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Superfluid phase transition in He* can be accomplished through pres-
sure quench on a short (dynamical) timescale. “Vacuum condensate” of
the new, broken symmetry phase is the wavefunction of the superfluid
Bose condensate with a certain “trapped” distribution of vortex lines.
Analogous phase transitions from the false to the true vacuum are ex-
pected to occur in the early universe. There they are thought to leave
behind topological defects such as strings. I calculate the density of strings
(i.e., vortex lines) predicted by the application of the cosmological sce-
nario to He*. The proposed experiment tests key elements of the standard
cosmological scenario for creation of topological defects — known as the
Kibble mechanism — in a cryogenic setting. Analogous experiments can
be performed in superconductors as well as in either phase of He®, and
have been already carried out by Yurke and his co-workers in liquid crys-
tals.

PACS numbers: 98.80. Cq, 67.40. Vs

1. Introduction

In the standard “Big Bang” model of the early universe as well as in its
new inflationary implementations, the symmetry of the vacuum is broken
as the expansion causes a decrease of temperature. The new vacuum is
presumably chosen locally, within a causally connected region. Such local
choices usually result in topological defects — e.g., domain walls, strings,
and monopoles — which can be either useful or dangerous for a cosmological
model. The purpose of this paper is to discuss a laboratory experiment
in which an analog of astrophysically useful strings can be generated in a
manner similar to the cosmological phase transition. The analogy between
quenches in superfluid He? and string — generating phase transitions in
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the early universe has been pointed out, some time ago, by this author [1].
However, in the original paper most of the attention was devoted to the
case of annular geometry, which has the advantage of yielding a “clear”,
conceptually simple and surprising prediction (the quench should induce
rotation in the superfluid), but which is difficult to realize experimentally.
In this paper I shall discuss in some detail another version of the same
experiment: quench into a bulk superfluid. I shall argue that if the so-called
“Kibble mechanism” for generation of cosmic strings in the early universe
is essentially correct, then the rapid phase transition into superfluid He?*
should result in a copious production of vortex lines, which are the superfluid
analogues of strings.

An experiment succesfully implementing the “bulk” version of the pro-
posal of Ref. [1] has been by now carried out by Yurke and his co-workers
[2], who studied symmetry breaking in a nematic liquid crystal which —
as Yurke has realized — offers a somewhat more distant analogue of the
cosmological phase transition than superfluids, but is significantly easier to
work with. In particular, topological defects in liquid crystals are clearly
visible, which alone is a major advantage. This pioneering experiment has
been by now repeated by at least one more group [3], and I fully expect that
research on “freezing out” of topological defects by rapid quenches will yield
valuable insights into the dynamics of non-equilibrium phase transitions.

2. Vortex lines and cosmic strings

To establish an analogy between field-theoretic strings [4] and vortex
lines in the superfluid {5] consider a second order phase transition described
by the Landau-Ginzburg (L-G) theory with the potential contribution to
the free energy density:

V= oyl + Shult. 1)

In the context of cosmological phase transitions V is known as the effective
potential [4]. Strings can exist when the field ¥ is complex. The order
parameter 9 is also complex, ¥ = |¢| exp(i8), in the superfluid He?. It will
simplify our discussion, but not change its conclusions, to regard the order
parameter in He? as equal to the wave function of the Bose condensate. (The
degree to which the two are equivalent is still a subject of some debate; see,
e.g., Lifshitz and Pitaevskii, Ref. [5]). Near the superfluid phase transition
a(T) = a'(Ty - T), and o', B are phenomenological constants.

It should be emphasized that the general scheme described above ap-
plies not just in the context of superfluid phase transitions, but is valid
whenever Landau—Ginzburg theory is a reasonable approximation, that is,
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in essence, to all second-order phase transitions. This should not be too
surprising: If the universality of Eq. (1) suffices to justify the analogy be-
tween cosmological phase transitions and laboratory superfluids, it should
also have no trouble accomodating other situations in which a non-conserved
order parameter, second order phase transition, and a non-trivial symmetry
breaking scheme are involved. I shall, however, continue to write specificaly
about superfluids and leave it to the reader to “analytically continue” these
considerations to other interesting second-order phase transitions.
The superfluid wave function obeys the Schroedinger equation [5]:

9

. R,
ity = — -V + i, (2)

where m is the mass of the He? atom, and the chemical potential y is the
derivative of V with respect to the number density |¢|?. In L-G theory this
leads to the Gross-Pitaevskii (G-P) equation:

p h* 2 2
if = ~ 5=V — (a = AlYI)v. (3)
A relativistic equation with identical right-hand side describes the field v
used to discuss formation of topological defects in the early universe [1-6].

