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This paper explains the light-front Hamiltonian approach to relativis-
tic bound state dynamics of elementary particles in quantum field theory.
The paper is an introduction to this emerging theoretical area and re-
ports on the recent progress. A selected set of papers is reviewed. Special
attention is paid to renormalization which assumes a central role in the
light-front Hamiltonian formalism for quantum chromodynamics.
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That may partially be a mistake. But we must start
somewhere and we have chosen to start here [99].

1. Introduction

Theory of relativistic bound states of elementary particles is considered
partly for application in high energy nuclear physics and partly for the
purpose of describing hadrons in quantum chromodynamics (QCD).

Our common understanding of bound state dynamics is based on the
knowledge of systems like a hydrogen atom. That picture is not sufficient
to understand dynamics of strongly interacting relativistic bound states.
The reason is that the electromagnetic forces are weak and bound states in
quantum electrodynamics (QED) are nonrelativistic. Charged constituents
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of atoms resemble very closely free particles, move slowly and interact prac-
tically only through the Coulomb potential which is instantaneous. But
already in nuclear physics interactions are so strong that the relativistic
effects of retardation and changing number of particles have to be seriously
considered. For example, in high energy heavy ion collisions relativistic
effects pose practical problems which demand solution. Still more demand-
ing and unsolved problems appear in nucleons and other hadrons which are
highly relativistic bound states of light quarks, u, d or s, and gluons. Rel-
ativistic effects are also important in hadrons built from light and heavy
quarks.

The bound state problems in relativistic nuclear physics may be viewed
as not quite fundamental. Since nucleons and mesons are built from quarks
and gluons the theory of bound states of the nucleons and mesons should
follow from the fundamental theory of their smaller constituents. However,
the dynamics of hadrons is so complicated that it would be naive to expect
quick and simple explanation of nuclear dynamics on the basis of elemen-
tary interactions of quarks and gluons. Many theorists consider relativistic
nuclear physics to be a challenge by itself, requiring rigorous methods of
describing relativistic nuclear bound states on its own.

Some aspects of relativistic dynamics of nucleons and mesons are at-
tributed to partially releasing quarks and gluons from binding in hadrons.
Sound methods of distinguishing nuclear and subnuclear effects are not yet
available. Investigations of nuclear form factors at high momentum trans-
fers, semiinclusive processes, structure functions of nuclei and a host of
problems in nuclear collisions all require understanding of relativistic bound
state dynamics. Smashing heavy ions with energies of hundreds GeV per
nucleon in order to create quark-gluon plasma is a good example. There is
a little hope for distinguishing adequate explanations of future experiments
without well founded description of relativistic quark and nucleon bound
states.

Construction of a theory of relativistic bound states for application
in hadronic physics is essential. Every calculation for processes involving
hadrons relies on a model for how hadrons are built from quarks and gluons.
The primary example of such models is Feynman’s parton model. The
parton model replaces unknown theory of hadronic bound states, while such
a theory should in principle follow from QCD. Perturbation theory based
on asymptotic freedom — the basis of success of QCD — does not apply
in the case of bound state problems and the theory is in a corner. It can
describe interactions of free quarks and gluons at short distances but cannot
rigorously relate these predictions to experimental data for hadrons.

An important additional feature which obscures theory of bound state
dynamics of quarks and gluons, is the unknown structure of the QCD vac-
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uum. The vacuum is a see of quarks and gluons. Quark and gluon con-
densates are formed. The vacuum is responsible for confinement and spon-
taneous chiral symmetry breaking. Unfortunately, no rigorous relativistic
description of the vacuum state is available.

So far, attempts to formulate a theory of relativistic bound states in
the instant form of dynamics have not led to quantitative results. One can
investigate alternative formulations. Dirac had initiated work in this direc-
tion a long time ago [1]. He used the name instant form of dynamics for the
standard equal-time (ET) description of physical states, and their dynami-
cal changes from one to another instant of time. Dirac had considered more
ways of constructing relativistic quantum mechanics. He pointed out that
there exists an alternative form of dynamics which he called the front form.
Dirac discovered that the front form may turn out to be in some respects
superior to the ET form. It is true that we are mostly familiar with the
ET form. This is due to our intuitive and nonrelativistic notion of absolute
time. But the ET dynamical scheme is by no means unique. Dirac observed
that the front form of dynamics is unfamiliar to us and deserves particular
attention. It may offer new paths towards solution of profound problems of
combining relativity with quantum mechanics. About 20 years had passed
before Dirac’s idea became popular among some other physicists.

The idea of considering alternative forms of dynamics for their special
properties (which might simplify a theory) has been brought up again in a
particularly elegant way by Weinberg in the context of quantum field theory
[2]. Weinberg considered scalar field theory in the infinite momentum frame
(IMF). He observed simplifications in the old-fashioned perturbation theory
due to the absence of spontaneous particle creation from the vacuum in the
IMF. Then Bardakci and Halpern [3], Susskind [4], Chang and Ma [5], Flory
[6], Drell, Levi and Yan [7], Kogut and Soper (8], Bjorken, Kogut and Soper
[9], Soper [10] and others have opened a series of studies of various theories
in the IMF. The IMF rose to a prominent place because very fast moving
hadrons were simply described in this frame using Feynman’s parton model.
In the IMF, internal hadronic clocks were so slow that the bound state
interactions were frozen and hadrons could be seen by external probes as
beams of essentially free partons.

Dirac’s front form of dynamics in application to quantum fields and
particle physics became popular when it was realized that it is closely related
to the IMF limit in the ET form [11-15]. (These references do not include
all important works but certainly illustrate the early developments.)

The front form of dynamics is also called light-front (LF) or even light-
cone dynamics, although it has little to do with Minkowski’s light cone.
Let’s denote four space-time coordinates in the Minkowski space by z°, z!,

z? and z3. In LF dynamics (in the convention which we adopt here) the
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role of time is assumed by z¥ = z® + z3. Then, 2! and 22 describe the
transverse part of space, often denoted together as z1, and 2= = 2° — 23
is the longitudinal space coordinate. The role of energy is assumed by p~.
pt and pt are the spatial momentum variables. The notation + = 0 + 3 is

adopted for the + components of all tensors.

About two decades of successful phenomenological and theoretical stud-
ies have passed. A major work has been published by Brodsky and Lepage
[16], which stimulated a lot of activity in relativistic nuclear physics and
building models of hadrons. New technics have been developed. The reader
may find more information in two recent reviews by Namyslowski and by
Brodsky, McCartor, Pauli and Pinsky, and also by Coester [17, 18]. It is
also useful to look up Ref. [19]. Despite all these intense efforts the precise
formulation of the relativistic bound state problem for elementary particles
has not yet been achieved.

The major problem is to formulate quantum field theory so that physical
results for processes involving bound states obey basic requirements of spe-
cial relativity. For the purpose of this introduction two kinds of relativistic
effects can be distinguished. '

The first may be called internal relativity. Vaguely speaking, one may
consider a bound state at rest and ask how fast the constituents move. For
example, positronium is an internally nonrelativistic bound state. Binding
energy is a tiny fraction, order 107%, of the electron mass and the electron
velocities are about 10~2 of the speed of light. Nuclear bound states are
partly relativistic; binding energies of nucleons in nuclei are on the order
of 10™2 of the nucleon mass and the nucleon velocities are about 0.1 of the
speed of light. Finally, bound states of light quarks and gluons are very
relativistic. Binding is so strong that no free colored particles are observed
(confinement) and quark velocities in hadrons are comparable with the speed
of light.

