three coefficients using the following function:

pi(1)+ pi(2)z + Pz(3)3— + pi(4 )133 + pi(5)m4
pi(6) + pi(7)z + pi(8)22 + pi(9)z3 + pi(10)2*

+pi(11)In 23)4.5;'—1(1?)- (24)

¢i(z) = (-1+(1-2)

Parameters p; are collected in Table 1. The accuracy of the functions ¢;(z)
for i = 5, 6, 7, is better than 5.107%, in the range 0.01 < z < 1.
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Fig. 2. The ratio of the third order approximate solutions of the KF (open circles)
and the JW (full circles) types to the fifth order solution of the JW type. The
calculation was done for 8 >~ 0.11 i.e. /s = 92GeV for the LEP case.
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Fig.. 3. Comparison of all obtained (analytically and numerically) coefficients of
the JW series.
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Table I

Numerical values of the parameters p; in equation (24)

5

6

7

pi(1)
?i(2)
Pi(3)
pi(4)
pi(5)
pi(6)
pi(7)
pi(8)
pi(9)
pi(10)
pi(11)

1.01

1.005

0.995

0.99

0.641 664 028
—0.619 988 501
0.224 513 784
—1.589 189 529
—2.087 939 501
0.227 220 744
110.025 192 261
68.255 920 410
260.508 605 957
195.836 334 229
—0.005 347 746

0.003 843 748
0.006 263 836
—-0.033 976 652
-0.210 926 712
0.156 033 173
0.010 454 907
-~2.389 885 902
—35.333 641 052
-30.422 819 138
-~204.567 718 506

0.000 187 368

—0.000 103 279
—0.002 208 024
—0.061 516 549
0.130 086 362
0.759 156 644
0.000 757 690
—0.249 451 116
—7.883 694 649
—264.039 489 746
—1080.647 705 078
—0.000 658 672
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Fig. 4. Comparison of the fractions of modules of the coefficients of the JW series.

The shape of the approximate function reflects the fact that the fraction
of the subsequent coefficients is very close to —1 (the following coefficients
are of the opposite sign) in a wide z-range and the singularity of the i-th
function for z — 0 is of one power of the logarithm stronger than the
(i—1)-th one.
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From Fig. 3 we see that the coefficients of the JW series appear to
converge to two different functions: one for the odd and another one for the
even coefficients. These limits, however, have an interesting property: they
are very symmetric with respect to the x axis (¢;(z) = 0). The z-range
(zo < = < 1) where the symmetry follows with good accuracy increases
with increasing coefficient function index.

In order to test how close the subsequent coefficient functions of the
JW series are we present in Fig. 4 the modules of their fractions. One can
see that the coefficients ¢5,¢06 and @7 are very close to each other in the soft
z-range (for z > 0.5 the difference is of the order of 0.01%, and for z > 0.01
the difference is up to a few percent). The next coefficient, ¢3, is not drawn
in Fig. 3 and Fig. 4 because the difference between them and ¢7 is smaller
than 0.1% in the hard range and smaller than 0.01% in the soft one and
would be not seen in the figures.

3. Conclusions

Summarizing, we now have analytical, fifth order, O(83%), corrections to
the non-singlet electron LL structure function. The result was obtained ac-
cording to the ad hoc exponentiation prescription of the Jadach-Ward type.
The accuracy of the new solution is of the order of 10~7 in the hard limit and
of 1078 in the soft limit. The comparison with the existing third order so-
lutions shows that the Jadach-Ward exponentiation provides an especially
good aproximation. An approximate solution up to the eight order in 8
(with numerical accuracy of the order of 1078 in the range 0.01 < z < 1)
was also proposed. The higher order coefficient functions seem to be very
close to ¢7 in modulus especially in the soft limit. The subsequent coeffi-
cients are of the opposite sign in the wide z-range and seem to converge to
two very symmetrically placed limit functions: one for the odd and another
one for the even coefficients.

I would like to thank M. Jezabek for useful discussions and critical
reading of the manuscript.

Appendix A

Generalized Nielsen’s polilogarithms are defined as:

)n+m 1

Sn.m(2) = (n - 1)!

/-—lnn Yin™(1 - 2t), (A.1)
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Sn,m(y), defined only for positive integers n and m, is real for real y < 1.
From the definition of S, m(y) one can find its derivative and integral:

d 1
E‘:‘;Sn,m(y) = gsn—l,m(y), (A'2)
fd
z
/ ?Sn,m(w) = Sn+l,m(y) . (A3)
0
In particular:
d _. In(1 - y)
ally S S .
Lia(y) —4, (A.4)
d . _ Liz(y)
dyLz3(y) - y ’ (A5)
d In?(1 - y)
d_yslsz(y) 2y 4 (A'G)

where Li,(y) = Sn—1,1(y). Some of relations between polylogarithms of
different arguments:

Liz(1 - y) = —Liz(y) — In(y) In(1 - y) + {(2), (A7)

Liz(—l”Ty) = ~Liz(y) - 3In%(1 - y), (A.8)

Lis(1 - y) = —51,2(y) - In(1 - ) Lia(y)

— Lin(y) (1 - y) + ¢(2) In(1 — y) + ((3), (A.9)

Lis(—-l_"—y) = S12(y) - Lis(y) + In(1 — y)Liz(y) + 2 1n%(1 - ),
(A.10)

$1,2(1 - y) = —Lia(y) + In(y) Liz(y) + £ In(1 — y) In’(y) + ¢(3),
(A.11)

$12(-725) = $120) - §0*(1 - ), (A.12)

where ((n) = Li,(1).
Some of definite integrals used in the calculations:
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L (e; . :c) + Ly (aea_e bc)] ’ (A.13)
/lln(l - y);n(l =) 4y = 5, 5(a) + Lis(a), (A.14)

1

/ln )ln(l—ay)dyz

0
251,2(a) — Liz(a) + In(1 - a)[Liz(a) - {(2)], (A.15)

1
/Lzz(l - yz : fzz(l - z)dy = -8 2(1 —z) - Lizg(1 - z), (A.16)

z

1 N .
/Lta(l - 32 : 523(1 - Ii)dy = —82.2(1 = z) — Lig(1 ~ z), (A.17)

/51 2(1 —y) 51 2(1—2)

- 28513(1 = 2) + S2.2(1 — 2) - $Li3(1 - 2), (A.18)

More detailed information about polylogarithms and associated integrals
can be found in [5], [6].

REFERENCES

[1] V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 675 (1972); L.N. Lipatov,
Yad. Fiz. 20, 181 (1974).

[2] M. Skrzypek,Acta Phys. Pol. B23, 135 (1992).

(3] S. Jadach, B.F.L. Ward, TPJU-15/88, Cracow 1988; Comp. Phys. Commun.
56, 351 (1990).

[4] M. Jeiabek,Z. Phys. C56, 285 (1992).

(5] A. Devoto, D.W. Duke, Riv. Nuo. Cim. 6, (1984).

[6] R.Lewin, Polylogarithms and Associated Functions, North Holland, N.Y. 1981.

[7] S. Jadach, M. Skrzypek, B.F.L. Ward, Phys. Lett. 257B, 173 (1991).

[8] E.A. Kuraev, V.S. Fadin, Sov. J. Nucl. Phys. 41, 466 (1985).