Equation (3) can be simplified by introducing a correlation length;
£ = h/(2ma)l/?, a correlation time; 7 = h/a, and an equilibrium value
of ¥; ¥g = (a/B)'/>. In terms of the new variables p = r/€, 7 = ¥/v¥g,
the time-independent G-P equation reads:

Vin = (In]* - 1)n. | (4)

Apart from the trivial case |5|> = 1 it has axially symmetric solutions of
the form n = ¥(p)exp(ing), where (p, @, z,) are cylindrical coordinates.
Here n, the winding number, must be an integer; otherwise, 7 could not be
singlevalued. The radial part of the physically relevant solution is regular
near the origin (¥ ~ p™,p € 1) and approaches the equilibrium density
at large distances (¥2 = 1 — n?/p?, p > 1). The phase of the complete
solution is 8 = n¢ on any p = const > 0 circle, but remains undefined along
the singular p = 0 axis [5].
The gradient of the phase gives the local superfluid velocity [5]:
h —

7, = —V0(p, o, z2). (5)
m

Therefore, the axially symmetric solution of Eq. (4) is a vortex with core of
width £. The superfluid circulates around it with the velocity
h 4

U¢ = TZ;{']‘

(6)
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Inside the core the symmetric vacuum — normal fluid — makes up for the
density deficit caused by the decrease of |¢|2. For energetic reasons vortex
lines with n = 1 are preferred [5].

The analog of a vortex line in field theories relevant in the cosmological
context is a string. It emerges as a solution of an equation which is essen-
tially identical to Eq. (4) (see, e.g., Nielsen and Olesen, Ref. [4]). Strings
can exist when the first homotopy group II;(G/H) — where G and H are
the symmetry groups before and after the phase transition — is nontrivial
(4, 6]. For superfluid Hell this is indeed the case, as G/H = U(1) and
II;(G/H) = Z. A vortex line is a global string — 1i.e., a string associated
with the breaking of a global gauge symmetry. The alternative, local strings
are like the flux lines in superconductor [4-6]. Local strings have a finite
energy density per unit length, while global strings have energy density
which diverges logarithmically with the upper cutoff (e.g., with the string
separation).

3. Kibble scenario in superfluid helium

The standard scenario for cosmological formation of both local and
global strings asserts that while before the phase transition the field is, on
the average, in the symmetric state, locally, within £-sized regions, the order
parameter fluctuates and assumes values of the order of the broken symme-
try ground state expectation value ¥g [4, 6]. This initial, fluctuating state
can be “frozen out” by a rapid phase transition [1]. In the new phase ¢
will readjust dynamically so that the free energy is minimized, subject to
the topological constraint imposed by the initial state: Inside each closed
contour C along which § changes by 27 there must be (at least one) string.
It is worth stressing that the cosmological setting has only a very limited
function in this scenario: It induces a rapid (nonequilibrium) phase tran-
sition — the expansion of the Universe causes a drop of temperature and
can provide some effective viscosity — but other than that it plays no role
whatsoever [1-4, 6].

The key element of the ahove model is the emergence of the character-
istic scale of frozen out fluctuations. This should take place equally well in
a rapid phase transition from the normal He? to superfluid. Such a phase
transition can be induced by a pressure quench. The phase diagram of
He? is shown in Fig. 1. The proposed quench trajectory is also indicated.
One of the key advantages of this experiment over other possible condensed
matter phase transitions is the possibility of inducing it on a short, dynami-
cal sound-crossing timescale. Moreover, the velocity of the second sound c3,
which determines the speed with which the phase readjusts, is much smaller
than the velocity of the ordinary first sound ¢y, which limits the speed of the
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quench [5]. In this sense, one can induce the phase transition on a timescale
which is “supersonic” in terms of the speed with which perturbations of ¢
can propagate.

