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1. Introduction

According to the standard approach, a spinor space is introduced as an
irreducible representation space of the Clifford algebra or of the group Pin
related to that algebra. In a slightly different approach, proposed in the
mathematical literature by C. Chevalley [1] and in the physical literature
by F. Sauter (2] and A. Sommerfeld [3], spinors are regarded as elements
of the Clifford algebra itself. More precisely, an algebraic spinor space is
introduced as a minimal left ideal (MLI) in the Clifford algebra and the
multiplication from the left provides an irreducible representation.

As emphasized by Graf [4], it is possible to consider, in contrast to ordi-
nary spinor spaces, a non-trivial equivalence relation between various alge-
braic spinor spaces contained in the same Clifford algebra. Namely, two alge-
braic spinor spaces are equivalent if they can be mapped one onto the other
by an orthogonal transformation prolongated to the Clifford algebra (and
sometimes called in this case the Clifford automorphism [4]). Nonequivalent
MLIs could in principle correspond to different fermions within a multiplet
5, 6].

* The research reported in this paper was partially supported By the KBN grant
GR-16.
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In [6], I considered all spinorial (i.e. primitive) idempotents in the Clif-
ford algebras of two- and four-dimensional Minkowski spaces; their detailed
classification, taking into account the action of the Lorentz group, was given.
The aim of the present paper is to give a classification of MLIs in the ClLif-
ford algebras of these Minkowski spaces taking the classification of [5] as
the starting point. A formula (n) of [6] will be quoted as (nK) and Sec. N
of [6] as Sec. NK.

Sec. 2 contains a general description of tools needed to consider idempo-
tents generating the same MLI. In Sec. 3, I consider MLIs in two-dimensional
complexified Minkowski space. They appear to be in a one-to-one corre-
spondence with points of a 2-dimensional sphere. The discussion of orbits of
the Lorentz group exhibits a distinguished role of poles of the sphere. These
pole-type MLIs can be generalized to all complex, complexified or real with
the neutral signature Clifford algebras; then they will correspond to maxi-
mal totally null subspaces and to simple spinors. Sec. 4 is devoted to MLIs
in the four-dimensional Minkowski space. In Secs 4.1. and 4.2., the two real
cases corresponding to signatures (3,1) and (1,3), respectively, are consid-
ered. For the signature (3,1), the situation is particularly simple, since there
are only two orbits of the special ortochronous Lorentz group acting on the
space of all MLIs; both have the same topology. For the signature (1,3),
the situation is more involved; there exist here, like in the 2-dimensional
case, two types of orbits of different topology; the lower dimensional orbit
is single, unlike in the 2-dimensional case. In Sec. 4.3., the complexified
case is considered. The space of orhits of the special ortochronous Lorentz
group acting on the space of all MLIs consists of three types of orbits.
These types correspond to three types of totally null subspaces of the com-
plexified Minkowski space: 1-dimensional real, 1-dimensional complex and
2-dimensional maximal.

2. Notation and some remarks about idempotents

I shall use the following notation:
V — Clifford product,

A — exterior product, uAv=3(uvVv—vVu),
- — scalar product, (uy AL A up)- (v AL Avp) = det(u; - v;).
The convention for the Hodge dual is

*w =wVmn, 7n=volume element. (1)
For the 4-dimensional Minkowski space I have % * w = —w regardless of the

degree of the multivector w.
For a decomposable bivector f = u A v and a vector w, I define

flw=u(v-w)-v(u-u),
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and extend the above operation by linearity to an arbitrary bivector f.
Then I have

wVfi=wAf-f|lw, fVvw=fAu+f|lw. (2)

For a decomposable bivector ¢ = a A 3, I can define the bivector

fle=(flaAB-(fIBNa=-p|f,

and extend this operation to an arbitrary bivector ¢. For two bivectors, I
get

pVf=peNf-fle-v-f (3)
The formulas (1)-(3) are used for calculations of Clifford squares in Sec. 4.
Let p and p' be two idempotents, i.e. p* = p and p'? = p. Let moreover

pvp=p, (4)

i.e. p' belongs to the MLI S, generated by p. For any element c of the
Clifford algebra I have ¢V p' Vp = ¢V p', therefore ¢ V p' € Sp. This means
that S,y C Sp. If p is moreover primitive and p' # 0, then Spt = Sp. In this
case p' is also primitive and p Vv p' = p.

