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The nonrelativistic (NR) shell model of nuclei based on one-particle
states results in a “surprise” pointed out by Peierls, which consists in
the accelerated motion of “free” nucleus impossible to eliminate by the
standard perturbation theory. The NR mechanics solves the puzzle by in-
dicating a geometrically privileged position of the absolute configuration
space generated by the three-dimensional space R3 spanned on the relative
coordinate “y”. This converts the “n-body” problem into the “(n — 1)-
relational-object” problem with absolute (frame-independent) structures.
The relativistic kinematics shows that the Galilean-absolute character-

"o

e N——
istics of the system obtained in the Rs X ... x R3 configuration space
remain absolute in the true Minkowskian spacetime L4 of measurement.
However, this necessitates abandoning the classical L4-eventism as the
first metrical continuum of physics.

PACS numbers: 03.65. -w

1. The NR n-body problem and eventism

Let X denote the NR centre-of-mass coordinate of the n-body system
and P its total momentum canonically conjugate to X in the space E3 of
an arbitrary inertial reference frame S. On the other hand, let y,,...,y,,_;
denote some independent, relative coordinates of that system which would

n—1
e N
parametrize its internal states in the configuration space R3 x ... X R3 and
d1s.--9y,_; are the canonically conjugate momenta to y;,...,y,,_1. The
singularity of symmetry G of the Galilean spacetime G4 of events X reveals
itself in the existence of the absolute “relational” space R3(y) which makes
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canonical coordinates y,, g, (s = 1,...,n — 1) independent of the reference
frame S, i.e. form-invariant under the Galilean transformations;

Y, =Y,, dy=4q,. (1.1)

The total Hamiltonian H® becomes separated into the external-relative
Hamiltonian P 2/2m and the internal-absolute Hamiltonian A<,

P2
HG:'%—*‘hG(yla"-aqn—])' (12)

Here m = E?/x m; denotes the total NR mass of the system, where m;
is the mass of its j-th point-constituent A;. The point is that the above
separation of HCG provides us with hG parametrized by G-form-invariant
dynamical variables (1.1) hence its internal-energy eigenvalues w® are a
priori G-absolute. The same concerns classical mechanics where w® = G,
Note that rotation symmetry contained in the G-symmetry implies that
hC depends on the rotation-scalars only. Thus G is the internal symmetry
group of the classical as well as quantum equations of motion following from
HEG, which also reflects the full isolation of our n-body system.

Let us note that the Galilean principle of relativity does not require G
to be the internal symmetry group of equations of motion; it is enough that
they are G-covariant. This — in Wigner’s terminology [1] — means the
“passive” and not “active” role of the symmetry G which guarantees that
Gy is the background of these equations. The “passive” role of symmetry G
takes place in the presence of any external field whose analytic representa-
tions in various reference frames S are different. In such a case the isolation
of the system is broken.

Now let us focus our attention on a fundamental difference between the
classical and the quantum description of the n-body system which questions
the classical eventism of quantum bound states. By “eventism” we mean
the hypothesis of the classical and also of the present quantum theory saying
that the continuum of directly observable events X (spacetime) is the first
(unanalyzable) metrical background of physics. .

n
The singularity of G4 makes the configuration space Ez X ... X E3 —
where E3(X;) is its subspace of the constituent A; in some reference frame
n—1
e e
S —and E3 xR3 X ...x R3 of HC from (1.2) coincide. This is so, because
the coordinates X; and X, y, are connected by a point transformation,
which means that they represent two different parametrizations of the same
configuration space. Consequently, classical equations of motion result in



Internal Geometry of n-Body Systems and One-Particle States 1181

the trajectory which takes the form:

n—1
e N—————
X =X(t), y,=uy,lt) in Es xRz x...x Rz (1.3a)
or
n
’ e s,
X; =Xj(t) in Es x...xE3. (1.3b)

The eventism reflected in the very structure of trajectory (1.3) (which
represents the classical state of the system) implies that (1.3) determines the
trajectory of A; at a moment ¢; and the trajectory of another constituent
A at a moment ¢, thus from (1.3) we obtain

X; = X;(t5). (1.4)

In quantum mechanics, however, the situation is quite different: Let us
assume that the system as a whole is in the eigenstate of P to the eigenvalue
P, while its internal state is a bound eigenstate of h¢ to the eigenvalue
w® (< 0) denoting the internal-absolute energy of the system. Then, in

n—1

E; x R3 X ... x R3 the quantum state of the whole system takes the form:
v = Aei/h(Px—Et)¢wG(yl, ceey yn-l)

with
P 2

G G

EY = o T (1.5)
Of course, ¥ can be parametrized in the X; variables when ¥ takes the form
¥(X1,...,Xn;t) but cannot be extended onto times t; different for various
constituents A;. This shows the well known indivisibility of quantum state
and, at the same time, the collapse of classical eventism. In fact, if n-
constituents are embedded in the pre-existing spacetime continuum, the
question about the space localization (not necessarily sharp) of constituent
A; at moment t; and constituent A at moment ¢, can be legitimately asked.
This suggests that the absolute, relational space R3(y) — though admitted
by the singularity of symmetry G — precedes the classical eventism.

