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First, we recollect the model of algebraically composite Dirac-type
particles, leading to three families of leptons and quarks as well as to
two hypothetical families of Yukawa scalars. Then, we briefly discuss
new hadrdns involving colored quark-like Yukawa scalars as their con-
stituents. When denoting such scalars by y, these (colorless) hadrons

are: (yy), (g9) (both with B = 0, L = 0) and (yyy), (qvv), (9qy) (all
three with B = 1, L = 0). The lowest-in-mass versions of them have

the JP(I)-signatures: 0%(0,1), 47(0,1) and 0 (3%4), Y (}4), 0% (')
[or 1*(*/2,34)], respectively. Among them, (¢7) may be the only states
stable in strong interactions (for adequate nasses).

PACS numbers: 12.50. Ch, 12.90. +b, 14.80. Gt

1. Introduction

Recently, we developed a model of three families of leptons and quarks
(1] and two families of Yukawa hosons [2], all heing solutions to Dirac-
type equations based on new composite representations of Dirac algebra
(subject to a generalized exclusion principle). This gave an explanation of
the puzzling phenomenon of three fundamental-fermion families and, at the
same time, a prediction of two Yukawa-boson families. Our argument went
as follows.

First of all, we can ohserve that the sequence N = 1,2,3,... of Clifford
algebras

{7#’7;}:251'1'9#” (1,7 =1,2,...,N), (1)
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defines the sequence N = 1,2,3,... of composite representations

1"1‘:_____271, (2)

for the Dirac algebra

{r*, rv} =2¢*" (3)
and, consequently, the sequence N =1,2,3,... of Dirac-type equations
[I-(p—gAd)-M]yp=0. (4)

Here, A (z) symbolize the standard-model gauge fields including SU(3) ®
SUL(2 )®U( ) coupling matrices, X’s, 7’s, Y and I'® = i’ I3 and so
implying the familiar 16 standard-model states for any ¥(z) in the sequence
N =1,2,3,... of solutions to Egs (4).

The matrix I'f' = I'* together with N —1 other Jacobhi-type independent
combinations of 7{, viz.

1 1
Pz“=ﬁ(7{‘—‘r-ﬁ‘) : Fé‘=ﬁ(7{‘+‘r$‘—2*ré‘),

., Tk =

\/T(_;v-__——T)[‘yf+...+71‘§_]—(N—-l)71‘Q] , (5)

defines the Clifford algebras
{r#,ry} = 269" (4,i=12,...,N) (6)

isomorphic to those in Eq. (1) for any N =1,2,3,.... Thus, the composite
representations (2) may be realized in the convenient reduced forms

r'‘=rtf=+"01®---901, (7
N e’
(IN—1)times
with v# and 1 being the usual 4 x 4 Dirac matnces (in the case of N = 2 for

instance, one can write I'f’ = y#®1, Iy =« S@iy5y# with 45 = iy0y1y243;
when multlphed ®1 they give I'}! and I'§* for the case N = 3 and then

I'f =4°®79° ®y*). In the representation (7), the Dirac-type equation (4)
for any N reads

[7 : (P -9 A) - M]alﬁl Ipﬁlag...aN =0, (8)

where M, g = Méy,,- For N = 1 it is, of course, the usual Dirac
equation, while for N = 2 it is known as the Dirac form (3] of the Kahler
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equation [4]. For N = 3,4,5,... we get new Dirac-type equations. Here, the
wave function or the field ¢¥(z) = (1/)0,10,2__.&1\,(2)) carries N Dirac bispinor
indices a; = 1,2,3,4 (¢ = 1,2,...,N) of which only «a; is affected by
the standard-model gauge fields (in particular, the electromagnetic field),
whereas the rest of them, aa,..., ap, are free. So, only a; may be “visible”
in these fields, while a3,...,apn are “hidden”.