Let ¢ = p' — p, where p and p' are idempotents such that Spt = Sp.
Then

=0, (5)

thus ¢ is nilpotent, and moreover

gVp—-pVg=gq. (6)

In the opposite direction: let p be a primitive idempotent and let ¢
satisfy (5) and (6). Then, multiplying (6) from the left and from the right
by p,IgetpVgVp—pVg=pVgand pV gV p=0. Therefore pV¢g=10
and ¢ V p = ¢. Defining

P=p+yg
Iget p2 = pand p' Vp = p'. Therefore p' is a primitive idempotent such
that Spl = SP‘

The method of finding idempotents generating the same MLI as p based
on (5) and (6) appeared to be more efficient than the method based on (4)
in the 4-dimensional case (Sec. 4).

3. Minimal left ideals in two-dimensional Minkowski Space

The complexified Clifford algebra will be considered only, since the real
case can be easily deduced from the complexified case.



1196 W. KOPCZYNSKI

Following Sec. IIIK, if (k,l) is a null basis of the 2-dimensional Min-
kowski space, k2 = 12 = 0, k-l = 1/, then any primitive idempotent has
the form

p=3+bk+cl+dknl,  be=1(1-d%). (7)

If
p'=3+bk+cl+dknl, ¥ =1(1-d?)

is another primitive idempotent, then (4) gives

2b'c+2b+d'd=1, (8)
(1+d)' -db=0b, (9)
(1-d)'+d'c=c, (10)

-2b'c+2c'b+d =d. (11)

If p and p' belong to the continuous type (cf. Sec. IIIK), d # 1 and
d' # £1, then (9) and (10) give:

b b
1+d  1+4d’ (12)
c! ¢
= . 1
1-d~ 1-d (13)

If d = +1 or d' = £1 then at least one of the relations (12) and (13) holds.
In any case (12) and (13) imply (8) and (11). The complex numbers of the
compactified plane,
; 6 2b 1-d
1¢ _— = e D
e cot 5 T4 5 (14)

are in one-to—one correspondence with MLIs. They are described in (14)
by the standard spherical coordinates 4, ¢.

If @ # 0, 7 then the idempotent (7) belongs either to the continuous type
(d # £1) and is arbitrary within this type, or to the bridge-type (d = +1 and
b, ¢ do not vanish simultaneously) and is not arbitrary: d =1 and ¢ =0 or
d = —1 and b = 0. The poles on the sphere are distinguished. If § = = then
the idempotent (7) is such that d = 1 and b = 0, whereas ¢ is arbitrary;
it can belong either to the bridge-type (¢ # 0) or to the multicross-type
(c =0). If # = 0 then the idempotent (7) is such that d = —1 and ¢ = 0,
whereas b is arbitrary; it can belong either to the bridge-type (b # 0) or to
the multicross-type (b = 0).

The orbits of the 2-dimensional special ortochronous Lorentz group
SOT(1,1) acting on the space of MLIs can be described as follows. The
azimuthal angle ¢ mod 2~ is invariant and the action is transitive on any
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open semicircle ¢ = const. The poles § = 0 and 6 = 7 form separate orbits

consisting of single MLIs. Under the action of the full Lorentz group O(1,1),
the azimuthal angle is invariant mod 7 /2 only and the poles form one orbit.

