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We present the results of the numerical weak coupling calculations of
the distribution of the chromoelectric and chromomagnetic field around
the static quark-antiquark pair. Cowparison with the Monte Carlo data
is also performed in an attempt to filter off lowest order perturbative part
of the MC results.
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1. Introduction

For many years one of the basic questions in lattice research is the
problem of confinement. In close connection with it the chromoelectric
and chromomagnetic field distribution around static quarks is extensively
investigated. First, exploratory study of the problem of energy density dis-
tribution using Monte Carlo techniques was done by Fukugita and Niuya (1]
for SU(2) and then by Flower and Otto (2] for SU(3). More extensive stud-
ies were carried out by Sommer (3, 7]. Distributions around adjoined source
were also considered by Jorysz and Michael [6]. Large scale Monte Carlo
simulations were performed during 1987-1989 by the Cracow-LSU collab-
oration [4, 8], giving the shape of the flux tube for large quark separations
(up to 9 lattice units).

Here we use the weak coupling expansion method on a lattice to ap-
proach the problem. Extracting lowest order perturbative effects will enable
us to analyze more precisely MC results in an attempt to understand the
influence of nonperturbative phenomena [8]. This work is organized as fol-
lows: in Section 2 we obtain formulas which relate color field components
to lattice propagators in the weak coupling domain. Section 3 gives some
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numerical details and presents the method of computing the correlations
between Wilson loops and plaquettes. Section 4 contains the discussion of
the results.

2. Weak coupling description of the color fields

The connection between lattice observables and the components of the
chromoelectric and chromomagnetic field is established by the formula [1, 4]

_ B (WPu(z)) = (W)(Pus(z)
fur = o , M

at

where W denotes the Wilson loop and P,,(z) the plaquette oriented in
plane uv with the center at z.
In the classical continuum limit (a — 0)

fuw = —F < Fp, >. (2)

So that —2f;) represent squared magnetic components of the color fields and
2f;4 squared électric ones in the Minkowski space. As we see in order to find
the distribution of the field around the static ¢g pair we need to measure
the expectation value of the Wilson loop and the correlations between the
loop and plaquettes.

The average (W) is defined as follows

w=((3) L u)- 3 fun (> [ o o

lew lew

where n normalizes the trace and equals 2 for SU(2) , A[U] is the action
expressed as

AlUI=8 ) RePu(z), (4)

z,“>v

and link variables U; are given by

U, = el 9041 (5)

where the lattice constant a was absorbed into A4;. Defining ¢ = igo one
can expand the U;

Uy=1+gA+3a%47 +---. (6)
The formula for (W P,,(z)) reads
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(WP (2)) = <(-1,;) v o (3)=]] U,,> - (7)

n
lew l'eP

In both cases the key problem is to find the trace of the product of the link
variables around the Wilson loop using (6). One can expand the product of
the links around the loop in terms of appropriate field components

[JU=149Y A+3s® > Adm+3d® D [4,4x]+0(d°).

lew lew I mew I<meW
(8)

Both linear and commutator terms vanish after applying the trace operation
so that (7) can be rewritten in the general form

(WP, (2)) =
(1 + wag® + w3g® + wag? + ) (14 p29® + p3g® +pag* +-+)), (9)
where the coefficients w; and p; are functions of the fields building the

Wilson loop and the plaquette respectively. (WP) — (W)(P,,(z)) can be
expressed to the lowest order in terms of w and p as

(WP (2)) — (W)(Puu(2)) = g* ((wap2) — (wa)(p2)) . (10)
From (8) one finds that

wy = 2nTr > A,Am:—n Yo > Ajaz,, (11)

l mEW lmew a

where the sum is performed over oriented links which means that' A_; equals
—A;. Identical formula applies for p, with 37, Pu instead of 37 cw-
Deriving (11) we have assumed the representation' 4; = A{T® and stan-

dard normalization of the SU(N) generators TrT°T? = 1/26,;. Now let us
consider the term

— Y ¥ D (AranAzAL). (1)

l.meW ! m'ePy,(z)a,a!

(wzpz

After Wick’s expansion of (12) one can complete the subtraction in (10) to
obtain



1134 T. BARCZYK

(WP (z)) — (W)NPuy(z))
4 v
g a ga’ a ga' a 4a' a 4a
=23 DL D D (ATAYNARAL) + (AT AL (ATAD)
LmeWl' m'eP,,(z)a,a

= % Z Z EWEmm D(1, l') D(m,m'), (13)

LmEW I, m'€P,,(z)

where 8 = 2n/g3 , ny is the number of gluons and equals 3 for SU(2),
;¢ takes care of the sign (i.e. equals +1 if the links I, I' have the same
orientation in W and P,,(z) and —1 if the orientations are opposite).
D(L1') = Dyuyuy(ziyzy) is the lattice propagator between sites defin-
ing the links [ , I' . Appropriate formula for (W) reads

W)y=1-22%" ¢,,D(,m), (14)

but considering only the Born approximation for f,,, we can set (W) =1
in (1) obtaining

Suv = 52% Z Z €1 mmt D(1,1")D(m, m'), (15)

lmeWl' m'eP,,(z)

This formula will be directly used for numerical studies of the distribution
of the chromoelectromagnetic fields in the perturbative domain.

