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The relativistic two-body wave equation proposed previously for a pair
of one spin-1/2 particle and one spin-0 or spin-1 particle of equal masses
is approximately specified to the case of slowly moving centre of mass of
the pair (affected by external forces). A simple wave equation is found in
the instance of a spin-0 constituent.

PACS numbers: 11.10. Qr

Several years ago a new relativistic two-body wave equation was found
[1] for a pair of one spin-1/; particle and one spin-0 or spin-1 particle which,
if isolated from each other, were described by the Dirac equation and the
Duffin-Kemmer—-Petiau equation, respectively. This can be written in the
form

.0 - 3. (5 i(7
{ﬁo [zb—t— — V(TD,TDKP, t) - Q- (po - eDA(rD3 t)) - ﬂmD

-8 - (ﬁDKP — epkp A(Fpxe, t)) - mnxp} ¥(7p, Tpke,t) = 0, (1)
where the Duffin-Kemmer—Petiau algebra for the DKP-constituent may be
represented as

A* = 3(v¥ + %), (2)

with (v¥) = (B4, B:id;) being two commuting sets of Dirac matrices [which
commute also with the set (y#) = (f, Ba) of Dirac matrices for the D-
-constituent]. Here, an external Abelian gauge field A#(z) and an external
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and internal vector-like interaction V(7p, 7pke,t) [including among others
epA%(7p, t) + epkp A®(Fpkp, t) | are considered.

In the case of a spin-0 DKP-constituent, the wave equation (1) can be
exactly reduced [1] to the form

.0 - Lo >, 2
{ Itz-a—t - V(rDerG)t) —a: (pD - eDA(rDst)) - ﬂmD]

. 2
- (ﬁxc - eKGA(Fl(Gat)) - mxzm} ¥(7p, Tka,t) = 0, (3)

where the DKP-constituent becomes a KG-constituent which, if isolated
from the D-constituent, is described by the Klein—-Gordon equation.

The wave equation (3) was applied to a model of up and down quarks,
each composed of a flavored spin-!/; constituent and a colored spin-0 con-
stituent (of equal masses) bound together by a new Abelian gauge field (“ul-
traelectromagnetic field”) [2, 3]. Such composite quarks, though expected
to be neutral with regard to a new Abelian charge (“ultraelectric charge”),
should display new magnetic-type moments (“ultramagnetic moments”)
coupled to the magnetic-type part of the Abelian field F,, = 0,4, - 9,4,
(“ultramagnetic field”). Because of the Abelian character of F, the corre-
sponding magnetic-type effects should also appear on the level of nucleons
[2] built up of three composite quarks. However, the magnitude of new
magnetic-type moments for nucleons was estimated [3] to be very tiny, on
the ground of lack of its influence on hfs in H2 molecules [4].

In our model of nucleon (3], three centres of mass of three composite
constituent quarks ¢ move comparatively slowly within the nucleon ¢qq.
In the present paper, in view of further applications, we give an improved
nonrelativistic approximation for the motion of the pair centre of mass in
the wave equation (3), taking this time Eq. (1) as the basic wave equation.
Having in mind the composite quarks, we will consider two specific cases:
(i) A#(z) is the ultraelectromagnetic field coupled to the ultraelectric charges
ep = e and epgp = —e (then ep +epkp = 0), or (11} A*(z) is the electromag-
netic field coupled to the electric charges ep = (1,0)e and epxp = —(3)e
[then ep + epxp = (%/3, — /3 )e].

Our starting point will be the Eq. (1) with equal masses :mp = mpgp =
m. Introducing the centre-of-mass and relative canonical variables,

p = E + %1_", TDKP = Rt-— %T’q (4)
and
ﬁD=%P+ﬁ) ﬁDKP:%P“ﬁa (5)

we can rewrite Eq. (1) in the case of (i) or (#) in the form
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{ﬂ zg——-V(R 1) — (ﬁ°&+ﬁ)-[ﬁ-e(r -;—E) "(R’,t)}
~(8'a - B): [~ eA(R,0)] - ('8 + Umpui D =0 (6)

or

{poig - v(Rr0) - 4006+ ) |P - (§)e21'(1%',t) |

respectively. Here, unless /I.(R' + 1,7, t) is already linear in R+ o7, we
use the linear approximation in 7 :
AR+ IFt)~ AR )£} (F- 5‘%) A(R,t), (8)

justified for close internal motion corresponding to tight bound states of our
pair of a D- and a DKP-constituent.
Note that Eq. (6) or (7) implies that

AR = L(8%G + ), p°%=p'-4, (9)
thus

;BOTD = ﬂoa s ﬂo;_"DKP = E, (10)

through Eq. (4). Hence, for nonrelativistic motion of the pair centre of mass
we can put approximately in Eq. (6)

1(8% + ) - [ﬁ e ( =) J(iz',t)] F 188+ )M
MR g0 1 [p',,e(,-:._a_) AR t)r+,6°M (11)
- 2Meﬁ‘ 3f—i ’ <ff
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where 2m — M,.g, the constant M.g being an effective mass of our pair.
Here, B = rotA [such a spin term as in Eq. (12) and not any other holds
in the case of a spin-0 DKP-constituent i.e., a KG-constituent, provided a
possible inhomogeneity of B is neglected]. The formula (11) or (12) follows
from the fact that [in view of Eq. (9)] its left-hand side is the relativistic
kinetic energy of the pair centre of mass (multiplied by 8° ), so it must be
approximately equal to the nonrelativistic expression for this kinetic energy
(multiplied by 8°). The right-hand side of Eq. (11) or (12) gives consistently