»
>

[T
o

Solid He

44— Pressure [atm] —
- N ’
o o
T |

0] 0.2 1.8 2.0 2.2
4—— Temperoture [°K] —_—

Fig. 1. The phase diagram of He? and the trajectory of the quench in the proposed
experiment.

To estimate the expected density of vortex lines in Hell one must calcu-
late the characteristic correlation length d which is “frozen out” in course of
the nonequilibrium phase transition. Let us first note that an instantaneous
phase transition would freeze out preezisting fluctuations with the initial
correlation length. What happens if a phase transition occurs on a finite
timescale?  To calculate d I assume that in the course of the quench the
pressure is lowered uniformly throughout the volume, and that the dimen-
sionless relative temperature

() =~ (7)

is proportional to time; €(t) = t/7¢g. If the system could equilibriate (in our
case, for T sufficiently close to 7'y it cannot) the correlation length would
reach [5, 7]

£ =Eole]™". (8)

For L-G theory in He? £ = 5.6[4] and v = 0.5 [5]. Measurements yield
€0 = 4[A] and v = 0.67 [7], in better accord with the renormalization group
(R-G) approach.

Actual correlation length of the order parameter is given by Eq. (8) only
as long as the quench-induced evolution of the system is slow in comparison
with the time-scale 7 on which fluctuations of ¥ can readjust. Consider
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a quench slow enough so that this assumption is indeed correct near the
initial high-pressure point. The condition for such a quasi-equilibrium is
to allow fluctuations to interact. This implies that the size of the “sonic
horizon” h(At), the distance to which influence of a perturbation can spread
within some time interval At, ought to be large compared with equilibrium
correlation size £, if At is the time interval over which £ changes appreciably.
A natural estimate of At is then:

At:léizm. (9)

3

The additional piece of information needed to calculate the radius of
the sonic horizon is the characteristic velocity u, which determines the speed
with which perturbations of ¢ can spread. In the superfluid the speed of
the second sound ¢; is the only choice for u. Above T the rate with which
% can change is presumably of a similar order. Therefore, even if the system
was initially in quasi-equilibrium, £ < h(t), as the pressure is lowered and
as € approaches zero, equilibrium correlation length will become equal to
the radius of the sonic horizon at some instant f:

£(t) = h(t). (9a)

This equality will be, at least formally, satisfied twice: first when T > T
and . < 0, and subsequently for T < Ty, with t+ > 0. Inside the time
interval {f_,{,] evolution of ¢ is slow compared to the available amount of
time, as 7 > £y ~ {_. Therefore, the correlation length corresponding to the
time instant { is a reasonable estimate of the frozen-out scale of fluctuations:

d = £({). (9b)

If the values of £ corresponding to {4 and {_ were not equal (below we shall
assume that they are), one would have to use the larger one. Eq. (9a) can
be now regarded as an approximate formula for ¢, which, in turn, can be
used to obtain d.

Using either the L-G theory (ur,g = uge’>,up = 70[{m/s]) or the more
accurate R-G approach consistent with the experimental data! yields;

t‘:,/f—}%rQ:\/‘ﬁrg. (10)

0.5

! The exponent in Eq. (10) will be actually somewhat different from 0.5 if one
were to use experimental fits rather than either L-G or R-G values. This
difference will be of little consequence in the estimates given here.
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The characteristic cell size is now given by Eq. (9b):

N . TQ 1/4
dpgl[A] ~ 5.6 ;_; , (11a)
1/3
dra[A] ~ 4 (1‘2) . (11b)
To

The characteristic timescale (79 = £p/ve = 0.85 x 10~11[s]) is almost iden-
tical in either the L-G or R~G case. Values of the quench timescale g
can vary between very short 10~ ¢[s] (~ first sound crossing time for a frac-
tion of a millimeter thick capillary) and very long (10%[s] or even more).
These extreme values correspond to dg ~ 100{4] (drg ~ 200[4]) and
dpg ~ 1073 [em] (drg ~ 2 x 10~ ?[cin]), respectively. The domain size can
be now employed to estimate the vortex line density.