4. Minimal left ideals in four-dimensional Minkowski Space
Let g be an element of the Clifford algebra,
g=a+tput+e+vVn+tpy,

where a is a scalar, 4 a vector, ¢ a bivector, v a pseudovector and 8 a
pseudoscalar. Eq. (5) leads to a = 0 and to

—ﬁ2+ﬂ2+V2_302=07 (15)
eAv =20, (16)
Be+unv=0, (17)
pAp=0, (18)
p-xp=0. (19)

If B # 0 then (17) determines ¢, whereas (16), (18) and (19) are identi-
cally satisfied. Eq. (15) gives then the biquadratic equation for 3, assuming
p and v are given:

Bt - (W + )8 + v — (p-v)? =0. (20)
If 3 = 0 then dim span{y,v} < 1. If this dimension is 1 then I get
pAp=pAv=0, ¢>=u’+2, (21)

If this dimension is 0 then I get

2

P =@ xp=0. (22)

Let
p=3+tutf+oVvn+in

be one of primitive idempotents described in Sec. 4K. Eq. (6) leads to

—bV+,Bv—f|_/t+go|_u:—l2f, (23)

pAhutvAvte|f=<, (24)

|6
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b,u—-ﬂu-}wp[v—f[u:%, (25)

;L-v-—u-uzg. (26)

Assuming 8 # 0 and using (17), I can eliminate ¢; then (23) and (25)
give:

fLu=("7—“——- )V—<%+%)u+ﬂv, (27)

f[V:(b—%)p-{—(ﬁz—v—%)u—ﬁu. (28)

Eq. (24) is identically satisfied. It remains to solve (26), (27), (28) and (20).
{.1. Signature (3,1)

For this signature, according to (6K)-(8K),

1 b
f:m *(u/\v)-—;—ﬁu/\v (29)

and
w=v2=024+1/16, u-v=0.

Following the conventions of Sec. 1, I have
x(uAv) | p=—*x(uAvAp). (30)

Substituting (29) and (30) into (27) and (28), I get

1 b b
- — *(u/\v/\,u)——E(/t-v)u+a—2‘(p-u)v:

4y? u
(B ()ees,
- iz *(uAvAYV)— — (v v)u—}—uiz(u u)v =
(b—%)uﬁ-(ﬁt,{;—v—%)u—ﬁu. (32)

Multiplying (31) and (32) by u and v, I get

pru=v-v=>bf (33)
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and (p-v)% = (v-u)? = §%/16. Eqgs. (33) are consistent with (26) if and
only if

,u-v:-v-u:é. (34)
4
Substituting (33) and (34) into (31) and (32), I get

Bu

(uAvAp)=ulp— Bbu - i (35)
2 Bu
*(uAVAV)=u V-,Bbv+—4—. (36)

The spatial vectors u and v determine uniquely the null direction dir « such
that
s(uAvAK)=u’k. (37)

All solutions of (35) and (36) have the form

p:%(bu+§)+cn,

u
v=— (bv-— Z) + dk,
where ¢ and d are arbitrary real numbers. The pseudoscalar 3 is also arbi-
trary since (20) is identically satisfied.

The relation between two primitive idempotents p and p' which generate
the same MLI becomes

by + b —b v

u = 16 4 + -+ ck, 38
R A (38)
b + b —b

Ll 2 tdk. (39)

v o= (e
B2+ & b2+ k4

Therefore, each MLI can be described by means of a pair of vectors
(ug,vp) such that

ul=vl=4%, ug-vg =0. (40)

Any idempotent p which generates the same MLI as the pair (40) is given
by

u = ug + 4bvg + ¢k, (41)

v = vy — 4bug + dk, (42)
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where b, c and d are arbitrary and « is determined by (37). In particular,
the MLI determines the pair (40) up to the equivalence relation

(20, v0) ~ (ug + ck,vg + dk). (43)
The space of all MLIs is homeomorphic to the space of all pairs

(dir &, [(4u0, 4v0)]),

where dirx is a null direction and [(4ug,4wvg)] is an orthonormal basis in
the screen space (span k)L /spank. There are two orbits of the special or-
tochronous Lorentz group SOT(l, 3) acting on the space of all MLIs. They
correspond to two orientations of bases [(4ug,4vp)]. The topology of each
orbit is S¢ x S;. '

4.2. Signature (1,3)

+ 1= 1+ -
Types 11, 1L, IT,exu IT,ext’

initially that the idempotent p belongs to the types Il or I ey (cf. Sec.
IVBK), i.e. b # 0 and

IT,circle: IT,int; IS and I}V Assume

f=—--uAv. (44)

The general solution of the above equations is

y:%u+ncos1,b, (45)

V:%—v-i—nsinz/), (46)
and (26) is satisfied if
B =2n-(vcosy — usiny).