The four-symmetry of the Ls-eventism excludes any point-transforma-
tion that could determine some L-absolute, three-dimensional space Rj.
Therefore, the extension of R3 () onto physics of the finite ¢ must explicitly
abandon the classical eventism [2, 3] — c¢f. Chapter 4. However, we show
[2] that the internal spacetime R4 = R3(y) X T(7) of directly unobservable
“relations” y and the internal time continuum T(7) make L4 their limiting
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case. This is conditioned by situations that accompany any direct measure-
ment with one term (particle) of the relation y becoming infinitely heavy
and (as such) ceasing to participate in equations of motion, which changes
the status of the spacetime of measurement from the eventistic into the
relational one.

The fact that symmetry G of the classical G4-eventism makes the R4-
relationism accessible would explain the tremendous success of NR quantum
mechanics. All the same, the transport phenomena in the NR low energy
microphysics strongly suggest that the classical spacetime of events X is not
their proper background {4, 5]. The same follows from the EPR quantum
correlations [6]. They break Bell’s inequalities [7] in accordance with non-
locality of quantum mechanic and are hardly reconcilable with the locality
of the Ly-eventism [8].

2. The “surprise” of one-particle states

The shell model assumes that n noninteracting, with one another, nu-
cleons interact quasi-elastically with an immobile (external) centre, which
results in the nucleon states ¢ built from one-particle states. The external
centre causes accelerated motion of the centre-of-mass X of “free” nucleus
which, according to the Peierls “surprise”, cannot be eliminated by stan-
dard perturbation methods [9]. Note that since nuclei are composed of n
equal-mass nucleons, the shell model does not seem to be realistic at all.
That was the reason why we had no proper model of nuclei structure for
a long time [10). Therefore, the success of the shell model offers another
surprise explained by Kramer and Moshinsky (KM) [11]. Their model of
the nucleus also indicates an essential role of the relational geometry Ry.
As we know, the singularity of symmetry G makes us to avoid to explicitly
introduce the Ry4-hypothesis resorting to a suitable change of parametriza-
tion of the system — of its configuration space. Then, let us recall the main
points of the KM paper with particular emphasis on its geometrical aspect.

Instead of the external potential of the shell model, KM introduce an
internal potential of quasi-elastic pair forces,

m w2 L 2
V= :n 3 (x5 - X)), (2.1)

Jrk/1

where my is the nucleon mass and thus, m = nmy denotes the NR mass of
the nucleus. Then the total Hamiltonian takes the form:
HS =) L 4V (Xy,...,Xy) (2.2)

j/l 2mo
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n

e e
in E3 x ... x E3 parametrization, where the internal dynamics (2.1) guaran-
tees free motion of the centre-of-mass X = (1/n) }:?/1 X ; of the nucleus. A
major advantage of the KM model in that it deals with interactions between
all nucleons without introducing an artificial “centre” which was justified in
the atomic but not in the nuclear physics.

The singularity of symmetry G and a particular symmetry of quasi-
elastic interaction (2.1) make the eigenproblem of H® solvable without re-
sorting to perturbation methods. This is due to the change of parametriza-
tion of H®, which is also of first importance in constructing the states
of composite systems. Such was the main goal of the KM paper [11]
and became crucial for determining the structure of any composite sys-
tem, in particular, of quark model [12]. The Jacobi transformation used by

n n-—1
e e~ et e,
KM which realizes the transition from E3 X ... X Ez3 to E3 X R3 X ... X R3
parametrization takes the form:

s 1/2
y3=[3(3+1)]_1/zzxt—(5:1> Xs-f-ly (1S3$’ﬂ"’1),
t/1

n

X= (n"l/z) Yox;= (nl/z) X, (2.3)
i

where the letters y and z distinguish between the relational (in R3) and the

relative (in E3) coordinates.
One easily finds that (2.3) results in the identities:

n n—1
ZX,? =X+ ny,

in s/1

- 2 2 2 w2 <

Y XP=nX"=n’X’= ) X;Xi, (2.4)
in grk/1

which imply that in the new variables H® from (2.2) takes the form (1.2);