The Dirac-type equation (4) lead to the conserved, fully-relativistic
Dirac-type currents

it =Nyt ... Iy, (9)

but only for N odd (here, the phase factors ny make the products gy Iy ...T§
Hermitian, in particular, 73 = 1, 73 = ¢, 55 = i%). If A, do not include
I‘15 = I'®, what may be the case only for N even (corresponding to inte-
ger total spins), there certainly exist the conserved, fully relativistic Klein-
—Gordon-type currents

ite=awytryry...ry (i a* —gA") ") (10)

with 9#= 1/, (8“— 8“) (here, ny make nnIPTY ... I’f\', Hermitian, in par-

ticular, 92 = 4, 74 = i?). It is so, as then Eqs (4) imply the second-order
equations of the form

{94y - M? —ig [P}, I} Fu} v =0, (11)

where F,, = 9,4, -0, A, +ig[A,, A
In the case of N odd, the Dirac-type density jOD = gNytIg .. .I‘g,d;
should be always positive-definite. This imposes on ¥(z) the eonstraint

anTy ... Ty =1, (12)

which is consistent with the Dirac-type equation (4) since for N odd both
j’L‘, and Y*I'PI'f'y are conserved currents [the latter is a fully relativistic
vector solely under the constraint (12)]. The constraint (12) in turn, not
being in general fully relativistic, becomes such (effectively) if 4 is a su-
perposition of a scalar and pseudoscalar only, with respect to the hidden
bispinor indices az,...,apn (as carrying also the visible bispinor index aj,
they are bispinors).

In the case of N even, if the conserved current j} . exists [in the absence
of fermion sources on the right-hand side of Eq. (11)], the Klein-Gordon-
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-type density j% o = vyt IPTY ... T}, (z’ a° —gAO) 1 should be positive-

-definite for positive-energy modes. This imposes on () the constraint
NI TE - TRy =9, (13)

what is consistent with the second-order equation (11) if for NV even both

—n
jI“(G and ¢t (i a —gA"‘) Y are conserved currents [the latter being a

fully relativistic vector solely under the constraint (13)]. The constraint
(13), on the other hand, becomes fully relativistic (effectively) if ¥ is a
superposition of a scalar and a pseudoscalar only, with respect to the vistble
and hidden bispinor indices aj,as,...,ay. Then, pt [I’lo,l’l"] ¥ = 0in

— b
Eq. (11), implying indeed the conservation of ¢+ (i 0 —gA") Y.

Note that in the case of N = 3 and N = 2, for instance, one can write
in Eqs (12) and (13) 93313 = 1 ®1° ® 7% and 211 = 1°9° @ v°49,
respectively [cf. the comment made just after Eq. (7)], where in the chiral
representation 7° = diag(17, -1%) and 7° = antidiag(1”,1%) with Pauli
unit matrix 17,

Treating the particle’s hidden bispinor indices ag,...,an as undistin-
guishable degrees of freedom obeying the Fermi statistics along with the
Pauli exclusion principle (then %4, q,,...,ay are fully antisymmetric with
respect to az,...,apn), we can conclude that the sequence N = 1,2,3,...
of Dirac-type equations (4) must terminate at N = 5.

2. Three fermion families versus two hypothetical boson families

Thus, in the case of N odd, there are only three Dirac-type equations
(4) corresponding to N = 1,3,5. As was shown in Ref. [1], the constraint
(12), when required to be fully relativistic (effectively), implies that for
each of these three N = 1,3,5 there exists one and only one Dirac-type
particle which in this case carries spin !/, [for any of 16 standard-model
signatures: (14 3colors)x2(up/down)x2(L/R) = 16states]. These particles
are described by three visible bispinors :

&) = Yoy (14)
R _ ,
¢t(11) = nll_ (C 1,75)02013 1/’0'10’2013 = IP"‘II2 = ¢°134 ? (15)

5
‘(,,1) = dtasazasas Yaragazagas = Yay1234, (16)

where C is the usual charge-conjugation matrix, while the bispinor in-
dices are defined in the chiral representation with v° = diag(1?,-17) =
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diag(1,1, -1, —1). Then, one may write C~! = diag(ia;, —103 £) in terms
of Pauli matrix af. Here, in the case of N = 3 the hidden pseudoscalar
(C™ V) azasPajazas = 0 due to the constraint (12) with 3 = 7 (the roles of
C~14% and C~7 are interchanged if 73 = —i), while in the case of N = 5 it
is obvious that only the hidden scalar (16) exists: it fixes the phase factor
75 = i2 in the constraint (12) which then is satisfied identically.

These three states were interpreted in Ref. [1] as three replicas of a
fundamental fermion (for any of 16 standard-model signatures), responsible
for the phenomenon of three families of leptons and quarks. Note that
the states (14), (15) (16) all correspond to the posmve eigenvalue of total
hidden chirality Iy ... I'};.

The Reader may compare the last Ref. [1] for a semiempirical, numerical
discussion of lepton and quark masses. There, the value m, = 1776.80 MeV
based on the input of experimental m, and m, is predicted.