Eq. (20) is satisfied identically. The vector n in (45) and (46) is arbitrary,
whereas the angle % is constrained by

u? — b2 u-'v—%
= = . 47
cot ¢ v ot ® oz — 52 (47)
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The last equality is equivalent to (11K).
Any idempotent p' such that S,y = S, is determined by

1

u' = z—u-{—ncos#z,
, .
v = Z—v—l-nsinz/).
The vector .
w:vcosw;—usmdj (48)

and cot 1 are invariant under the change of idempotent generating the same

MLI, w' = w and cot ' = cot 3. The vector w is timelike and normalized,

w? = 1, and I can choose the convention that w is past oriented and the

angle 9 is determined by (47) and (48) mod 2x. Each MLI which contains

idempotents of the types Il and Ir ex¢ is determined by the pair (w, ¥).
If the arbitrary vector n is given then I have the relation

b = b(1 +2n - w).
Each value of b’ can be achieved from b # 0 including b’ = 0 which gives
n-w=-1.
The general solution of this equation is
n=n, - %,

where n is an arbitrary vector orthogonal to w. The coordinates t', ' and
@' of Sec. 4BK for the idempotent p' are given by

b

| et

t':nﬁ_«{-

r'ei¢' _ (n_L + ) 211/)
Thus for n; = 0 I get an arbitrary idempotent of the type Iz circle, for
0> ni > —1/4 an arbitrary idempotent of the type It ;,; and for ni < -1

an arbitrary idempotent of the type Is.
If n2 = —1/; the angle ¢’ is undetermined; in this case,

u + v = e’."" n
and the complex coordinate z of Sec. IVBK is given by z = e'¥. The
transformation law for the bivector f is

1 b
f’:—--b—,u A :Xf-{-n/\z.
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For b' = 0 it gives
flf=wAn.

Thus in the case ni = —1/;, I get an arbitrary idempotent of the type I}v.
The vectors n and w of Sec. IVBK are the same as the vectors n and w of
the present paper up to positive coefficients.

The space of MLIs of the above class is homeomorphic to the space of
all pairs (dir w, %) such that dir w is a timelike direction and the angle v is
given mod 27. Its topology is R® x S;. The topology of any orbit is R3.
The angle 9 (mod27) is the unique invariant function under the action of
the group SOT(1,3). If the full Lorentz group O(1,3) is taken into account
then the angle 9 is invariant mod n/2 only.

Types 0 and IITV' Let now begin with the idempotent p belonging to the
type 0. Then u=v =0 = b and

2
f=wAn, w?=n*=0, w-n=

[T

I can regard w and n as future oriented, then they are determined by p up
to a single factor.
Eqgs. (23)-(26) lead to ' = 3 = 0 and to

2f lu' = -u', flv=-v.

The solution is

! !
u =cn, v = dn,

where ¢ and d are arbitrary. If ¢ and d do not vanish simultaneously, I
can gauge the vectors n and w so that ¢ + d> = 1. In this case, the last
consequence of (23)-(26) reads

fl=f+phn, (49)

where the vector p satisfies
p-n=0. (50)

Without loss of generality, I can put also
prw=0. (51)

In the case ¢ = d = 0, the vectors n and w can also hbe gauged so that (49)
holds together with the conditions (50) and (51).
The bivector (49) can be written as

f'=w'An, where w' =w+p-pin.
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Any null vector w' which satisfies w' - n = !/; has this form. Therefore,
starting from an idempotent of the type 0, I can get all idempotents of the
types 0 and I}V with the fixed vector n.

The space of MLIs of the above class is homeomorphic to the space of
all real null directions dir n. Therefore, these MLIs constitute a single orbit
of the groups SOT(1,3) and O(1, 3) and its topology is Ss.

4.8. Complex muinimal left ideals

The considerations of Sec. 4.1. can be extended to the complexified case
provided u, v, b and k are now complex.