Before we proceed any further, it is important to emphasize that our
calculation — in spite of the use ol equilibrium concepts such as correla-
tion length — assesses the immpact of the nonequilibrium nature of the phase
transition induced by the pressure quench. In a sense, we have split the
quench-induced evolution of the system into three epochs: (1) Far enough
above Ty, where intrinsic timescales and sizes of the fluctuations are suffi-
ciently small so that the evolution of the state of the normal fluid can “keep
up” with the change of the global thermodynamic properties, such as pres-
sure and/or temperature; (2) epoch when T is so near T that the system
is too sluggish (as a consequence of critical slowing down) to “keep up”,
and (3) region sufficiently below T to have a well-defined Bose condensate
wave function. The equilibriwun correlation length — we have assumed —
is a valid estimate of the actual spatial correlations in epochs (1) and (3),
but not in epoch (2). Size d of the frozen-out domains is determined by the
correlation length on the border between the near-equilibrium (1) and (3),
and the full-fledged nonequilibriuin, {(2). This reasoning does not depend
on the details of the model one uses to describe the system in the vicinity
of the phase transition: Qualitative predictions will be the same for L-G or
R-G theory. It is also useful to emphasize the analogy hetween the sonic
horizon in He? and the causal horizon in the early universe: they play the
same role in limiting the size of dynamically correlated regions.

We are now ready to estimate the density of vortex lines induced by
the quench. The phase of the Bose condensate varies significantly between
domains with a volume ~ d®. This leads to a typical specific vorticity £
defined as the length of the strings per unit volume [1-4, 6],

(12)



1308 W.H. ZUREK

Using the values of d obtained before and taking the proportionality coeffi-
cient K ~ 1.0, one obtains £ ~ 10’2 — 103{cm™2].

It is useful to note that the above estimate depends on the assump-
tion that one begins and ends the quench in a nearequilibrium region with
£ < d. It is possible to imagine experiments starting or terminating the
quench sufficiently close to 7'y that £ is comparable with or larger than d
corresponding to the rate at which the quench occurs. In particular, if one
starts with T > Ty and d > £;, one can expect that the initial correlation
length will be frozen out. Thus, density of vortex lines should be estimated
using &; rather than d.

Similarily, if the quench terminates at T < Ty, but with {7 > d, sep-
arate vortices will not be able to form. Again, the relevant scale for the
evaluation of £ would be {; rather than d.

4. Evolution of the vortex line network and other complications

It is reasonable to assume — and has been borne out in computer
simulations [8] — that the string network formed in a process described
above is much like the network of random walks on a lattice with spacing ~
d. In particular, the typical size R of the string — the straight line distance
between its two points — increases with the actual length of the string L as
R ~ /Ld. Moreover, in 3 dimensions ~ 20 — 30% of random walks return
to their origin [9], and by the same token, a similar percentage of strings
form closed loops. Consequently, in a tangled Brownian network of vortex
lines cancellation of vortices with opposite senses of rotation, straightening
of entangled vortex lines due to the line tension, and shrinking of the loops
may all decrease vorticity even before its measurement (e.g., by means of
second sound attenuation) is accomplished. Therefore, vorticity detected in
such experiments may be orders of magnitude below the estimate obtained
from Eqs (11) and (12). Here let us only note that the specific vorticity
induced by turbulent fluid motions of Hell obeys the evolution equation
[10] £ ~ —¢%. The specific vorticity of the Brownian network is likely to
obey a similar evolution equation. Therefore, one should be able to find
evidence for vortex production even some time after the quench. Indeed,
this was precisely the strategy adapted in Ref. 2], where the authors have
investigated relaxation of the tangled network of topological defects and
proved that — as expected — it obeys the scaling solution.