The second kind of effects may be called external relativity. It means
that a bound state may move very fast and may be probed with highly
relativistic probes, e.g. hard photons. Again, no practical need arises for
considering collisions of fast moving atom-like systems in QED. Binding of
electrons in atoms is so small that when atoms are probed with energetic
projectiles the binding is practically irrelevant. On the other hand, nuclei
are accelerated to large velocities and violently collided and their contraction
when accelerated to large momentum cannot be neglected. When nuclei are
probed with energetic probes, as, for example, in the deep inelastic lepton-
nucleus scattering, binding effects are not negligible. Finally, hadrons in
modern experiments take part in extremely high energy collisions and are
probed with most relativistic objects available.

LF bound-state dynamics is interesting and worth investigation as an
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alternative to ET dynamics in cases where relativistic effects are important
and our Galilean intuitions are of little use. LF dynamics may help in
understanding phenomena whose description is so far out of reach in ET
dynamics.

Let us begin with the issue of internal relativity. When fast moving
constituents appear in a bound state at rest and their individual energies
are large in comparison to their masses, then, according to the uncertainty
principle, creation of more constituents has to be taken into account. As
long as the number of constituents is not too large one may hope to compute
the static bound state properties. However, there is an apparently unsur-
mountable difficulty involved in ET dynamics of quantum fields. Namely,
there is a spontaneous creation of particles from the bare vacuum. Prob-
lems with the unlimited creation of new constituents and formation of a
nontrivial physical vacuum state so far prevented construction of a satis-
factory description of relativistic bound states in quantum field theory [20].
The vacuum problem is fundamental to our understanding of elementary
particles as well as cosmology [21].

In LF approach to quantum field theory, the spontaneous creation of
particles from a bare vacuum does not occur, if the theory is cut off by an
infrared cutoff in momentwm space. This feature greatly distinguishes LF
dynamics from ET dynamics [22]. In ET dynamics the spontaneous particle
creation cannot be removed by imposing cutoffs on momenta. Spontaneous
symmetry breaking in LF dynamics is intriguing since it cannot happen in
the same way as in ET dynamics. Investigations of the LF vacuum problem
are a subject of interest of many authors. Examples of recent literature can
be found in Ref. [23]. In this paper we consider aspects of the LF vacuum
effects which are related to hadronic bound state dynamics.

In LF dynamics of quantum fields the bound state problem requires
precise formulation. In order to make a theory finite one has to introduce
cutoffs, and among them the infrared one. Analysis of the infrared cutoff
dependence becomes essential to the whole theory, since this cutoff excludes
the spontaneous particle creation from the bare vacuum and interferes with
the ground state formation. If the vacuum structure was known the infrared
cutoffs would not be necessary. One could compute dynamics of the vacuum
degrees of freedom and include them in a complete theory. Moreover, the
arbitrarily chosen splitting between degrees of freedom associated with the
vacuum and those associated with a bound state could not matter. In
actual situation, when we know nothing about the vacuum and consider
only degrees of freedom above the infrared cutoff, all our results depend on
this cutoff. This feature is viewed in this paper as a great advantage of LF
dynamics. It may provide an opportunity for learning about the unknown
vacuum structure with minimal guessing.
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Cutoff dependence is usually removed by renormalization. There is a
chance to reconstruct, at least partly, the missing vacuum effects by remov-
ing the infrared cutoff dependence in renormalization procedure. One may
use existing knowledge about renormalization of Hamiltonians for quantum
field theory [24] and hope that a consequent application of the renormal-
ization ideas may shed some light on the vacuum effects in QCD. We shall
describe initial steps made in theory in this direction. The unusual prop-
erty of LF dynamics is that the vacuum problem is mixed with the cutoff
dependence problem and, therefore, one can try to use known methods for
dealing with the former and learn about the latter. One may not assume
that a theory constructed that way must be complete. However, the part
involving the obserwable bound states may have all properties required in
order to describe static experimental data.

We should stress that in order to define the bound state calculations
the renormalization theory has to be considered quite independently of the
vacuum problems. Even if the infrared vacuum cutoff is somehow made
irrelevant, there are ultraviolet singularities which need special care. The
relativistic bound state theory cannot be formulated without understanding
complicated renormalization effects. The bound states are assumed to be
eigenstates of LF Hamiltonians. We shall explain the current status of the
renormalization theory for LF Hamiltonians.

Next we consider the issue of external relativity. Here LF becomes
overwhelmingly useful. The LF form of dynamics attracted Dirac’s attention
thanks to this special property. Namely, the formal algebra of ten Poincaré
generators is represented in LF dynamics in such a way that as many as
seven generators are independent of interactions. Only three generators are
interaction dependent. It is useful to formally compare situations in ET
and LF dynamics.

In ET dynamics only six generators are independent of interactions.
These are three momentum operators and three angular momentum op-
erators. The generator of time evolution, i.e. the Hamiltonian, and three
generators of Lorentz boosts, depend on the interaction. Therefore, it is
easy, and customary in ET dynamics, to consider bound states at rest and
classify them using angular momentum quantum numbers. Questions about
what happens when a bound state is moving are complicated and rarely con-
sidered in literature.

In LF dynamics as many as seven generators, two transverse momenta,
P21, the longitudinal momentum, P*, angular momentum about 3rd axis,
J?® = M1?, two mixed rotation-boost generators, M+<, and the generator
of boosts along the 3rd axis, M+, are the same in free and interacting the-
ories. Only the Hamiltonian P~ and two mixed boost-rotation generators,
M~L, depend on the interaction. (Early literature about the LF Poincaré
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algebra and related issues in particle theory can be found in papers from
Ref. [25].) Therefore, it is easy, and customary in LF scheme, to consider
models of arbitrarily moving bound states. However, problems with descrip-
tion of good angular momentum states in the LF quantum field theory are
not solved.

The net result is that in ET dynamics one may construct theories of
some static nonrelativistic bound states of good angular momentum, while
in LF dynamics one has a big freedom of making studies of moving rela-
tivistic bound states but without precise knowledge of how to specify their
angular momenta.

One can state this result somewhat differently as follows. The develop-
ment of ET quantum theory of relativistic bound states is blocked by the
lack of knowledge of boost generators. This is a disaster. No relativistic
experiment can be done with static objects. Motion, acceleration and re-
coil effects have to be considered in practice. OQur nonrelativistic intuitions
based on studies of systems like atoms or heavy quarkonia are not sufficient.
Quite unexpectedly, in LF dynamics unlimited motion of bound states is de-
scribed by kinematics and many studies may be attempted. The remaining
problem related to rotations which change the 3rd axis, does not prevent
applications. It rather forces phenomenological input for the structure of a
bound state at rest.

An important issue in external relativity is the coupling of a bound
state to external particles and fields. Here again LF dynamics offers an
unexpected help, in a similar way as the IMF did. For example, the coupling
of photons to charged fields can be to large extent described using a good
component of the current operator, jT, in processes where the longitudinal
momentum transfer, ¢*, vanishes. Thus, at least some physical events can
be modelled in a LF theory without losing control on how well one obeys
first principles of quantum mechanics and special relativity.

We should stress two additional aspects of LF dynamics which are rarely
considered.

- Firstly, one has to expect that introducing cutoffs may ruin kinematical
symmetries of the theory, if the cutoffs do not obey the symmetries.
For example, imposing a cutoff on absolute longitudinal momenta, k¥,
in the Fourier expansion of fields, violates the celebrated longitudinal
boost invariance. Then, special procedures in renormalization theory
have to be introduced in order to restore the symmetry along with
achieving the cutoff independence.

- Secondly, this cutoff intrusion into the theory is actually not as much of
a problem as a key source of practical predictive power. The argument
is following.