3. Implementation

Computations have been carried out on an IBM RISC station. They
were split into two main steps: (1) obtaining an array of lattice propagators
using Fast Fourier Transform and (2) performning calculations of the corre-
lations required by equation (15). Periodic houndary conditions were used
for both steps of computations. The gluonic propagator on a lattice can be
expressed as the Fourier Transform of the simple function

_ 1
D#V(p’ k) = 5(]), —k)6,“, ~ (16)
p-k
where p, is defined as exp(—ip,) — 1, so that
§ v e'i'm.p
D, (0,m) = -£- , (17)
Vv EP: 8-23% ,cosp,
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where V' = Nj-.... Ny is the discrete volume of the lattice, p, = 27k,/N,,
k, = 0,1,...,N, — 1 for the periodic boundary conditions, and the sum
over p means summation over all possible (p1,p2,p3,p4) .

Instead of working out propagators and correlations simultaneously, we
performed very efficient 4d FFT computations obtaining once all possible
propagators for a particular lattice. It was done by the program performing
FFT for any given set of N; ... N4. Due to the periodic boundary conditions
the output file can be quite small and easy for reusing even for large lattices.
For example, to obtain the complete set of the propagators for the medium
size lattice 16 we have consumed about 20 seconds of the IBM Risc station.
The size of the output file was 60 khytes. Appropriate numbers for the 324
lattice: 60 seconds and 1Mb. Having produced an array of propagators we
carried out the correlation calculations using another program producing
correlations inside the given volume around the center of the Wilson loop
along with cross-sections (applying interpolation if needed). It can be done
for any component and given range of sizes of Wilson loops.

4. Results

We have performed part of the computations on a 173 - 20 lattice to
preserve the possibility of direct comparison with the MC data produced by
the Cracow-LSU collaboration. Results from much bigger lattice, i.e. 324,
were also ohtained for more precise study. All computations were carried
out for § = 2.4. Lattice constant is set to unity except in the comparisons
with the Monte Carlo results. The Wilson loop lies in the plane 34 and
its size is denoted by R (space i.e. z direction say) and T (euclidean time,
t). The center of the loop is located at the origin. Thus, +R/2,+T/2
establish the corners of the loop. All results are presented in terms of four
squared components: longitudinal electric/magnetic Eﬁ = E2, Bﬁ = B?
(plaquettes in planes 34, 12 respectively) and transverse electric/magnetic
Eﬁ_ = EZ + E:, B?L = B? + Bg (combined from pairs 14, 24 and 138, 28
respectively).

As we expect from (15) the B} (connected with a plaquette in plane 12)
vanishes everywhere (note the presence of the §,, in (17) ). Furthermore,
both B, and By, vanish in the subspace t = 0 (imagine appropriate plaquette
lying perpendicularly to the Wilson loop in the same distance from its upper
and lower space sides and consider all possible combinations of the €€,
in (15) ). Exactly the same observation is true for both E; and E, which
in turn equals zero if z = 0.

These facts result only from the symmetry of the problem and are sup-
ported by the numerical computations. They are in agreement with the
usual interpretation of the Wilson loop as representing the world line of
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the static ¢g pair, giving, in the Born approximation, the fields of a simple
electric dipole.

Further results are presented on the following figures. Note: squares,
stars etc. represent exact, discrete program-produced values. All curves
were fitted using slightly corrected spline interpolation method and have
only qualitative meaning.  Main results concerning the distribution of the
fields around quarks are presented in Figs 1-3 for the 324 lattice and R =
8,7 = 11. They serve mainly as a check of consistency with classical,
continuous expectations.
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Fig. 1. Longitudinal profiles for Eﬁ and E%.

Fig. 1 shows typical longitudinal (i.e. along z direction ) profiles, for
t = 0, obtained for the electric longitudinal (stars) and transverse (squares)
components respectively. All these profiles are presented for loops with odd
T to avoid interpolation in the time direction. Although the produced val-
ues for the Eﬁ lie exactly on the z axis, the appropriate ones for E? do not

(effective z = 1/3). The classical expectation for EZ exactly on the z axis is
zero (only longitudinal field exists on a line connecting the charges for the
classical electric dipole). Compare results presented in Fig. 2 supporting
this expectation. Fig. 1 presents also the most apparent difference between
lowest order perturbative and Monte Carlo results: there is practically no
field in a large region between quarks i.e. no flux tube responsible for con-
finement. This issue will be discussed below in detail. - As was mentioned
above there are no magnetic fields at t = 0.