=2 n-1 =2
P 2 mow? P
G q, 0 2 — G
= —— 3 = -4 h. .
H 2my + % <2m0 + 2 y,) 2my + (2.5)
S

Here free nucleus as a single particle is described by the canonical variables
X, P. In the Appendix the whole class of transformations with n arbitrary
parameters is presented, which realizes the same symmetries as (2.3).
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The Hamiltonian H€ from (2.5) completes our first thesis, as instead
of the “n-body” Hamiltonian (2.2), it accounts for one free body (nu-
cleus) embedded in E3 and the “(n — 1)-relational-oscillators” embedded in

n—1

[ s,
R3 X ... X R3. In our opinion this explains the success of the shell model,
provided that the number of “oscillators” is reduced from n to (n — 1).
However, in order to regain the symmetry of n-oscillators, KM add to H®
from (2.5) the external potential

_ 2 _ 2
V= m‘;“’ x? (: m—;"— Xz) (2.6)

thus getting the shell-model-like Hamiltonian H® of n (mathematically)
identical spherical oscillators,

n—1
G _ 4G |, v P mowz——z ‘
H =H +V(X)_(—2m0+ 5 X)+§(

q? + mow? 5

2m0 2 Ys )
(2.7)

As the external potential (2.6) breaks the internal symmetry G of HC, the

FG ‘obviously results in the accelerated motion of the centre-of-mass of the
nucleus. -G

Consequently, if one starts with A as an “unperturbed” Hamiltonian
resulting in the n independent spherical oscillators which result in the one-

particle states @ of the nucleus, the “perturbation” of H~ which restores
free nucleus amounts to:

V= '—17()_() . (2.8)

The Peierls “surprise” [9] consists just in the fact that the corresponding
standard perturbation series are always divergent and so, we can never
restore free motion of the nucleus.

On the other hand, if we start with HY from (2.5) then, in order to
modify the interaction (2.1) into a more realistic one, we can switch on a

suitable perturbing potential of internal forces in the configuration space
n—1
[P N —
Rs x...xRis,
v =vy" (yl,...,yn_l) . (2.9)

The interaction V" of the “(n — 1)-relational-object” problem obviously
does not affect free motion of the nucleus as a whole and, the standard
perturbation methods will usually provide us with convergent corrections of
the internal-absolute structure and the internal-absolute energy levels wS

of the nucleus.
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From the viewpoint of the Ry4-relationism [2], the metrical relations of
the “(n — 1)-relational-object” problem with internal-absolute Hamiltonian
rG(y,, .. +ygn_1) precede those of the n-particles embedded in the space-
time of events. The priority of directly unobservable relations y in R3 over
the directly observable points X in E; (of some §), allowed by quantum
symmetry, and the experimentally privileged momentum language p, reflect
the priority of dynamics over kinematics. This hierarchy seems reasonable,
as physics without dynamics does not exist, and any dynamics (by its very
nature) is relational, because it starts with at least two (hypothetical) ob-
jects. Within that philosophy, the one-body problem in an external field
spanned on the events X represents the limiting case of the two-body prob-
lem (elementary in R4) when one term (particle) of the relation y becomes
infinitely heavy and, therefore, ceases to participate in equations of motion
in R4. )

The kinematics represents a singular case, because one term of the
relation y of two non-interacting particles can always be regarded as in-
finitely heavy. Therefore, the spacetime of measurement accounts ade-
quately for kinematics, regardless of whether this is the Galilean (Gy4) or
the Minkowskian (L4) spacetime. Since quantum physics has eliminated
the directly observable classical trajectory (1.3) replacing it by the directly
unobservable quantum state (1.5), the “measuring possibilities” make room
for the hypothesis of quantum-geometry R4 which remains consistent with
the classical L-symmetry of measurement. The point is that measurement
of microprocesses are indirect, i.e. performed in the z-non-local momentum-
energy language p [13]. This fact is manifest in the theory of the $-matrix
whose elements Sy; are adequately parametrized by suitable momentum-
invariant Mandelstam variables s,

Spi=8W (Pi = Pg) Ty (s1,- -, 5K) (2.10)

where P; ¢ denote the initial and final fourmomenta of the isolated system
inside which the quantum collision process takes place.