In the case of IV even, there is a room only for two Dirac-type equations
(4) corresponding to N = 2,4. As was discussed in Ref. [2], they give two
visible-hidden double bispinors :

¢(021)C!2 - ¢a1a2 b (17)
(4)
Yajaz = ssﬁvﬁ3ﬁ4av¢azﬁzﬁsﬁ4 s (18)

where our Pauli exclusion principle does not apply to the pairs of indices
aj, az as they are of different sorts: one visible and one hidden. Now, if the
conserved current jp. . exists, the constraint (13), when required to be fully
relativistic (effectively), causes that for each of these two N = 2,4 there is
one and only one Dirac-type particle which in this case has spin 0 [for any of
8 standard-model signatures : (1 + 3colors) x 2(up/down) = 8states]. These
particles are described by two visible-hidden scalars:

$P) = HC19%) aya¥8ih, = (Y12 — ¥21).= 1 (Y34 — Ya3) (19)
sW = %(C“‘f)alangf;?az = 3 (Y1301 — Y2432) = 3 (Y3123 — Yaz14) -

(20)
Here, the visible-hidden pseudoscalars (c— l)alazzpflegz = 0 due to the
constraint (13) with n; = ¢ and N4 = i% (in the case of N = 2 and/or N = 4
the roles of C 9% and C~? are interchanged if 7, = ~i and/or 7 = —i2,

respectively).

These two states may be interpreted as two replicas of a fundamen-
tal Yukawa scalar (for any of 8 standard-model signatures), leading to a
new phenomenon of two families of Yukawa scalars (including possibly a
weak-isospin doublet of Higgs scalars). Note that the states (19) and (20)
both correspond to the positive eigenvalue of total visible-hidden chirality
rSrs...rs .
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3. Hadrons involving colored scalars as their constituents

Each of two hypothetical families N = 2,4 of Yukawa scalar bosons
consists of two weak-isospin doublets: one colorless lepton-like (with weak
hypercharge Y = —1) and one colored quark-like (with weak hypercharge
Y = 1/3). Let us denote these doublets by z and y, respectively [or, more
precisely, by z(2/4) and y(2:9), where z(2) might be the weak-G-conjugate
Higgs doublet hG = (A%, —h~)]. Their electric charge Q is given by the
formula 2Q = 2I§W) +Y, where ITW) is the weak isospin. The conjecture
that masses of both # and y are high enough seems natural. Evidently,
beside colored quarks ¢, the colored quark-like scalars y are coupled to the
usual gluons and obey the extended QCD based on the standard color SU(3)
symmetry (including now new scalar sector of y’s).

In contrast to quarks ¢ appearing in 6 flavors: 2I5 = -1,1,5t =
-1,Ch =1, Bo = —1 and To = 1 (?) in obvious notation, the quark-
like scalars y, as belonging to two families, can develop only 4 flavors. It
will be very attractive for us to assuine here that these 4 flavors are iden-
tical with those observed in the case of quarks ¢ belonging to two first
families N = 1,3 i.e., with 23 = -1,1,5t = -1 and Ch = 1. (Then,
the third family N = 5 of leptons and quarks, as the only one having no
counterpart among Yukawa scalars, is responsible for the lack of formal
symmetry between fundamental fermions and hypothetical Yukawa scalar
bosons.) Thus, under our assumption, the strong isospin I, the strangeness
St and the charm Ch are well-defined and (hopefully) conserved in strong
interactions, both for quarks ¢ and quark-like scalars y. [The bottomness
Bo and the topness To are taken equal to zero for y, and so they are also
well-defined and (hopefully) conserved in strong interactions for ¢ and y.]
Therefore, the familiar formula

2Q =23+ S5t+ Ch+ Bo+To+ B, (21)

holds in general for the electric charge @Q of strongly interacting particles.
This defines the baryon number B . Thus, the quark-like scalars y carry
baryon number B = /3. Note that they have lepton number L = 0. Also in
the case of lepton-like scalars 2 there is no reason for ascribing them nonzero
value of the lepton number L conserved in electroweak interactions.