An even more interesting complication may arise in the course of a
rapid quench as a result of the large specific vorticity implied by Eq. (12).
Vortex line cores contain only normal He? and no superfluid. Therefore,
the order parameter ¥ must vanish on them. If the lines were stationary,
one could regard the Brownian network as a “porous substance” with the
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characteristic length scale d and a rather unusual topology, imposing an
interesting “distributed” houndary condition 9 = 0 along the lines. We shall
assume that this heuristic picture is qualitatively correct. The superfluid
phase transition ocurrs in a porous geometry with characteristic length scale
d at a depressed temperature Ty, with the relative temperature of the phase
transition ¢ shifted from € = 1 hy:

T _ T 1.5
Ac = _*.i_‘i = (%".) ) (13)

Employing our above, heuristic approach and using estimates of d ~ 1034
corresponding to relatively rapid quenches one arrives at A, = 1073, It
should be emphasized that the actual depression of ¢ may be larger than
this estimate, as the values of d obtained from Eq. (11) represent an “upper
bound” on the frozen-out size of the correlation length. The net effect of
this phenomenon would be then to depress somewhat the temperature cor-
responding to the immediate transition to superfluidity — or, alternatively
— to delay the onset of the superfluid phase transition.

A large specific vorticity £ corresponds to a significant rotation on the
microscopic level in the superfluid. Moreover, the phase transition from
normal to the superfluid He? is of the first order in a rotating vessel [11].
Therefore, one may also look for some signatures of the first order transitions
— such as hysteresis — in the quench. Quantitative estimates of this effect
are rather difficult in the contemplated experiments as the first order phase
transition was investigated so far only in case of uniform, large scale rotation.
However, a time lag in the onset of superfluidity may be a hint that the
transition is of the first order.

5. Discussion

One way of looking at the spontaneous generation of vorticity in a
superfluid with complex order parameter % is to consider it in terms of a
spatial distribution of the winding number deposited by thermal fluctuations
in a system undergoing a rapid second order phase transition. This analogy
— useful already in the present discussion of He* — can be further extended
to superconductors [12], where a rapid phase transition should “freeze out”
random number of magnetic lux quanta, as well as to either phase of the
superfluid He3, where the order parameter is far more complicated and the
resulting topological defects far more complex {12, 13].

An equally valid and even more intriguing point of view of the rapid
phase transition recognizes that the order parameter ¢ is a wave func-
tion. Therefore, one can imagine a situation where, following the quench,
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many competing wavefunctions with significantly different distributions of
the winding number could emerge from the given initial pre-quench state.
It would bhe therefore difficult to rule out the possibility that at least for a
short instant following the quench the wavefunction/order parameter will
be in a superposition of several winding number configurations.

Superfluid phase transition in an annular geometry [1] offers the sim-
plest case of such “macroscopic quantum superposition”. There one can,
for instance, consider % given by:

Y= ald’?n + a2'¢n2 3 (14)

where 1., and 9, have distinct winding numbers, n, and n;. The order pa-
rameter with the final, unique winding number is chosen by the combination
of environmental effects [15, 16] and microscopic interactions of He? atoms.
Behavior of % may, or may not, be approximately described by the Gross—
Pitaevskii type of equation with an appropriate damping term. For lack
of space, we shall not attempt to explore these issues here. It is, however,
important to point out that a similar problem — emergence of a definite
state of the vacuum from a pre-transition mixture — is also encountered in
the discussion of cosmological phase transitions. One may, therefore, hope
that the results obtained in laboratory superfluid condensates may shed a
new and much needed light on cosmological phase transitions into vacua
with broken symmetries.

It is worth stressing that regardless of the relevance of the experiments
proposed above for the cosmological scenarios {1-4, 6], the issue of the vor-
ticities and superfluid flows induced by a rapid phase transition is of interest
in itself. Some evidence for vortex line creation in superfluid phase transi-
tion may be already at hand?®.

The basic tenets of the scenario outlined above have been already con-
firmed by experiments in nematic liquid crystals {2, 3]. Superconductors
(with local gauge symmetry) and superfluid He3 (with tensor order param-
eter) offer somewhat similar, but different in many essential aspects, testing
grounds for our scenarios of cosmological phase transitions.

I would like to thank Dr. Laurence Campbell, Dr. Matti Krusius, Prof.
Anthony Leggett, Prof. Olli Lounasmaa and Dr. Bernard Yurke for stimu-
lating discussions.

2 D.D. Awschalom, K.W. Schwarz, Phys. Rev. Lett. 49 (1984) note that after
a passage through T) superfluid contained vortex line density much in excess
of the final remnant vorticity.
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