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KINETICS OF NONLINEAR SYSTEMS WITH WEAK
INTERNAL AND PARAMETRIC FLUCTUATIONS*
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For nonlinear systems which can be described using simple generic
forms of kinetic equations, with a priori unspecified but still present in-
ternal and parametric fluctuation terms, it is possible to extract noise
characteristics from simple experimental data. Several examples are pro-
vided to illustrate this point.

PACS numbers: 05.45. +Db, 05.70. Ln, 82.20. Mj

1. Introduction

The influence of noise on kinetics of nonlinear systems has been studied
in numerous papers {1-6]. It is known that behavior of a system can be
drastically changed by the influence of noise and the modes of the change
are sensitive to the specific properties of the noise [1-9].

One can notice that most of the authors employ kinetic equations with
ad hoc noise terms. Naturally one can never be sure if the noise was mod-
elled properly and which noise terms are important and which are not.

The simplest is the Gaussian white noise. There are excellent methods
for its description such as Fokker-Planck equation {1, 2]. On the other
hand for more realistic colored noise easy to apply and general methods
of description are virtually nonexistent. This is unfortunate as for many
models white noise assumption is inadequate.

The coloured noise can enter into the kinetic equations in either way:
additively and/or multiplicatively. To distinguish between different situ-
ations can be a very challenging experimental problem. (Various aspects
of this problem were already addressed in several papers [3, 5, 7] and the
theoretical considerations were applied, with success, to dye-laser [7].
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This problem is also considered in the present paper. We will show
that for a number of simple, generic forms of kinetic equations with dprior:
unknown stochastic parts it is possible to determine directly which type of
the noise is the dominant one. Qur approach is limited to models which can
be analytically treated. Thus it is not universal. Moreover it is applicable to
the case of a weak noise, only. Still for a number of important models it gives
plenty of very useful information (which is lacking or difficult to obtain in
different approaches). In particular one can distinguish if the noise is white
or coloured and if it is coupled additively or multiplicatively. This knowledge
about the noise can be obtained through experimental determination of a
few observables and comparison with the analytical formula. In below we
provide several examples.

2. The Verhulst type kinetic equations

The general equation of Verhulst type

de(t
‘%(T) = a(t)e - b(t)e'TH + (1), (2.1)
was discussed frequently and is applicable to many different systems [3].
The solution for the deterministic (no noise) system with ¢(t) = 0 is

t s _]/I‘L

1
z(t) = zg exp /a(r)dr 1+ ,u:zzg“/dsb(s)exp [p/a(p)dp]
0 0 0

(2.2)

The parameter pu is usually taken to be 1 or 2. To fix attention in the

following we will consider only the models for which 2 > 0. These are for

example: chemical models with z being some concentration or ecological
models with z being the population density.

In real systems the internal (additive) noise ¢(t) is present in the equa-
tion (2.1). It can crudely model all internal or so called “thermal” fluctua-
tions coming from cooperative action of the neglected irrelevant degrees of
freedom of the system.

The additive noise can be accompanied by so called external, or multi-
plicative, or parametric noise. The multiplicative, parametric noise corre-
sponds to errors in control parameters. Namely the fixed values of control
parameters a = const, b = const correspond to ideal situation. In real-
ity @ = apll + £4(t)] and b = bg[1l + £3(t)] where ag,bg are constants and
£a, &y are the noise terms coming from imperfect control. The multiplicative
parametric noise can contain contribution from internal stochastic processes
as well.
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Given the general form of the kinetic equation of the Verhulst type with
a = ag[l + £.(t)], b = bo[l + £b(t)], ¢ = €c(t) (where 2 > 0), not much
can be said about relative importance of different noise terms for specific
systems. (One of the attempts to obtain the information on interference
effects of the different types of white noise in the system (2.1) was given in
Ref. [9].)

There are many situations when white noise assumption is not adequate.
Clearly, much more natural is the coloured noise. The simplest type is
Ornstein and Uhlenbeck coloured noise with properties [1, 2]:

(€@) =0, (@)Y = olr Vexp (—J-t——;;ﬂ) , (2.3)

where { stands for the noise (sometimes a subscript to distinguish between
different noises will be added to £) and o, T are amplitude and correlation
time of the noise, respectively. For zero correlation time we recover the white
noise. In the following we will always assume the Ornstein—Uhlenbeck noise.
After this introduction let us assume that we want to study the general
situatien. Our aim will be to apply analytical treatment and to get all the
relevant data about the noises. First we consider the problem of parametric
noise, only. We assume that the noise is weak; the terms of the order a®
and higher are neglected. Taylor expanding the formula (2.2) and perform-
ing statistical averages after simple but tedious calculations we obtain the
moments (z(t)™), m = 1,2, 3, ... for the case of parametric noise:

lim (2™(1)) = (2(o0)")

mfp
_ (% 1,2 % _ 2. P
—(bo) {1+2a m(m F p) p aorﬁ+#a0:|}, (2.4)

where 8 = 1/7 (for white noise g is infinity), ag > 0, bg > 0. The signs —, +
correspond respectively to the assumptions a = ap{l +£a(t)], b=bo, c =0
and a = ag, b = bl + £4(t)], c = 0. For a < 0, b > 0 all (z™(o0)) are
zero. In the following we will always assume a > 0.

To check the correctness of formula (2.4) we can assume white noise with
Stratonowich interpretation (7 = 0 limit) and use Fokker-Planck equation
to obtain (z) and (z?) in the independent way. Indeed the results (2.4)
in the limit 7 = 0 agree with the Fokker—Planck results. Note that the
most important conclusion coming from these exercises is the possibility to
distinguish the white from coloured noise and to treat both of them within
one formalism.

One more remark which is proper is that to check the formulas (2.4) for
T # 0 one could, in principle, employ the new steepest-descent technique
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due to Gang and Haken [10]. However the lowest order approximation which
is still analytically feasible [10] does not reproduce the exact results.

It is also proper at this place to repeat once more that there exist many
other approaches which deal with small noise assumption in coloured noise
problems [3-6]. In particular there exists the so called best Fokker-Planck
approximation [4] which range of validity was shown to be rather small
[5, 6]. This follows from truncation or in other cases from approximation
to infinite Kramers—Moyal expansion [3, 5, 6]. In our approach, however,
thanks to analytical solvability of the model this problem does not arise.
Neither the small correlation time assumption is necessary [5].

After obtaining the formulas for the case of parametric noise let us
return to the problem of internal fluctuations (additive noise) modeled by
the equation dz(t)/dt = agz — boz!T# + £.(t) . As before we assume z > 0.
For this equation the analytical solution is not available. Luckily for a weak
noise a certain simpleminded approximation is possible. Namely we will
make a substitution:

dz(t dx(t .
fi(t ) = apz — boz!t# + £, — Z(t = agz ~ boz' ¥ + a2t
(z>0) (no condition on x) (2.5)
where
s s t -t
(E(t)E() = ir Vexp (—¥ . f) ,
1 b 1/
= — (-") . (2.6)
ag \ Qg

(For properties of £, — see Eq. (2.3)). This approximation can be explained
in the following way. For a weak noise, when probability distribution is
centered more or less around deterministic Fgep = (ag/bo)l/" and is very
narrow — for many physical characteristics of the system it does not matter
whether we are dealing with o€, or with agzé, = aoZgetée. As bonus for
our crude approximation (2.5) the condition z > 0 disappears. On the
other hand the price one has to pay is distortion of probability distribution
(the higher moments of probability distribution will be incorrect). Using
approximation (2.5) by simple substitution directly into formula (2.4) we

obtain
m/u o2 2/p
) _ b @ o2 B
(bo) {l+zm(m ”)(lo (ao> {/l T ﬁ+/tao}}

(intrinsic noise; m = 1,2). (2.7)
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We would like to stress that the equation (2.7) is valid upon assumption of
weak noise provided ag is not too close to zero.

Let us now make short summary. For the Verhulst model with z > 0
constraint and with different types of noise the equations (2.4) and (2.7) are
our main result. Provided one knows nothing about the type of the noise in
the real system it is only necessary to perform some precise measurements
on (z) and (z?) for several values of deterministic (kinetic) parameters ag, by
and then to compare results with formulas (2.4) and (2.5). If the parameter
and internal additive noise are present at the same time one simply has to
be more careful. More experimental data and generalization of (2.4) and
(2.7) into one “synthetic” formula will be needed.