Cutoff dependence of a theory is removed by defining necessary new
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terms in its Hamiltonian. These terms are called counterterms. The coun-
terterms depend on the cutoffs in such a way that the full theory is cutoff
independent. However, the new terms contain finite parts of precisely the
same structure as the diverging parts. We cannot decide how big are the
finite parts without invoking experimental data. The finite parts should be
adjusted so that results of the theory agree with the data. For example,
all particle data confirm symmetries of special relativity. Then, the coun-
terterms must possess enough many free parameters in order to fit special
relativity. Renormalization theory for LF Hamiltonians presented in this
paper points in this direction.
This paper is organized as follows.

In Section 2 we briefly describe LF QED and discuss electron-positron
bound state dynamics in the simplest approximation. We describe how
the center of mass Coulomb bound state equation for positronium follows
from LF QED. We stress the apparent difference between the nonrelativis-
tic nature of the positronium structure function and the highly relativistic
character of the structure functions of hadrons. The QED example is also
useful in later discussion of bound state equations in QCD and serves as an
opportunity to introduce the LF formalism on a well know ground.

Section 3 describes an example of LF Hartree theory for nuclei. We focus
our attention on relativistic effects of mass shifts for nucleons in nuclear
matter. Nuclear matter is treated as a giant many-body bound state. We
consider a simplified version of Walecka’s model for illustration. The model
involves a new interaction term which changes the nucleon mass. A similar
term will be shown later to be necessary in renormalization theory. A brief
discussion of applications of the LF many body theory is included. Special
attention is paid to the nuclear binding effects in the deep inelastic lepton
scattering off nuclei. Formation of the LF Fermi sphere is discussed in detail
since it may be relevant to a future LF theory of the QCD ground state.

A special class of phenomenological LF quark models of nucleons is
discussed in Section 4. We introduce LF quark wave functions based on
models of hadronic interpolating fields which are used in QCD sum rules.
We show how the idea that quark mass terms may be induced by the quark
condensate can be incorporated in the LF models.

Hamiltonian approach to LF QCD including vacuum fields is presented
in Section 5. We show how vacuum condensates known from the sum
rules may appear in the LF QCD Hamiltonian. We write the correspond-
ing quark-antiquark bound state eigenvalue equations and describe effects
caused by gluon condensate in these equations. We present the idea that
the gluon condensate may induce a strong Gaussian bound on the trans-
verse momenta of partons in hadrons. Finally, we discuss divergences which
appear in the eigenvalue equations to conclude that little progress is possi-



Relativistic Bound States of Elementary Particles. .. 1323

ble without understanding renormalization theory for LF Hamiltonians in
quantum field theory.

In Section 6 we discuss in detail divergences which appear in the rela-
tivistic bound state eigenvalue problem in QCD. We consider singular seag-
ull terms, self energies of quarks and gluons, one massive gluon exchange,
wave function singularities and vertex corrections.

Section 7 introduces elements of the required renormalization theory.
We present the LF theory of fixed sources and Wilson’s model of coupling
constant renormalization. Then, the idea of renormalization of LF Hamilto-
nians is explained using a simplified example in Yukawa theory. We describe
renormalization of transverse overlapping divergences to all orders of per-
turbation theory and beyond. The model shows how the degeneracy of
the bound state spectrum which is required by rotational invariance can be
restored using the freedom of choice of the finite parts of the renormaliza-
tion counterterms. We also briefly describe results of numerical studies of
cutoff dependence and renormalization effects in this model. Section 7 is
concluded by an elementary discussion of general covariance conditions to
be satisfied by measurable matrix elements, requiring adjustments of free
parameters in the renormalized Hamiltonians.

A special example of renormalized LF Hamiltonian theory for fermions
interacting with scalar bosons is described in Section 8. We present exact
solutions of the model. The fermion-boson scattering amplitude exhibits
full covariance. One obtains this result within a very limited model Fock
space thanks to a special choice of the counterterms in the Hamiltonian. We
describe solutions for the fermion-boson bound state and study its struc-
ture. We describe properties of the bound state form factors and structure
functions and discuss their residual cutoff dependence due to lack of an
asymptotic freedom in the model. ,

Advanced new renormalization theory for Hamiltonians is sketched in
Section 9. As an example of application, it is shown how the new theory
solves the problem of longitudinal logarithmic divergence in the one gluon
exchange interaction between quarks.

Section 10 concludes the paper by a brief outline of prospects of the
LF Hamiltonian approach to the theory of the relativistic bound states of
elementary particles.

Some parts of this article are extensive quotations from the reviewed pa-
pers. The quotations are provided for completeness where it is not possible
to shorten presentation of the ideas without losing clarity.

2. Bound states in QED

For the purpose of this paper it is instructive to explain how the stan-
dard picture of bound states emerges in LF QED. We consider the well
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known example of positronium. In order to derive positronium wave func-
tions in LF QED one has to make special assumptions, choose small cutoffs
and suppress effects which otherwise would spoil the nonrelativistic positro-
nium picture.

2.1. Light-front QED
The Lagrangian density of electrodynamics is

Lgp = ~1F* Fu + 9(i P — m)y. (2.1)

Equations of motion for the electromagnetic field, F¥¥ = —ie~![D#, D¥] =
0FAY — 3Y A*, and the electron field, ¢, are

OuF* =j" = edy*y, (2:2)

EPp-myyp=0. (2.3)

The fermion field equation of motion in LF coordinates can be rewritten as
[%(ia+ —eA%)y™ + L(i0™ ~ eA™ )yt — (101 - eat)yt - m] =0,

(2.4)

where 8% = 2(8/9zF). One can introduce projection operators Ay =
Yoy FyE = 127% % and fields 3 = A19. Eq. (2.4) reads

(0% — eAT)Y_ + (107 — eA™ ) — at (101 — eAt )y — Bmy = 0, (2.5)
and splits into two coupled equations,

(it — eA*)yp_ - [al(ia““ —edt) + ﬁm} Yy =0, (2.6)

(0~ — eA” )y — [al(iai— —eAl)+ ﬂm] $_=0. (2.7)

Eq. (2.6) contains no time derivative (i.e. no derivative over z*) and is a
constraint. It is visible that one can express 1¥_ in terms of other fields by
integration over 2~ and solve this constraint when one chooses the gauge
A% = 0 [13). This choice of gauge is adopted for all gauge fields in this
paper. Thus, the field ¥ is not a dynamical degree of freedom. From
Eq. (2.2) for v = + it follows that

~o* (Jo*a~ —otat) =+, (2.8)
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where j1 denotes the fermion current. This equation does not contain time
derivatives and is also a constraint, which can be used to find the field A~
in terms of other fields by integration over z~. Thus, A~ is not a dynamical
degree of freedom.

The dynamical degrees of freedom are fields ¢4 and A+. One can
express the density of a canonical energy-momentum tensor, T#¥, in terms
of these variables and their conjugate momenta and evaluate the canonical
LF Hamiltonian for electrodynamics at a time z+ = 0,

H(zt =0)= /dz"d%lﬂ(z”f =0,z",z7%), (2.9)
where H = 1,77~ is the LF Hamiltonian density,

M= Ylorops + 309470147
1
At

. =~ + L. e2 = - = ~
+ep Ay + 62¢A——2;.76+41/) + —2—¢7+¢ v, (2.10)
The first two terms represent LF energy density of noninteracting fermion
and electromagnetic fields, o = i9*a* + fm and the new fields, ¢ and A, are
defined in terms of the independent degrees of freedom, ¥ and AL, so that

they would represent full fermion field and the electromagnetic potential in
the free field theory [13, 16]. Namely,

b=y +9-, (2.11)
where i 1
Vo = mrovs, (2.12)
Al = A, (2.13)
and ) .
A™ = ;-a—;ialAl. (2.14)

This way of writing the energy density in Eq. (2.10) is useful in electro-
dynamics since the free field approximation is a very good one for a small
coupling constant e.