According to (38) and (39), each idempotent such that b # ¢/4 can be
replaced (preserving the MLI) by an idempotent such that b = 0. Next, each
idempotent with b = 0 can be replaced by an idempotent with b = +i/4.
The following question arises: when does an idempotent with b = +i/4 can
be achieved from b = 07

Let pg be an idempotent described by (ug,ve,b = 0) and p4+ an idem-
potent described by (ut,v4,b = £i/4). Then, according to (41) and (42),
I get

u4 = ug k ivg + ¢k, (52)

vy = vg Fiug + dk. (53)

If uy and vy are given, then k can be extracted from
Ut Fivg = (e Fid)k. (54)

Next, I have to look for ug and vy such that (37), (40), (52) and (53) hold.
Notice that the coefficients ¢ and d in (52) and (53) are arbitrary (now
complex) numbers. Consistently with the equivalence relation (43), their
choice has no effect on the choice of MLI.

Throughout this Subsection, I shall use the null basis (k,, m,m) of the
complexified Minkowski vector space with signature (1,3) such that: k and
l are real future oriented, m is complex, the non-vanishing scalar products
are

— 1 = - 1
k'l—g, m-m_-.f,

and the spacetime orientation of the basis is fixed by the requirement
1
kALAmA™ = 29,

The above conventions are consistent with those of Sec. IVCK. I shall use
also the real vector space

V = span{Re u,Imu, Rev,Imv}.
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Types: 1INy — specific case uy4+ = 0, Hly, Ilg, II(_)g++, Iy —
specific case ps . = 0, II%__. For this specific case within the type Iy,
according to Sec. IVCK, I have

Uy = %e—id)l + ipgqy M, (55)
vy = %e‘i'/’l + fo24 M, (56)
where p34 > 0. For k = [ and
ug = m+ sy m
81zt ZH24 T2,
—— 1 =
Vg 8,(4’,2_{. m + FH24 T,

the conditions (37), (40), (52), (53) and (54) are satisfied, From (41) and
(42), for an arbitrary b, I get

v 13 1 m 1( ) H24 T . ( )

Expressions (57) and (58) determine all idempotents generating the same
MLI as that described by (55) and (56). Notice that the idempotent p
determines the vector m in (57) and (58) up to a vector proportional to the
vector | and | itself is determined up to a real positive factor.

If b # £4/4 then the real vector space V is either 3-dimensional null (if
c and d cannot be gauged away) or 2-dimensional spacelike (if they can). In
the first case, I get one of the types IIIR’, or I}y, since only one (namely )
of two (i.e. k and /) null real vectors orthogonal to m appears in (57) and
(58); let me call this type III},. In the second case, I get the type IIg.

Suppose b = i/4. If u # iv then the space V is 3-dimensional null and
p remains in the type IIIxy,. If u = iv then this space is 2-dimensional
spacelike and I have the type Hg- S

Suppose b = —i/4. For v # tu I get the type III)y_ in the specific case
p2— =0 (and p1— = 1/(4u2+)). For v = iu I get the type IT1S_ _

The space of MLIs of the above class is homeomorphic to the space of
all pairs (dirl, uz4), where dir! is a real null direction and up4 > 0; its
topology is S x R. The topology of any orbit is S;. The scalar us4 is the
unique invariant function under the action of both groups SOT(1,3) and
0(1,3).
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Types: N, — generic case pyy > 0, IVY, IV™, Ill7, 1T}, Mg,
JIGR IIls++, Ins+, HIny—- — generic case p2_. > 0, IIé__ and Iny__. For
this generic case of the type Il (24K) gives

T .
Uy = -2—e "pl + (;t1+ - y2+e’¢2) m, (59)

vy = Je W4 (#1+ + #2+ei¢2) m. (60)
For x = m and

uy = —%ei"bk + ;;.—e—i‘{’l,

vy = :—ei'/’k + %e_i"bl,

the conditions (37), (40), (52), (563) and (54) are satisfied. For an arbitrary
b, I get from (41) and (42)

u=(b-5)ek + (b+ i)e I+ cm, (61)
v=i(b— $)eVk —i(b+ eI+ dm. (62)

The directions of the real null vectors k£ and ! are uniquely determined by
the idempotent p described by (61) and (62).