3. One-dimensional overdamped rotator with friction
and forcing

This model was studied by means of numerical simulation in [11]. The
equation for the deterministic case reads

7%—? = esin(wt)sin(4) , (3.1)

where # is the angle of the rotation, t is the time, v is friction coefficient
and ¢ is the amplitude of forcing. The deterministic solution is

tan (%—‘) = tan (%0) exp {7-%[1 - cos(’wt)]} . (3.2)

It is known [11] that the additive noise gives rise to erratic motion with
(6) = 0. The frequency of jumps of 6 from the interval [0, r] into [—=, 0] is
dependent on the noise amplitude and on ¢/(yw). For small ¢, small ¢/(yw)
and for tan(fy/2) ~ 1 the waiting time for a single jump can be very large.
In contrast to additive noise the parametric noise does not give rise to
jumps. The equation (3.1) in the presence of parametric noise becomes

7d_’t’ = ¢[1 + £(t)] sin(wt) sin(9) . (3.3)

The solution of (3.3) is simple:

an 9 f y
tan (£) — exp ‘fy/sin(wr)g(r)dr : (3:4)

8,
tan (Jé—ﬁ) .

Using (3.3), performing Taylor expansion and averaging over noise we obtain
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lim <ln ta—n(ﬂ)— >= 0, (3.5)

t—oo tan (—9&102

an g € w
<1n2 ;_af_n_(_g%:):)_ >= (;0)2{1_fﬂ_2}t. (3.6)

The time “going to infinity” from the computational point of view has the
meaning: tw > 1, t8 > 1, and /2tB(8% + w?) > Pwexp(—pBt). The for-
mulas (3.5) and (3.6) together with the results of Ref. [11] clearly demon-
strate a possibility of experimental discrimination between the different
types of noise.

Let us note that the other types of parametric noise are also possible.
Consider for example forcing with imperfect periodicity — sinfwt + £(t)).
For this type of the noise the result is:

lim <ln ——————————tan <g)

t—oo tan (—d—“; )

eo?
> = - 2T'yw[1 - cos(wt)]. (3.7)

The equation for (In[tan(8/2)/tan(fa.¢/2)]) is identical to (3.6). The for-
mula (3.7) together with experimental data can answer the question if the
forcing is ideal periodic one or not.

4. Simple chemical reaction. Fluctuating temperature
and concentrations

One of the simplest chemical reactions is
kq
A1+X‘;c‘—‘iA2+Y. (4.1)
2

This corresponds for enzymatic (catalytic) conversion of A; into Az with
X,Y being two different states (conformations) of the enzyme.

The concentrations of molecules Ay, A2, X,Y are denoted by ay, a2, z,y.
We consider the situation when ay, a; are kept constant and when z + y = 1.
(This experimental setup requires that appropriate control system and ex-
ternal reservoirs has to be used).

The kinetic equation for z is of the well known form [12, 13]:

d
d—:: = koag — (k1a1 + kzaz)m . (4.2)



Kinetics of Nonlinear Systems. .. 1227

Suppose that one is dealing with temperature fluctuations in the reaction
rates (parameters) k; controlling the speed and the direction in which the re-
action is going. Assume the Arrhenius dependence k; = k¥ exp{—E;/ksT(t)}
where i = 1,2, a; k? are constants, E; are activation energies, kg is the
Boltzmann constant, and where the temperature T'(¢) is fluctuating around
Ty, t.e., T(t) = To[1 + £7(t)]. The analytic solution for the present problem
is:

2(t) = exp (- G(1) { 20 + [ draska(r) explG(r)] {
0

G(t) = /ds(alkl(s) + azka(s)) . (4.3)
0

Taylor expanding up to ¢ and subsequently averaging over the noise we
obtain

.1_{_<£(_°°—)>)—1}:ﬂ{62(62—2)—-g—2-— ne 4 )}, (4.4)

o | 2ge¢(00 go go+PB  go(ge+ 8

where ¢; = E;/(ksTo), go = Z?zl ak;, g1 = E?=l a;k;e; and where
B < go . For B equal and greater than g¢ the higher moments ((z™ (o)) m =
2,3,...) are divergent.

Much simpler is the model of parametric fluctuations in concentration
a1(t) = a¥[1 + £(t)], with ap constant (az = a}). In this case we obtain

_2_{ (z™(o0)) 9> B
Tdet™(00) go go+8°

- 1} ~m(m + 1) (4.5)

g

where go = k1al + k2a3, g = k1ad.

5. Conclusions

We have shown that for a number of simple generic forms of kinetic
equations such for which analytic treatment is available, it is possible to
extract from the experimental data and analytic fermula the information
about the properties of noise present in real experimental systems. It is
possible to discriminate if this is Gaussian white noise or coloured noise.
Furthermore it is possible to distinguish between additive and paramet-
ric noises. The method presented in the paper seems to be the only one
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which works for the problem of temperature fluctuations in chemical ki-
netic equations. For other systems (where many other methods to extract
the information about the noise are available) it provides the additional,
very simple to use, tools for the experimentalist.
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