In analogy to quarks ¢ forming colorless bound states (¢g) as well as
(ggq), the colored quark-like scalars y would imply the following new col-
orless bound states: (yy) and (g¥) with baryon numbers B = 0, as well as
(yyy), (qyy) and (gqy) with baryon number B = 1. All these states would
have lepton number L = 0. Because of the Bose statistics of y’s and Fermi
statistics of ¢’s the lowest-in-mass versions of the above hadrons (when built
of y and ¢ with no higher flavors: St = Ch = Bo = To = 0) should get the
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following J P (I)-signatures : 0%(0,1) and 1/2_*_(0, 1) (with B =0,L = 0), as
well as 0~ (%), Yo () and 0% () or 1+(Y,3%) (with B = 1, L = 0),
respectively. We can see that here integer and half-integer strong isospin
I (not ordinary spin J!) would be related to baryon number B equal to
0 and 1, respectively. Note that the realistic, lowest-in-mass versions of
two hadrons (y¥) and (¢y) should contain, in general, also some contribu-
tions from y¥ and ¢j pairs with neutralized higher flavors, first of all the
strangeness (in fact, in a very similar way the familiar 1, 7' or w, ¢ [5] con-
tain contributions from s5 due to the approximate flavor SU(3) symmetry).
In the case of the so called “ideal mixing” [5] such contributions would be
negligible (as for w, when ¢ = s3).

Among the five new hadrons, only the 0% (0, 1)-hadron (yg) (with B =
0,L=0)and ]/2+(1/2)—hadron. (qyy) (with B = 1, L = 0) have familiar sig-
natures, identical to those for fy or ag mesons [5] and nucleons, respectively.
The signatures of three others are unfamiliar as they cannot be realized for
purely quark states. Especially interesting are here the ]/2+(0, 1)-hadron
(¢9) (with B = 0, L = 0) and 0% (}/)-hadron (qqy) (with B = 1, L = 0).
The 0~ (3/2)-hadron (yyy) (with B = 1, L = 0), because of the Bose statis-
tics of y’s, requires an antisymmetric spatial part of wave function con-
structed from three orbital angular momenta 1 (of course, the color part of
its wave function is antisymmetric). So, it is orbital-excited per se.

The 01(0,1)~hadron (yy) (with B = 0,L = 0) can decay strongly
through the two-gluon annihilation process into #x or x5 (for example),
like fo or ag mesons [5].

For convenience, let us denote by £ = (£1,£%,£7) or ( the 1/;>+(1)-

or 1/2+(0)-hadron (¢9) (with B = 0, L = 0), respectively. For adequate
masses, £ and ( hadrons may be stable in strong interactions, while the
hadrons (gqy), (¢yy) and (yyy) may decay strongly into N plus Eor(, N
plus a pair of £ or ( and N plus a triple of £ or {, respectively (it may
happen, however, that for other masses one or more of these three hadrons
is also stable in strong interactions). If there were “non-gluon-mediated”
strong virtual transitions ¢q¢' « yy' and ¢§' < ¢'y (allowed by all known
selection rules including the baryon-number conservation), the dominating
strong decays for these hadrons would be

(gqy) = N€or N{, (qyy) —» Nwor Ny, (yyy) - NE, (22)

for adequate masses. Such additional strong virtual transitions, if appear-
ing, might be referred to as “gluino-mediated”.

Evidently, when mi > mg+my or mg > m¢ +m, the strong decays ( —
tExF, ¢ = %70 or £F — (nE, €9 — (70 should always appear. When,
however,
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m£+m,, > mg >-m€-|»me+m‘,e or m,;+m,r > me > m<+me+m,,e,
the weak and electromagnetic processes { — £Te " v, ( — £ et v, ( — €%
or £t = (Cetw,, € — (e v, €° — (v should be dominating.

Thus, in the “minimal case”, only the spin-!/,hadron ¢ (with B = 0,
L =0,Q =0, =0 and higher flavors = 0) may be stable (both in strong
and electroweak interactions) among all new hadrons predicted in this paper.
Then, a number of fascinating questions arises, first of all, whether { can
form bound states with nucleons (through, say, two-pion-exchange forces
and one-n-exchange forces caused hy the effective coupling g“,,('—ﬁf -A+h.c.
and g((,,(:75(17, respectively) and further, whether during the evolution of
the universe there were good chances for forming such or similar bound
systems involving (. One may also ask the related question, whether (, if
abundant enough in the universe as a free phase (in spite of its annihilation
in pairs), can be a candidate for the dark matter. We hope to return to these
questions elsewhere. It is worth while to emphasize here that, in contrast
to observed stable fermions, ve,e™,v,, v and p, our ( is an unusual one in
carrying B = 0, L = 0. So, if there were gluino-mediated virtual transitions,
it might pass into a Majorana fermion that could strongly annihilate in
particle-particle pairs and also be so produced. (Beside (, also £ fermion has
B =0, L = 0, and the same is true for hypothetical supersyminetric partners
of observed gauge bosons.) Evidently, ( and £ may be always produced
in particle-antiparticle pairs or jointly with the hadrons (gqy) in strong
interactions of the usual hadrons. The corresponding strong annihilation
processes are allowed at low relative kinetic energies if masses are adequate.
Note that, in another option of the “minimal case”, only the spin-!/> hadron
£° may be stable among all new hadrons.