Fig. 2 shows the transverse dependence of the EZ on the z coordinate
for z = R/2 + 3. Stars represent R/2 + 3 and squares R/2 — 3. The zero
value at z = 0 was forced artificially to meet our classical expectation (it
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seems not to be very artificial looking at program points): The dashed line
lies lower as there is much stronger compensative influence of the quark
at z = —R/2. Both curves have clear maxima, like appropriate transverse
dependence for classical dipole do, and the maximum for the dashed line
(inside the dipole) lies at z smaller than that for the solid one (classical
maxima: Zmax = 1.83 for the profile at z = R/2 — 3 and zpmax = 2.12 for
z = R/2 + 3). It contrasts with the nonperturbative case, where generally
fields are stronger between the charges as a result of the flux tube formation
and there are no other maxima outside the interquark line.
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Fig. 2. Transverse dependence for EZ and two different z.

Transverse dependence for the Eﬁ is presented in Fig. 3. The solid,

short-dashed and dashed lines are the profiles for z = R/2-0.5, z = R/2 -
1.5 and z = R/2— 3.5 respectively. Again, in agreement with the continuous
case, the dependence is monotonic and for every two profiles 21, z; one can
find such z that these curves cross (although, for instance, the classical
crossing point for z = R/2 - 0.5 and z = R/2 — 1.5 is for = 1.27 and the
two lines in the figure meet at z x~ 2.5).

The dependence of both nonvanishing magnetic components on t and
on the transverse space coordinates for fixed ¢ is generally the same as the
one of transverse electric fields on z and z (y) for fixed z because of the
symmetry z < t, E < B (exact for square loops). The shape of both
energy and action distribution on the ¢g axis is, of course, the same as

given in Fig. 1 for Eﬁ due to expected vanishing of the E2 and B2.

Now we proceed to the dependence on T for some ¢g separations. We
expect that, for any fixed R, the components converge to their lowest state
values when T gets large. In real measurements based on the MC data,
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Fig. 3. Transverse dependence for E'fl and various z.

the crucial point is how fast the components stabilize i.e. for which T the
profiles actually describe the lowest state distribution. Also the smoothness
of the T dependence is important. We have examined this issue on our
data. Up to this point specification of the lattice constant value was not
necessary. Now we will set it to the physical value at 8 = 2.4 i.e. a = 0.1285
fm as used in [8] to enable direct comparison with the MC data.
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Fig. 4. Eﬁ at the midpoint between the quarks, R = 2, 3, 4,5.
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Fig. 4 presents the El"l’ value at the midpoint between ¢ and § and for

t = 0, as the function of T between 2 and 9 . Note the logarithmic scale
on the vertical axis. There are four sets of data points: squares, triangles,
diamonds and stars for R = 2,3, 4,5 respectively. The dependence on T is
quite analogous to the one obtained in [8]. The slope is clearly raising with
R or, in other words, the values stabilize earlier for smaller R (at T = 4
for R=2,T=T7Tfor R=3and T = 9for R =4). Only for R =5
the stabilization point seems to lie beyond the scope of measured T values
(compare similar effect in [8]). Generally, all flux tube profiles presented
above are the pure lowest state ones.

The direct comparison of the perturbative vs. Monte Carlo data is

shown in Fig. 5. The longitudinal profile for Eﬁ for the loop R = 6,T =

7 is presented. Squares represent program output points. Monte Carlo
data are denoted by stars. This is the direct evidence for nonperturbative
and/or higher order perturbative origin of the flux tube between quarks.
The effect of forming the tube is in fact much stronger than one can see in
this plot as all other components (which vanish in a large area between the
charges in the lowest order perturbative limit) have a significant influence
in the nonperturbative case. On the other hand, purely perturbative Eﬁ is

much stronger close to the charges, i.e. nonperturbative and/or higher order
perturbative effects lower this value. ‘Generally, one can say that turning
on these effects results in shifting the significant amount of the energy from
the vicinity of the charges to the area between them.

Fig. 5. Perturbative vs. Monte Carlo data: longitudinal profile for E.?
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5. Conclusions

Results presented in this paper confirm that the average values of quan-
tum color fields in the middle of the ¢g system as obtained by lattice MC
simulations have nonperturbative and/or higher order perturbative origin.
Also the distribution of particular components in the whole space shows
clear differences compared to perturbative case: magnetic components have
non-zero values in the subspace t = 0 and the transverse electric ones do
not vanish along the interquark line. There are also some similarities: E”

is the largest and B” the smallest independently of the approach. The de-

pendence of E’ﬁ on T shows similar asymptotic behavior. As one can see,
even very simple lowest order calculation can provide useful benchmarks
for full nonperturbative results. At the end I would like to stress that per-
forming this study of perturbative fields around static quarks would be very
difficult without the help of the FFT method for working out gluonic prop-
agators on the lattice. The algorithm was extended by the author to allow
computations on lattices of arbitrary size and asymmetry.

I would like to thank J. Wosiek for suggesting the subject and for nu-
merous discussions.
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