In order to introduce particle interpretation of this field theory we quan-
tize Fourier components of the fields ¢4 and A~ as follows. Fourier expan-
sions of free LF quantum fields are

Viree(2) = /[dk] Z [bk,\umk,\e_ik” + d{.,\”mk,\eikz} , (2.15)
x
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Afeo(z) = /[dk] > [ak,\s’,:ke'ik’ + ail\eﬁ;e‘k”] , (2.16)
Y

where we use the abbreviated notation for integration over the three LF
momentum variables,

dkto(kt)d2 et
/[dk] = / o uallal oy (2.17)
The commutation relations for LF creation and destruction operators are,
brarblo b = 1, dl b = 167°kT 6% (k — )6 2.18
kx Y% = ks Ggg ( = 10T ( q) Aoy ( . )
[ak)\v atgo] = 167r3k+53(k - Q)az\a ’ (2°19)

and all other commutators or anticommutators vanish. by, annihilates a
bare electron with the three momentum components £+, k! and k2, and the

spin projection on the z-axis equal A\/2. bT k) creates a corresponding elec-
tron. Similarly, d;» annihilates a bare positron and dz 5 creates a positron.

ayp) annihilates a bare photon of polarization A = +1 along the z-axis, aL A
creates a corresponding photon. The fermion spinors are

=1 + Lpd
Umk) = W[A-'—k +A_(m+ak )] Um > (2.20)

where U, is a spinor for a fermion at rest; um1 = v/2m(1,0,0,0) and

ul _, =+/2m(0,1,0,0). For positrons u is replaced in Eq. (2.20) by v and
the positron spinor at rest is obtained from the corresponding electron spinor
by charge conjugation. The matrix multiplying the spinor of a fermion at
rest on the rhs of Eq. (2.20) represents the kinematical LF rotation-boost
operator. The photon polarization vectors are

ktey |
()= el =0, 5 =2—2 T e | (2.21)

where ¢3- = —(1/v/2)(1,4) and e, = (1/V2)(1, —).
It is important that the momentum variable k™ in the free field expan-
sions is not allowed to be negative. This is a consequence of the condition
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that a free particle is not allowed to have an imaginary mass. Namely,
k2 = ktk— — k12 = m2 > 0 implies that k* = k% + k3 > 0, where
k® = /(k1)? + (k3)2 + m2. This fact has profound consequences to the
LF quantum field theory.

Using these definitions one can write Fourier expansions of the inde-
pendent LF quantum field degrees of freedom at zt = 0 as follows,

$+(27,20) = Apdpee(z 7,2, (2:22)
At(z™,2t) = At (=7, 2Y), (2.23)
and using Eqs (2.12) and (2.14) one obtains expressions
P(z7,2) = Yree(z 7, 27) (2.24)
and
A" 2ty = AL (27,2 1), (2.25)
for 2+ = 0.

Substituting expansions from Eqs (2.22) to (2.25) into Egs (2.10) and
(2.9) one obtains the Hamiltonian of LF QED. As Hamiltonians for almost
all local quantum field theories, quite independently of the form of dynamics,
this Hamiltonian is diverging and needs elaborate analysis before one can
use it in practical computations. We describe below how one may use this
Hamiltonian to derive an approximate description of positronium.

2.2. Positronium

Creation and annihilation operators introduced in the previous Section
can be used to build the LF Fock space representation of eigenstates of the
QED Hamiltonian. The bare vacuum state |0) is annihilated by all annihila-

. o . t t
tion operators. A bare electron-positron pair is represented as b, , d, [0).

Such a pair may be accompanied by a bare photon, and the three particle

state is represented by b;z}‘zdllAla(gC]O). Infinitely many bare states are
coupled by interaction terms in the Hamiltonian of QED. In order to ap-
proximately describe positronium one can use the intuition that it is a state
built mostly from a bare electron and a bare positron. One has to include
the state with one photon in addition to a pair of fermions in order to
incorporate all leading order interactions which combine together into the
Coulomb potential. All other possible bare states are neglected in this ap-
proximation and the full Hamiltonian is projected on the space spanned by
linear combinations of various bare electron-positron states et e™~) and bare
electron-positron-photon states |ete~ph). This approximation is called LF

Tamm-Dancoff approximation [26, 27].
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Positronium of the total momentum P is represented in the LF Tamm-
Dancoff approximation by the following state,

\P) = / (dp2)(dp1] L, (P2op1)8L, . dE 10}
AL Az

+ Z /[dpz][dpl dQ]gAz,\le(P%PI,'I)bpg)‘z :,1)\1 5]0).(2.26)
AIAQC

The wave functions have the forms,

&L 3, (p2,1) = 2(27)°83(P — py — p1)y/ 2T BT bagn, (2, 5%),  (2.27)

and

!pz\P;Alz(pZ:pla q) =
2(27)36%(P — p2 ~ p1 — 9)4/P3 PT 20 baya,e(@2,21, K7, 57) - (2.28)

Such forms are implied by the kinematical symmetries of the front form
of dynamics. Factors of square roots are introduced for convenience. The
arguments of the wave functions are defined as follows.

+ + +
p p g
2!2:;%;, 31:;&, 2!0=F-_;_-. (229)

In the electron-positron sector we define

pr = 2Pt + xt, (2.33)
pi- =z Pt —kt, (2.34)
and

22421 = 1. (232)

In the electron-positron-photon sector we define
Py = z2Pt 45y, (2.33)
pi = 2Pt — k1, (2.34)
gt = 2o Pt + ki - &, (2.35)

and
zo=1-21 —22. (2.36)
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These variables resemble variables z and p+ used in description of hadrons in
high energy collisions. The fraction z of the total momentum P¥ resembles
the Feynman parton model fractions of the total momentum of a hadron in
the IMF.
The bound state equations are obtained by projecting the Hamiltonian
eigenvalue equation,
P.L2 + M2
Pt
on the Fock space |ete~)@|eTe~ph) and expressing the resulting eigenvalue
problem in terms of coupled integral equations for the two wave functions
from Eqs (2.27) and (2.28). The integral equations can be written in an
abbreviated fashion as

[pi' +p7 + 3 [(Vere-) X J(Hr) ]
ZI(HI) ! P] +p2 +q +Ef< ete~ ph)

[ !Pf;)‘l(e'*’e“) } _ P14 M2 [ A2A1(8+e )
W£A1¢(5+C_Ph) Pt A aeleteph)

H|P) = |P), (2.37)

] , (2.38)

where we marked symbolically integrations over arguments of the wave func-
tions and sums over spin indices, and indicated matrix elements of operators
between the corresponding Fock states by the angular brackets. (V_+.-)
represents interaction kernels which result from matrix elements of opera-
tors order e from the QED Hamiltonian in the et e~ Fock sector. This term
includes the fermion self-interactions due to normal ordering of operators
and the LF instantaneous photon exchange interaction which is induced by
the last term in Eq. (2. 10) (Vete-pn) Tepresents instantaneous fermion-
photon couphngs induced in the electron-positron-photon Fock sector by
the fourth term in Eq. (2.10). (H|) represents matrix elements of the first
interaction term on the rhs of Eq. (2.10). This term induces emission and ab-
sorption of single photons by fermions and leads to transitions between the
two Fock sectors. Thus, the positronium is represented by 8 wave functions,
four of six variables and four of nine variables, which satisfy a nontrivial set
of integral equations.