3. Symmetry L of kinematics; momentum and velocity languages

The limit ¢ — oo that converts the symmetry L into G exhibits an
asymmetry between the “quantum” energy-momentum language p and the
“classical” velocity language v. This is due to the fact that transition from
L to G symmetries makes the notion of four-momentum P vanish. Together
with it goes another discontinuity, as the one L-form-invariant four-interval
z? splits into two G-form-invariant intervals r = |y| and At.
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Let P = (P; E/c) denote the four-momentum P of an isolated n-body
system in a fixed but arbitrary reference frame §. Hence

E? w?
P2=P2—c—2:—M2c2=-—cz—, (W = Mc?),
or 1/2
2P2
E=W+P) =w (1 + °W2 ) =WT. (3.1)

Here W is the internal-absolute energy of the system, M = W/c? is its
L-invariant mass in a given internal state, and

2\ —1/2
\'4 . _ P
I = (1 - —-—) with V= (MZ N (p2/c2))1/2 (3.2)

is the Lorentz factor of the system expressed in the v language.

As seen from (3.1), the total energy F is separated into the internal-
absolute energy W and the external-relative term P2?. However, the Ly-
eventism excludes any absolute dynamical variables such as are y, g in the
G4-eventism (1.1), which would provide us with W as an eigenvalue of some
operator accounting for the internal-absolute dynamics of the system. Note
that W as in (3.1) is determined from the outside of the system by a pure
kinematic relation.

The convergence of the series of E from (3.1) expanded into powers
of c2P%/W? = I'?> - 1, required by the NR kinematics expressed in the
p-language, demands

2
<1, e V2<%. (3.3)

c2p?
W2

Such a limitation of VZ is alien to the classical v-language, as I' can be
expanded into convergent power-series of V2 /c? for

V2

- <1, (3.4)
which is fulfilled automatically. It is true that in the mathematical limit
¢ — oo both upper limits of VZ, c?/2 and c?, tend to infinity and thus remain
consistent with symmetry G of the NR physics. However, realistically, if
one regards the NR theory as a decent one of loosely bound systems, the p-
language limitation (3.3) of quantum physics creates an essential asymmetry
between the p- and the v-languages.
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Since m = }:;-‘/1 m; is the sum of the absolute masses of the constituents

Aj, which coincides with the NR mass of the system (independently of its

internal state), we split W into two absolute (frame-independent) compo-
nents,

W =me*+w, (3.5)

where for loosely bound “NR” systems there is |w/mc?| < 1. Then, E from
(3.1) can be rewritten in the form:

1/2
_ 2 w \?2 p?
E =mc [(1 + -’I’;E) + m] (3.6)

and taking into account the inequality (3.3) we get
pP? 1
— 2
E =mc +1U+'2-T—n+0(c—2-), (3.7)
where 0(1/c?) vanishes with ¢ — co. Finally,

lim (E - me?) = EC = P 4wt (3.8)

c— 00 2m

which coincides with (1.5), as

w% = lim w. (3.9)

c— 00

The separation of E = (W? + ¢?P?%)!/2 into the absolute W2 and
the relative P? quantities implies that the limit ¢ — oo concerns two, fully
independent characteristics of the system: Its external motion can be “ultra-
relativistic”, but, if the system is loosely bound, the frame-independent
(absoluttzg energy W = me? 4+ w remains very well approximated by W =
mc? + w®, where w€ is the eigenvalue of the NR internal Hamiltonian hC.
Consequently, the Einsteinian energy-mass relation provides us (for loosely
bound systems) with the L-absolute mass defect AM equal to

wC

~ _ Y G
AM = 2 (w™ <0). (3.10)
Within this approach we have preserved the absoluteness of the R;-
geometry of relations y taken from the singularity of symmetry G and the
symmetry L of the relativistic kinematics. This separation of dynamical
variables into the internal (y) and the external (X) certainly conflicts with
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the L4-eventism, as it tacitly assumes the hypothesis of quantum-geometry
R4 of the internal-absolute, and directly unobservable, relations y.

4. Relational geometry R4

Direct non-observability of the internal-absolute quantum structures
of bound systems, which are measured indirectly in the “complementary”
p-language, enables us to extend the relationism of the R3-geometry coex-
isting with the G4-eventism to physics of finite ¢ (2, 3]. The correspondence
between the internal-absolute structures obtained in Rz and measurement
calls for a go-between which is the four-dimensional space L4(p) of the
four-momenta p. This correspondence which essentially distinguishes the
p-language of measurement of microprocesses — cf. (2.10) — yields the
definition of the Rs-space.