Suppose b # +i/4. The space V is either 4-dimensional (types IV*' and
IV™), 3-dimensional spacelike (type III7), 3-dimensional null (type III; —
since the other case was exhausted earlier), 3-dimensional spacelike (type
IIIs) or 2-dimensional timelike (type II7 — occurs only if c = d = 0). In
order to demonstrate the above statements in the case ¢ or d # 0, it is
convenient to shift /m adding a multiple either of k or of .

Suppose b = i/4. The general idempotent equivalent to that described
by (59) and (60) can be written as

v'+ = %e_i‘l’l +dm = %e_i‘l’l +1 (p.,1+ + [L'2+ei¢12) m' s

where m' ~ m was used. Thus for a given MLI, I can achieve arbitrary
values of pj, > 0, pj, > 0 and ¢,. If p3, > 0 then the idempotent

remains within the generic case of the type IIly;. If pf, = 0 then I get

u!, = 4v! and: if py, > 0 then the idempotent belongs to the type Iy, .,

if gy, = 0 then the idempotent belongs to the type Iy 4.
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The idempotents with b = —i/4 equivalent to that described by (59)
and (60) are given by

u- = -kt om= ~feVk +i (ﬁ‘z— + Nl—-ewz“) m',
Vo = %eﬁ/’k + dm = %ei¢k + (Nz— _ #l_ei¢2_) '

The restrictions on the parameters introduced above are yu;_ > 0 and g3 >
0. If g2 > 0 then the idempotent remains within the generic case of the
type IlIpy_. If uo_ = 0 then I get v— = fu_ and: if g3 > 0 then the
idempotent belongs to the type II5__, if 43— = 0 then the idempotent
belongs to the type In__.

The space of MLIs of the above class is homeomorphic to the space of
all pairs (dir 7, ¢), where dir 7 is an essentially complex (i.e. m % m) null
direction and v is given mod 27. The topology of this space is S; X S; X R.
The topology of any orbit is S3 X R; it has the highest dimension among all
types considered in Sec. 4.3. The angle ¢ (mod 2x) is the unique invariant
function under the action of the group SOT(1,3). The group O(1, 3) leaves
9 invariant but mod /2.

Types: 04, II}9+_, II%+_ and In4_. Types: 0_, II?.;’__F, II%__Jr and
In—-4. I look now for idempotents generating the same MLIs as those
generated by the idempotents of the types 04 for which

u=v=0=b, f==3kAlF 3gmAMm. (63)

I have to solve (23)-(26), remembering that v’ = u, v = v and ¥ = 8.
Eq. (26) gives b' = b. The solution for u' and v' is

v =+, u':ck-}-{dm,
dm

where ¢ and d are arbitrary. If d # 0, I can introduce new m’,

dim! = 4 dm + ¢k
|dlm {dm+ck’

and new [',

dzll: dzl 2k CJm'}'E(i'ﬁl
P = 1P+ 1Pk + | g 4 cam

so that the expression (55) for f remains untouched. The solution of (21)
and (24) for ¢ is

= !

p:ekA{:z,, (64)
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where e is arbitrary. Therefore, for e # 0 I get the types IT} +- and II};_ +
respectively (the consistency of (64) with (27K) one obtains after the re-
placements m' & 7 and I' « k). For e = 0, I get the types II?S-+_ and

i —4- Ifd = 0 and ¢ # 0 then the solution of (21) and (24) is also given by
(64). For any e, I get the types I, and Ijy_ respectively. f d=c =0
the solution of (22) and (24) is still given by (64); adding (63) and (64), I
get f' with arbitrary I’ and m', whereas k' = k is untouched.

The MLIs of each of the above two classes are therefore in one-to—one
correspondence with the real null directions dirk. They constitute two orbits
under the action of SOT(1, 3), each one is homeomorphic to S;, and a single
orbit under the action of O(1, 3).

The author is indebted to Professor W. Krélikowski for pointing to him
Ref. [3] and to Professor P. Budinich for his remarks concerning the 2-
dimensional case. An essential part of this paper was written during the
stay of the author at SISSA; the hospitality extended there to the author is
gratefully acknowledged.
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