The total momentum of the bound state, P, can be eliminated from
Eqs (2.38). This is one of the unique properties of the LF form of dynamics
which we referred to as external relativity in the Introduction. The to-
tal momentum components P and P+ formally drop out from the bound
state equations and the mass eigenvalue M for the positronium is inde-
pendent of the total three momentum of the bound state. In other words,

E(P) = v/ P? + M? as it should be. Analogous bound state equations in
ET dynamics would not lead to such energy-momentum relation for the
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bound state solutions. In ET equations different choices for P would lead
to different results for M, which is not acceptable.

Thus, in LF dynamics, one obtains equations for the relative motion
wave functions which are independent of the bound state motion as a whole.
The relative motion wave functions appear multiplied by three-dimensional
delta functions in Eqs (2.27) and (2.28). These are functions of only three
and six arguments, respectively. The integral equations for the relative
motion wave functions are much simpler than the original equations.

One may observe that the off-diagonal terms in Eq. (2.38) contain a
factor e and the interaction (V,+.-,5) a factor e?. Therefore, (Vo+.-p)

contributes to the effective dynamics in the ete™ sector terms multiplied
by e* and higher powers of e. Let us assume that all integrals over relative
momenta of bare particles are limited by cutoffs on the order of the bare
electron mass, m. Then, such interactions are of order a®?m and can be
neglected in comparison to the leading interactions order am. Once these
interactions are neglected one may observe that the wave function of the
three particle sector can be algebraically expressed in terms of the wave
function of the two particle sector.

We can express the three-body wave function by the two-body wave
function and write an equation for the two-body wave function itself. This
equation has the familiar structure

m2+K24+3;, mPiki4E
[ z2 M + z M B M]¢
+3 [Worns) + (Ve e =0. (2:39)

The wave function ¢ represents a column of four wave functions corre-
sponding to four possible spin configurations of the electron and positron.
(VoprE) represents the one photon exchange potential, which depends on
the eigenvalue M. In order to explain further procedure, we represent the
wave function as a 2 X 2 matrix,

- |%n ¢TT] 9.40
P22 [¢u 11 (2.40)
Then, Eq. (2.39) reads as follows,
m? +k? + 3, m2+n2+21 2 11
2 d*x
[ 32 + 21 }¢2X (ZZ)K‘ ) (2 )2 / /

(54 = v)bwalehp e Nsh +v) 1 )] =
X[ denominator (zz_zlz)z‘ﬁ“?(zm" )| = 0,(2.41)
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where a = (e?/4r), and

1,4 kLot !
;. KYo— ; zh —z
2s) = ot + ot +otem—2— 2, (2.42)
z2 z) Tz}
L b 1,4 !
;  K'To+ KO ; zh — 2o
28} = ——o' + o' t+ote*mt—=| (2.43)
z; T3 1%,
1 1L
KT — K
vl = —— | (2.44)
T2 — 2,

and

denominator =u2 - %(pz - p'2)2 - %(Pl - P’1)2
+ 32z = 25l(M], + M3, - 2M7)
=p2+(n‘l’ "L) +2( 2_32)
X(K’2+m N2+m I2+m2 n12+m2)

T2 1 z; z,
n2 + m2 Klz +m2
+ zg — 2 ( — T 2M2) . (2.45)

We have introduced the mass, u, which is here put equal zero for photons
but will be useful in a later discussion for gluons. We have also defined the
on-mass-shell momentum four-vectors p2 and p; so that p2 = p? = m?, and
introduced useful notation M2, = (p; + p2)? and M2, = (P} +p})?%, where
primed symbols refer to the intermediate states under the integrals.

Bound state equations of this type are known for a long time (2, 28].
First numerical solutions for such equations using partial wave analysis in
scalar field theory were found by Danielewicz and Namyslowski [29]. Partial
wave analysis of similar equations in field theories with spin and examples
of numerical solutions were given by Glazek [30, 31].

The fermion self-energies, £; and X,, are

5, = / /d2 L [m?(1- 2712 + 2 (272 4+ 22711 - z)"z)] ‘
(2 7)? 1(‘/\,( Mz) + x“;m’ + n:i—:ﬂ - m2

(2.46)

If we assume that the photon momenta in these integrals are suitably limited
in a range on the order of bare electron mass, we can proceed as follows. Z;
depends on the electron and positron momentum through a characteristic
argument z;(M2, — M?), which is on the order (am)? in positronium (see
the discussion below). Therefore, £; and ¥, are predominantly constants
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order am? plus terms order a®m? and the latter can be neglected. The
former can be considered as a renormalization of the bare m? term in the
first term of the LF QED Hamiltonian density from Eq. (2.10) (but not
terms linear in m in the Hamiltonian). Then, one can say that the bare
mass squared was chosen precisely to be such that when the leading constant
term of ¥ is added the result is a physical mass squared of an electron or a
positron, denoted again by the same letter m. Thus, in positronium where
a ~ 1/137, one can forget ¥’s when considering leading interactions order
a and small momentum cutoffs.

The first term under the integral in Eq. (2.41) is the one photon ex-
change interaction and the second term is the instantaneous photon ex-
change. When the integrals over relative momenta of fermions are suitably
cut off at values not exceeding m, one can argue for dramatic simplifications
of the interaction kernels as follows.

It is assumed that the relative motion of fermions is selfconsistently
described by a wave function which peaks at momenta very small in com-
parison to the electron mass, order am. This assumption is verified a pos-
teriori. Then, one can neglect & and ' in comparison to m and consider
z, z2, =} and 2} to be very close to 5. Thus, z; = 1 +y, 21 = Yo — v,
¢y =1L +y' and 2} =14 — ¢’ and y ~ y' ~ a. Therefore, the spin de-
pendent terms from Egs (2.42) and (2.43) (which are proportional to the
fermion velocities ~ a) contribute terms order « or higher to the numerator
in Eq. (2.41). The special spin independent term from Eq. (2.44) is of order
1 since both numerator and denominator in v+ are small. The denominator
from Eq. (2.45) is in the leading order in « equal (k+ — &'1)2 +4m2(y~y')2.
The combined result is that the leading interaction kernel in Eq. (2.41) is

1 (n‘L - KI.L)Z 1
N AR G s S e g
2
T (k- n;_L)24_T4m2(y —y)R (2.47)
Next, we change the variables from z and s to
pt =«xt, (2.48)

and

2 12
3 = (g, - 1), /TR0
P’ =yMiz = (22 - ) o) (2.49)

so that we can form a vector, 5 = (pt, p3), and

M3z = 4((7)" + m?]. (2.50)



Relativistic Bound States of Elementary Particles. .. 1333

Similarly for primed variables, so that

MY, = 4(7")? +m?], (2.51)
and 2
o 1-4y 13 1 13
dzy =dy = Mg dp'” ~ —2mdp . (2.52)
In this notation, Eq. (2.41) with the leading kernel from Eq. (2.47) reads
4o dp'  4m?
2 2 S oag2
40 + W) ~ o [ G Gy sl = M el

(2.53)
Writing the positronium mass as M = 2m — E}, where Ej} is the binding
energy, and neglecting terms order EZ, one can rewrite Eq. (2.53) as

d3p' —dra
(27)* (F-5")
which is the Shrédinger equation in a center of mass coordinates for two

charged particles interacting by the Coulomb potential, independently of
their spin. Eq. (2.54) has solutions of the form

N
(P? + mEy)?’

=2
e+ M) = -B(®),  (254)

$(P) = (2.55)

where N is a normalization constant and Ej = 1/;a®>m. We stress that the
wave function from Eq. (2.55) falls off very quickly for momentum |5} > am
and the integral with Coulomb potential in Eq. (2.54) is insensitive to the
upper limit of integration, i.e. to the cutoff imposed on bare particle mo-
menta in the original Tamm-Dancoff eigenvalue problem. Thus, we have a
selfconsistent approximation for positronium in LF QED. For small cutoffs
and a small coupling constant the nonrelativistic Coulomb wave function is a
leading order approximation to the positronium state and corrections to the
Coulomb wave function due to various neglected terms can be investigated
in a systematic way using perturbation theory.