There should also exist higher-in-mass versions of our five types of
hadrons with active or neutralized higher flavors St,Ch, Bo and To . Radial
and orbital excited states in all flavor versions should appear as well. The
Reader may easily realize a full classification of states for five new types
of hadrons involving (beside quarks from three families) color quark-like
scalars from two hypothetical families of Yukawa scalar bosons.

Finally, a remark concerning notation is due. In this paper which is the
first presentation of the new hypothetical hadrons we avoided to give them
assignments, except for £ = (¢f) with JP(I) = 1/2+(1) and ¢ = (¢y) with
1/2-*_(0) (where ¢ and y carried no higher flavors). However, the notation
€y = (y§) with JP(I) = 0%(1) and ¢y = (y§) with 07(0) for the B = 0
states, as well as !N, = (ggy) with JP(I) = 0F(*h), 3N, = (qqy) with
1), Ay = (ggy) with 1+(3h), Nyy = (qyy) with 17 () and Ayyy =
(yyy) with 0~ (3/2) for the B = 1 states might be practical (here also, ¢ and
y carry no higher flavors). The colored quark-like Yukawa scalars y could
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be called “yukawions”. Then, in general, one could speak of yukawions in 4
flavors: down, up, strange and charmed yukawions which, if specified, might
be denoted by y4, yu, ¥s and y., respectively. In this way, the lowest-in-mass
versions of new strange hadrons (for instance) might be denoted as follows:

K, =) with JP(N)=1"(1),
K5, =(a5) with 3" (3),

Ky, = (y9s) with 0% (1),

all three being B = 0 (colorless) states, and

.IA ) 0+ 0
3A: } = (qys) with JP(I) = {.1+§0; ,
1z : 0t(1
322} = (qys) with {1+8 :
. +
Ayy =(yys)  with 37(0),
Ay, = (qqys)  with 07%(0),
Zy, = (qqys)  with 1%(1),
« ) +
Ayy, = (qyy,)  with 17(0),
Syy,  =(quys)  with 17(1),
Ayyy, =(yyys)  with 0%(0),
]53, = (yss) with 1t _(é()],)
— 0 1
= = s with { 2/
3:‘% (qys ) -*:-l_*_ (%)
Eyy, = (yyss)  with 3 (3),
= i)
“~YsVYs — .
= = {qy with ,
4‘:3"3"} ( Sys) %_,{, (%)
0y, = (ysss) with 1+(3) s
20 } 1 (0)
Ys¥s — . 2
= \YsYss with ,
4 YsYs ( * ) %+(0)
Qy:ysy, = (ysysys) with 0—(0) s

all describing B = 1 (colorless) states. Here, 242, , 240, .. and Q,,y,,
require two, two and three orbital angular momenta 1, respectively, due to
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the Bose statistics of y,’s [the last of these per se orbital-excited states is
somewhat analogous to Ay,, = (yyy) with JP(I)=0"- (3/2) 1. Similarly,

by, = (y,3) with JP(I) = 1/2-*-(0) is a B = 0 (colorless) state with neutral-
ized strangeness. In the above states ¢ and y carry no higher flavors, so they
stand for u or d and y,, or y,, respectively. Note that £ might be symbolized
al:o by 73 = (¢§) with JP(I) = 07(1), and then £, — by my5 = (y¥) with
0+ (1).

Eventually, we should remark that, while the existence of three fun-
damental-fermion families is an unavoidable consequence of the Dirac-type
equations (4) (subject to the extended exclusion principle), the appearance
of two Yukawa-boson families is conditioned by there being the conserved
Klein—Gordon-type current (10) [in the ahsence of fermion sources on the
right-hand side of the second-order equation (11})]. Certainly, this is the case
for N even, if then I'} = I'® is absent from the standard-model coupling in
the Dirac-type equations (4) (another case, where such a current exists, is
considered in the second Ref. [2]).
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