In fact, if F(y?) and F(q?) represent the same Hilbert vector |F) in
R3(y) and R3(g), where q is the relational-momentum canonically conjugate
to y, we define the manifestly L-form-invariant function é(pz) as equal to

G (") =F(q*=p"20), (4.1)

which is embedded in L4(p) with the internal symmetry L; L represents
the homogeneous group of Lorentz transformations. Indefinite metrics of
symmetry L calls for the extension of F~'(q2) to the negative g¢2’s, thus
determining G(p?) in the whole four-space Ly(p). Again, the quantum z — p
duality (though now in the four-space L) determines the manifestly L-form-
invariant distribution G(:c ) in the four-space Ly(z) spanned on the relative
four-coordinate z.

The same procedure in Gg4 results in the G-form-invariant distribution:

G(z) = F(x?)§(At) = F(y?)6(At) (4.2)

which exhibits the coexistence of the G4-eventism with the Rj-relationism,
i.e., the singularity of symmetry G.

The conclusion is that if we want to extend the NR separability of the
internal-absolute from the external-relative degrees of freedom onto mea-
surement of microprocesses, which follows the symmetry L of relativistic
kinematics, then we must introduce the space-and-time nonlocality of the
L-form-invariant structures G(z2). Otherwise the form factors of compos-
ite particles cannot represent the L-form-invariant shapes G(z?) separated
from external motion of their carriers, which results in the “relativistic dis-
tortions” of the particle structures [14]. Let us remember that the locality
of the classical L4-eventism excludes any structure-particle [15] and makes
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the relativistic equations of Dirac, Klein—-Gordon, etc., describe one-particle
problem only.

Therefore, if the single-particle Dirac equation of electron in the external
Coulomb field is recognized as the theory of the hydrogen atom structure
[16], it automatically means that. the nucleus is identified with an infinitely
heavy, external centre. Of course, the state of isolation of such an atom is
broken, much like the state of the nucleus within the standard shell model
described by the one-particle states &. ‘

In the NR physics the external-centre approximation can be avoided,
because in the two-body problem (n = 2) the six-dimensional configuration
space can be parametrized in

E; x E3 = E3 xR3. (43)

In R3; we deal with one-relational-object which mathematically not geo-
metrically coincides with the one-body problem, provided that the electron
mass me is replaced by the reduced mass p equal to u = m. /(1 + m./Mn),
where My denotes the nucleus mass. The corrections due to me # p are
considerable and perfectly testified experimentally in favour of the value p.
This implicitly proves the hypothesis of R3(y) relational space which, in
physics of finite ¢, must precede the spacetime of events.

Appendix

The Jacobi transformation (2.3) which changes the parametrization of
the same configuration space in G4 according to the identity

n Tl—i

e N e e
Ezx...xE3=FE3z xRz x...xRs (A1)

preserving, moreover, the generalized orthogonal relations (2.4) makes room
for the construction of states of n-hody systems with appropriate internal
symmetries. As known, these symmetries are of fundamental importance
in deciphering the structures of composite systems, in particular, of quark-
structure of hadrons [12]. Therefore it is interesting to point out that besides
(2.3), the KM Hamiltonian (2.2) allows a larger class of point transforma-
tions that realize (A1) and the separation of (n — 1)-relational-objects”, as
in (2.5). For example:

X="(X1+Xp 4.4 Xa),

1
Y = ay [X]";_—l(XZ+X3+---+Xn) y
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1
Yz = a Xz*m(X3+X4+-.-+Xn) )

Yn—2 = an-2 [Xn-2 = 3 (Xn-1+ X»)] ,
Yn—1 = Gn-1 [X'n—l - X'n] ’ (A2)

with arbitrary n-parameters K, a1,...,a,—1 results in the following identi-
ties:

n n—1
2 n-—s - .
I=3) (X;-X) =2} (m) ayl,  (A3i)

jok/l /]

J = ZXz—nI(—ZX + 2 (ni“l"" ) a;7%y2. (A3ii)
in

Since the potential (2.1) and the kinetic energy T of the n-body system
(nucleus) amount to

2

o ™y, (A4)

V =
4n 2

the Hamiltonian HS from (2.2) takes the form:

p =/ q P’
HG:E_ﬁ—z+ 2(2 wy,) :é—%-i»hg (A5)
s/
with
~ — ~ n—s -
m=mK 2, mS:mo(m—_—_—s>a,2.

The mass-parameters m, m, are then dependent on the units in the

corresponding configuration sub-spaces E3, R3 of the configuration space
n—1

Ez; x Rz X ...x R3 and it is for us to decide which units to choose. The
essential point is that (A5) realizes the separation of the internal-absolute
y from the external-relative X degrees of freedom by realizing the right-
hand side of the NR identity (A1l). This follows the general philosophy of
relationism which, in quantum physics, can be extended to physics of con-
stant ¢, thus preserving the NR separation of the internal from the external
dynamical variables excluded by the L4-eventism.
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