As a side remark we would like to add that the nonrelativistic picture
of positronium inspires successful models of heavy quarkonia. There, the
Coulomb potential is modified by a model term assumed to represent a
string of gluons. Lattice calculations for static quark sources representing a
heavy quarkonium at rest, support this idea. Further improvements of the
lattice calculations may find the size of corrections to the nonrelativistic
potential which are implied by QCD. Nonrelativistic lattice calculations for
heavy quarkonia have been recently reported by Thacker and Lepage [32].
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Using Eq. (2.55) one may speculate that a good first approximation for
the LF positronium wave function has the form

&2 + (2o — 3)24m?

zz(l - 2:2)

#(z2,61) = N [aZm? + , (2.56)

independently of the electron and positron spins. This wave function sharply
peaks for z; ~ 2; ~ 15 and k- ~ 0. Minor corrections to this form
can be investigated in perturbatjon theory. This wave function is strongly
convergent for large relative transverse momenta or extreme longitudinal
momentum fractions; ¢ ~ zZ(1 — 22)2x~%. The strong convergence, i.e.
the quick fall off of the wave function in momentum space in the Coulomb
potential is the source of success of bound state models in QED and may
misleadingly suggest that theoretical problems in relativistic bound state
dynamics are of marginal importance. Let us illustrate the scale of problems
one has to solve. One can calculate the structure function of positronium in

the leading order in « using the wave function from Eq. (2.56). One obtains

FpositroniumZ(z’) = Qezzf(z) 3 (2.57)

where the electron—parton distribution function is

f(z) = N— [2(1 - 2)]* :. (2.58)
[e(1-2)+ (= - 3]

Since fol dz f(z) = 1 this function approaches §(z — /) when a — 0. In
reality, the half-width of the positronium structure function is of the order
of 1073, This should be contrasted with a proton structure function which
is a smooth function extending over the whole range of z from 0 to 1. Our
knowledge of bound state dynamics in positronium is of little utility in the
case of hadrons. In hadronic dynamics a whole range of constituents mo-
menta, at least three to four orders of magnitude larger than in positronium
and exceeding constituents’ masses many times, must be explored before we
will be able to provide a theory of hadronic structure.

Since in positronium one does not allow too much momentum in particle
self-energies and vertex corrections, the ambiguities in the theory due to
lack of covariance or other limitations are small and hardly visible. Some
discussion of retardation effects in a related case of scalar boson exchange
in next to leading order terms can be found in Ref. [33]. One should also
mention that LF formulae for wave functions analogous to Eq. (2.56), can
be used to incorporate knowledge of nonrelativistic wave functions in LF
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phenomenology of rapidly moving and energetically probed bound states
like deuteron. [34-36, 61] This discussion completes our presentation of
LF theory of internally nonrelativistic bound states. Precise theoretical
understanding of bound states of elementary particles is limited to these
simple systems.

When one considers coupling constants which are not as small as in
QED and cutoffs are definitely larger than the constituent masses in order
to include relativistic motion of constituents then the whole positronium-like
picture of bound states goes out the window. Many terms in the Hamilto-
nian become not negligible and difficulties with combining quantum mechan-
ics and special relativity become numerically significant and conceptually
bothering. In the case of strong forces when relativistic effects become im-
portant the whole picture of bound states is murky and requires systematic
investigation.

We need to understand various divergences in the LF bound state
equations and formulate precise definitions of eigenvalue problems for LF
Hamiltonians in quantum field theory. Before we proceed to the theoreti-
cal discussion of LF Hamiltonians it is instructive to present examples of
semi-phenomenological models which demonstrate that relativistic effects
in bound state dynamics are not at all negligible. We shall now discuss
two examples of physical systems where relativistic effects are relevant to
analysis of experimental data. We begin with nuclear physics.

3. Nucleons in nuclei

In the previous Section we have observed that electron-photon inter-
actions in positronium are able to modify electron mass but the effect is
extremely small and can be described in perturbation theory. In nuclear
physics relativistic effects of altering mass of a nucleon in the bound state
dynamics in a large nucleus are much larger. Such effects cannot be de-
scribed in perturbation theory. Effective nucleon masses appear in model
considerations of nuclear matter. Extensive studies have been carried out in
the Walecka model [37]. Advanced introduction to relativistic theory of nu-
clear bound states has been recently published by Celenza and Shakin [38].

Alteration of the nucleon mass in nuclear matter is considered to be one
of possible explanations of the observed difference between deep inelastic
lepton scattering cross section on free protons and on protons bound in
nuclei. However, although there is a great need for relativistic theory of
nuclei which could help in understanding nuclear effects in deep inelastic
lepton-nucleus scattering and heavy ion collisions, LF theory of many-body
systems is virtually nonexistent. Our discussion of the mass shift effects for
nucleons in large nuclei is based on the boost invariant theory of nuclear
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matter developed by Glazek and Shakin [39] and we extensively quote from
Ref. [39] in this Section. Average properties of matter inside large nuclei are
similar to properties of gedanken infinite nuclear matter. In LF approach
nuclear matter itself is considered to be a giant bound state of nucleons,
in which surface effects can be neglected. On the basis of the LF nuclear
matter model one may attempt to explain some features of the deep inelastic
lepton-nucleus scattering.

3.1. Relativistic many-body bound states [39]

We consider a model based on the following Lagrangian density [40]
L= 1(0upd*p — B*) + (i § — m)y — g (3.1)

Varying the corresponding action one obtains equations of motion for the
scalar field ¢, called a meson field, and the fermion field 1, called a nucleon
field,

(0% + 1?)p = —g9¥, (3.2)

(i @ — m)y = gvp. (3.3)

The fermion field equations of motion involve constraints. Following a sim-
ilar procedure as in QED in Section 2 one can define the field ¥, such that
the full fermion field is

Y=+ %;ﬁgsom
7t -
(1 + oy ) v, (3.4)

where the latter equality is a consequence of yt4% = 0. The LF Hamilto-
nian reads
. _gl2 .2
P = %/‘dz_dzz”‘ {w(—t‘?“’ ity + Pyt 2 i@'-: =9
= . = 4t
+299%e + g ‘P2 5T gwﬁ] (3.5)

The momentum P+ does not explicitly involve interaction terms

= %/dw‘dzx'l' [8+903+go+ 127’*'2'8"'1/3] . (3.6)
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The fermion field is quantized in order to obtain its particle interpretation
and is written as

‘!Z)(SB) = /[dp] pr)\rurump/\e—ipz ’ (3'7)

AT

for z+ = 0. We adopt here the same conventions as in Section 2. The
subscript m of the spinor reminds the reader that the fermion mass in this
spinor is equal m as for free nucleons, see Eq. (2.20). In addition, we have
indicated isospin index 7 and isospin spinor u,. During further discussion
we omit isospin for simplicity but include it back in our final formulae. In
Eq. (3.7) we do not include the antinucleon component of the field, since
it is not necessary in the mean field or Hartree theory of large nuclei or
nuclear matter. It is also not necessary to discuss explicitly quantization of
the meson field in the mean field approximation.