03 NR 1 _. L 0N ¢ =
or
g s [P (3) et - (1) (- 22) )] L (a9
Mg -3 6 0R
respectively.

In the case of a spin-0 DKP-constituent (i.e. a KG-constituent), the
wave equation (6) or (7) — with the nonrelativistic approximation (11) or
(12) applied — can be exacly reduced {1] to the following form analogical
to Eq. (3):

. ]

5= ed(R,1) z—meﬂ W(B,7,t) = 0 (15)
[ ]

or
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respectively. Here, meg = m — YoMeg.
Note further that we can identically write in Eq. (15)

2 2
{a- [ﬁ-efi'(ﬁ,t)} +ﬂmeff} = [ﬁ—ez(ﬁ,t)} +mie, (17)
or in Eq. (16)
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Then, after some calculations, we can transform Eq. (15) for instance,
into the following form (in the stationary case):

1 . o\ 122
({zen v~ g [P~ (= 57)4] |
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where E.g = E — M.g and a commutator appears. Dividing Eq. (19) by
2 1/2
the square root W = {Eeﬂ‘ -V - [P — e(7 - 3/6R)A] /2Meﬂ‘} , we

obtain

{W2—2[d‘- (ﬁ—e,&) +ﬂmcﬂ] +I}W¢=0. (20)

Here, the double commutator
I= Ha.(p"_efi'),w],w—l], (21)
involving p' = —i(0/07) vanishes approximately, if the consistent nonrela-

tivistic approximation

B q2y1/2 1/2
W:{Eeﬁ—V—2NIIﬁ{P—-e<F-aﬁR;)A] } ?(E,ﬁ—v) , (22)

is used [ V(R,7) includes a very strong pair internal interaction V() dom-
inating over the kinetic energy of the pair centre of mass].

In such a way, Eq. (15) or (16) transits approximately into the following
wave equation (in the stationary case) with slowly moving centre of mass
and relativistic internal motion:

—

{Eeff - V(R,7) - 21\/14“ [P - e(f"- i) ,«i'(ﬁ)]2

or

(24)
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respectlvely Here, A(R) = '/»(B x R) and (7- DA/OR)(R) = Yo(B x 7) if

B =const. For the wave function ¥(R,7), the scalar product (if existing) is
defined by the weighted integral

[ @R et () Bur - V(A W, (25)

since ¢( R, 7) ought to be normalized as a Klein-Gordon wave function due
to the KG-constituent.

In the case when both the ultraelectromagnetic interaction [Eq. (23)]
and electromagnetic interaction [Eq. (24)] are active for our pair of a spin-
1/, particle and a spin-0 particle, these interactions must be taken together
[then, in Eq. (23) e — e"!**® and A — A"tra and also a part of V(R,7)
must get the label “ultra”).

Of the equations (23) and (24), the first one (referrmg to the ultraelec-

tromagnetic interaction) is particularly simple. If B _conat it assumes the
form

—2[&* (ﬁ'—eﬁ X E) +ﬁmeﬂ]}\/ V(R AR, =0. (26)

In the case of V(R,7) = V*(R) + V(7), the only interaction in Eq. (26)
between the internal motion and the slow external motion is caused by the

—

external B =const coupled to Rxadand7#x P .

The significant absence of any coupling between & and B in Eq. (23)
is a consequence of ultracharge neutrality of our pair (ep + exg = 0) and
the nonrelativistic approximation used for the motion of the pair centre of
mass [Eq. (11)].

In order to introduce to Eq. (23) a coupling between the spin & and
the external B = rotA one must take into account the next (third) term
+1/s(7- 8/0R)2 A(R,t) in the expansion (8) of A(E +1/;7,t) in powers of .
Then, Eq. (17) goes over into

{a- [;3’— eA(R,t) - -g-e(F- %)Zi(ﬁ,t)] +ﬁmefr}2
= { ~ eA(R,t) - .f:(f’- ;ﬁ)zi(ﬁ,t)r
t)

1
8
+m§ﬂ._%e<;.£_>[a.§(ﬁ, ] (27)

<
=i
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leading approximately (after analogical calculations as before) to the mod-
ified equation (23):

_ %me(% %) [a : E(R)} }\/Eeﬁ —V(R,P(B,7) =0.
(28)

Note that the &-term here (when collaborating with the B-term) contains

also a spin interaction with B as can be seen via its Pauli nonrelativistic
approximation unveiling in Eq. (28) the term

11 (~._3_> s . B(R
thgmoe(7o5) |7 B (29)

(this coupling gets in the hamiltonian the opposite sign). Thus, the coupling

between & and B may manifest itself in Eq. (28) only for an inhomogeneous
field B and vanishes when the pair extension (r) — 0.

Concluding, the hypothetical ultramagnetic moments of our compos-
ite quarks and, consequently, those of nucleons (built up of the composite
quarks) may be ohserved only in inhomogeneous ultramagnetic fields and
disappear in the point-like limit of (r) — 0 [at any rate, on the ground of
Eq. (28) involving our nonrelativistic approximation (11) for the motion of
the quark centre of mass).

Finally, we would like to emphasize that our model of composite quarks
requires necessarily relativistic internal dynamics, since in the case of a
nonrelativistic one the quark magnetic coupling between & and Binsuch a
model is —(ep/2m)& - B with ep = (1,0)e and exg = -/ e.
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