The mean field description of nuclear matter is based on the following
variational principle. One considers a trial state

| P, parameters) 4 (3.8)

for a system of A nucleons with total momentum P. The “parameters” are
essentially wave functions describing the motion of the nucleons and mesons.
One defines a so-called static energy operator

E, = 3(P7 + P), (3.9)
in which the subscript s refers to the static approximation for the meson

field. The expectation value of E, is defined in the standard way

A(P, parametersiﬁ] s| P, parameters) 4

E(P,parameters) = , (3.10)

A{P, parameters| P, parameters) 4

and called energy. Then we minimize the energy with respect to the pa-
rameters. Dirac equation for nucleon separation energies, expression for the
nucleon effective mass and an optimal volume condition for a large bound
state of nuclear matter with fixed number of nucleons (or, equivalently, the
magnitude of the Fermi momentum), result from equations of the form

]

—— F( P t =0. 11
6(parameters)E( , parameters) = 0 (3.11)

The mass of nuclear matter which is a giant bound state of nucleons is given
by the formula
M, = E(M,,optimal parameters), (3.12)
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where we considered the nuclear matter at rest and replaced P by M4.
The relativistic LF Hartree variational ansatz for the ground state of
the system of very many nucleons is

A
|P) =" |P)n, (3.13)
n=1
where states | P), represent stationary levels to be filled by A nucleons,
|P)n =" / [dk)[dK) f34(k, K )bL, B, 10). (3.14)
AA

A nucleon of momentum k is accompanied by an effective residual system of
A — 1 nucleons and mesons of total momentum K, created by the operator
Bt. Each orbital is associated with a separate residual system whose pa-
rameters are those of the corresponding orbital [41]. The residual systems
have masses denoted by M,,. When evaluating the energy or momentum of
nuclear matter, we will ignore the noncommutativity of the operators b and
Bt. Therefore, it is legitimate to write the sum over n in Eq. (3.13). The
bookkeeping for the residual systems of A — 1 nucleons is facilitated using
either commutation or anticommutation relations according to their spin,

[Bicams Bl pr] , = 2KF 20V (K = K )oppbom . (315)

The wave functions ff;"}z(k, K') have the form

[k, K) = 2P (27)%6%(P - k - K)gp (2, x%),  (3.16)
where
kT
r = F (3.17)
and
kt =kt —cPt. (3.18)

This form is familiar from the previous Section describing positronium. The
main new element is that the masses of the two particles, the nucleon and
the residual system of A — 1 nucleons, are completely different while in
positronium masses of the electron and the positron are equal. The nuclear
matter is viewed as a superposition of 4 pairs of particles. In each pair
there is a single nucleon in an orbital around or, in fact, within an infinitely
heavier body of the remaining A — 1 nucleons.



Relativistic Bound States of Elementary Particles. .. 1339

In the static approximation the meson field ¢ is replaced by the static
solution ¢, of the meson field equation of motion, Eq. (3.2),

P =P = -;gz—t/?z/)- (3.19)

Using this approximation and integrating by parts in Eq. (3.5) one obtains

SN Y&
--1 / dz=d?zt [«h —6——¢+g¢w,] : (3:20)

The remaining three components of the momentum operator become equal
to

pr=1 / de—d?zt gytioky, (3.21)

since the derivatives of the static meson field are negligible in the big volume
of our nuclear matter and the surface effects are neglected. We assume that
the system saturates. This will be verified a posteriori. The saturation is a
purely relativistic effect and does not occur in an analogous nonrelativistic
model.

Now, one can evaluate expectation value of the energy operator from
Eq. (3.10), making following steps. Matrix elements of translationally in-
variant operators, say O, between the total three-momentum eigenstates are
normalized using relation

4(P'|0,|P)4 = 2P*(27)%8%(P - P") O,. (3.22)
Using Eq. (3.4) with ¢ replaced by ¢, one obtains from Eq. (3.19) that

-218‘*‘ 2i89 +

Taking the expectation value of this equation in the nuclear matter trial
state and assuming that the expectation values in the nuclear matter are
the same as in the residual system with one nucleon less, one obtains the
integral equation [39]

A _
U L N U "Ax -
APps(0)|P)a =~z }: > [ / Zmb X Tmkd g3 4x (o, k1) gaA(2, 61)
n=1X2AA

e
<P.,=—— [¢¢+¢g% Y+ Pp——— ywﬁ} (3.23)

T

_ 7yt 7t
+//umk‘A’ [2(2'P+ _q+) + 2(23P+-§-q+)] Umk

K x!

X g,*,"**(z',n'm<K'iso,(owf>Ag3:A(z,#)] . (324)
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where &1 = k1 + (1 — z)gt + (2 ~ 2')P* and we have used the relation
/ (dk|[dK] = / [d(k + K)] / (3.25)

and the abbreviation

[~ >IN~ ]

/ /2(8(1—:1:)/ / ?2:)3- (3.26)

-0 —O0

The expectation value of the Hamiltonian in the static approximation in-
volves the vertex described by Eq. (3.24). Namely,

L K m
P> [ Vet i

n=1XXA |k

+ // e N’L)ﬂ,+ B A Umir A (K |00 (0) K ) ag)A(z, 6 1) ] . (3.27)
L3
Other components of the nuclear matter four-momentum are

Pl = Z Z/]g)‘A(z k) (2P + k)*, (3.28)

n=1 AA
where we use the property of the relative momentum x,
=(1-2)k- 2K, (3.29)

that k¥ = 0.

It is seen that the expectation values of the kinematical momenta con-
tain only contributions from nucleons, while the Hamiltonian contains con-
tributions of the meson field as well. There is no a priori reason for P}t = P+
and P}t = PL although in each orbital separately

P* = kF 4 K¥ (3.30)

for p =+, L.

Eqs (3.24), (3.27) and (3.28) define the LF description of nuclear mat-
ter in the mean field approximation. By minimizing the mass of nuclear
matter, while keeping the baryon number in each level fixed to unity, one
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obtains separate equations for the wave functions g,)l‘A(:c,K,'L) and masses
of the residual systems. Eq. (3.24) provides the selfconsistent scalar field
form factor which corresponds to the Hartree potential in nonrelativistic ET
quantum mechanics. For finite systems the Hartree theory described above
is very complicated. We consider below a simple case of a formal limit of
infinitely large nuclear matter. For sufficiently large number of nucleons A
one can introduce continuous labeling of states and obtain analytic formulas
for the nucleon mass shift.

The limit of continuous level labeling corresponds to so large a volume
that the discrete quantum level labels of nucleon states in the giant body
of nuclear matter can be replaced by continuous variables,

gyAzA(‘”, ’VL) - y,),‘+nl(m’ K'-L)‘SAS\ )

- g#(m’nl) )
27)3
g———)—6(17+ — zMy)6%(nt — n']')sf‘l , (3.31)

where the discrete labels of states n have been replaced in the continuous
labeling by variables = (T, 5+), so that

A

3> - #/drﬁdzrﬁ = V/, (3.32)

n=1 )

where V is the volume of the nuclear matter bound state and s is a nucleon
amplitude for occupying the state labeled by 7. In order to simplify notation
we include the minimal relativity factors in the occupation amplitudes and
use

P = sp[enT(2r)®) /2, (3.33)

From Eq. (3.24) in the continuous level density limit one obtains that the
meson field formfactor is
A(P'lps(0)|P)a = 2PF(21)*6°(P - P')p (3.34)

where the constant ¢ is

g Yo -
P = —_2/21#1? Bk tmia ¥y (277) 7
K AU

-1

2 [
X |1+ %—2-/210,’7\ *Tnkrt? TUmeap (20 ET) T L (3.35)
7 AMA
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Therefore, the four-momentum expectation values are

P = a2l /MA)PL 4+ 7% 4+ m?
V?;,/ [ wival (/M 4)P*

'w = g9¥

and

PE=VY / P [ /MA)PH + k4], (3.37)
Ay

for pu=+, L.

The variational parameters in the continuum level density limit are
the occupation amplitudes 1,0,’}. The condition that a level labeled by 7
contributes a unit of the baryon number is

}: lal? = 1, (3.38)
A

and we have to introduce a Lagrange multiplier for a corresponding term
in the variational principle from Eq. (3.11). The Lagrange multipliers are
denoted by —w_ and twrn out to determine the separation energies for
nucleons occupying levels labeled by 7. The variational condition

§ - Az, —|
o P; “VZA:U/W),,} wy| =0 (3.39)
gives
vt
(@n —m — g¢) [1 + 51—7:.%0] Yy =0, (3.40)

where we have denoted w;}' =qT = kT, w#' = nt = k! and defined the
spinor 1, as

Pn =D Yo tmpa- (3.41)
A

Eq. (3.40) is an important result. %, is a Dirac spinor of a nucleon
with mass m while [1 + (y7/2n")gy|¥, is a Dirac spinor of mass m* =
m + gp. We observe two features. Firstly, an interaction term of the form
(y%/2i07)gy changes the fermion mass in LF spinors by gy. Secondly, the
Dirac equation in which the shifted nucleon mass appears, is an equation
not for the nucleon wave function but for the occupation amplitude for a
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state labeled by . The label 7 coincides with the nucleon momentum k&
only in the continuous level density limit.
We can change notation for 7 by introducing a three-vector label 7 =
(nt, 7°), where
A

Ma ™ e+ /a3 + (72
el = /m*? + (7)2. (3.43)

One can solve Eq. (3.42) for the mass M, of the residual system of 4 — 1
nucleons,

(3.42)

and

M-,, = MA - 6;; . (3.44)

This equation is valid when both M. n and M4 are much larger than m* and
kp, and becomes exact in the infinite nuclear matter limit. In this limit,
the rest frame of nuclear matter coincides with the rest frame of a residual
system of A — 1 nucleons.

ey equals a free energy of a nucleon of momentum 7 and mass m*. It can
be used to calculate the nucleon separation energy. Although the separation
energy appears to be a difference between energies of a free nucleon and a
nucleon of the same three-momentum and the effective mass m*, the nucleon
masses have not been physically altered. We have no antinucleons in the
trial state nor mesons which locally dress up nucleons, but there is a uniform
background meson field which influences energy of nucleons and it appears
as if the nucleons had a different mass. The origin and interpretation of
the mass shift are confused in ET dynamics by the presence of negative
energy solutions to the Dirac equation and the question about how many
antinucleons are present in large nuclei. The effective mass is merely a
parameter which defines the Lagrange multipliers required by the baryon
number conservation.

The notion of Fermi momentum in LF dynamics has been introduced
for the first time in this model. One has to specify what states are occupied
in the nuclear matter at rest. The trial guess is defined using the parameters

nt=pt (3.45)

7)+ = \/m%. + ()2 + p3 . (3.46)

The Fermi mass mp is introduced as a variational parameter. The Fermi
sphere is formed by declaring that states with |p] < kp are occupied and
states with [p] > kp are empty. kp is the Fermi momentum. Denoting

and
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/ = (27)"3 / dn*d?nt (3.47)

n occupied states
one obtains L2 )
712 + m? + mgp
E, = 4V/% [ - + n+] . (3.48)
n

The factor 4 results from two spins and two isospins for nucleons in a sin-
gle momentum state. This is the only effect of isospin in the mean field
approximation in this model. The constant ¢ is given by Eq. (3.35) as

-1

g - - -
o= —F4/m(77+) Y1+ 467 2/(U“L) o (3.49)
n n
The minimum condition IE
2 =0 3.
dmp (3.50)
implies

mp=m+ gp=m". (3.51)

The Fermi momentum, kp, the volume of the nuclear matter bound state,
V, and the number of nucleons, A4, are related. In order to exhibit this
relation one can use the vector § defined in Eqs (3.45) and (3.46). We have

dntd?nt d®p
/ g / & (3.52)
where e; = 1/p? + m*Z, and denote
[ =tem [@poke - 1a). (3.53)

F

Then one obtains

~I4 / m (3.54)

*
H e;

F
=V 4/e
F

lvh-‘

, (3.55)
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and the relation

A=4v [ . (3.56)
/

The last free parameter of our ansatz for the LF nuclear matter bound state,
kg, is fixed by the variational condition

_4E, _ 3V 11 2 2 P’
O”dkp_ kp |ZH¥ _4/3e; . (3.57)

Direct. inspection of the formulae for P! shows that in the rest frame of
the nuclear matter the equilibriumn condition from Eq. (3.57) implies that
E, = M4 = P} = P;. Eq. (3.57) determines the saturation volume for
the giant nucleus formed by A nucleons so that there is no pressure on its
surface [37].

Eq. (3.57) is our second important result. It demonstrates that the
nucleon momentum sum rule used in the nucleon—parton models in phe-
nomenology of deep inelastic lepton-nucleus scattering is a consequence of
the. dynamical equilibrium in large nuclei. From Eqs (3.32), (3.48) and
(3.57) we have

A
Skt =4av /'rfr = P}, (3.58)
nx=1 7

which is the same as the nucleon momentum sum rule in the infinite mo-

mentum frame,
1

/dyp(y)y =1. (3.59)
0

Here p(y) i$ a density of states for nucleons carrying the fraction y of lon-
gitudinal momentum of a whole nucleus in the infinite momentum frame.
The LF results are invariant under boosts along the z-axis and provide un-
derstanding of the infinite momentum frame results in the rest frame of a
nucleus.

The sum rule also says that the average plus momentum of a nucleon in
the model nuclear matter, consisting of A nucleons, is A~1. The Fermi mass
mp = m”* is smaller than the free nucleon mass m. The separation energy
depends on labels of nucleon states as if nucleons had mass m*. The meson
field contributes to the mass of nuclear matter. Nevertheless, the nucleons
carry, on average, as large a fraction of the total plus momentum of the
nucleus as they would in a gas of A noninteracting nucleons. These results
are useful in phenomenology of deep inelastic lepton-nucelus scattering.
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3.2. Phenomenology of the EMC effect

European Muon Collaboration (EMC) has observed that the deep in-
elastic lepton-nucleus scattering cross section is not a straightforward su-
perposition of cross sections for scattering on individual nucleons [42]. The
structure function F;4(z) of a nucleus built from A/2 protons and A/2
neutrons is a function of the Bjorken scaling variable z which ranges from
0 to 1. In the deep inelastic lepton-nucleus scattering, the leptons from a
beam with energy of many GeV per particle emit hard virtual photons and
scatter towards a detector which measures their final energy and scatter-
ing angles. The hard photons struck individual quarks in the target nuclei.
There is a Bjorken variable z which has the interpretation of a fraction of
a nucleus longitudinal momentum carried by the struck quark in the IMF.
Function z~! F(z) for any target has a parton model interpretation of the
probability distribution for finding a quark carrying the fraction z of the
total momentum of the target in the IMF. EMC has discovered that the ra-
tio of a structure function of iron per nucleon, A7 F, 4(z/A) with A = 56,
to the nucleon structure function Fy(z), does not equal 1. In the range
0.3 < £ < 0.8 the ratio is smaller than 1 by a few percent. For z > 0.8
the ratio raises to infinity due to the Fermi motion of nucleons and below
0.3 the ratio varies from slightly above to below 1 for z approaching 0. The
shallow dip of the ratio at the intermediate values of z has raised specula-
tions that nucleons in nuclei may have significantly altered internal quark
structure due to some relativistic binding effects. Therefore, the EMC ef-
fect has caught attention of many physicists. Models based on the idea that
nucleons have different effective mass when bound in nuclei have been con-
sidered. Our results from the previous section add to that discussion and
demonstrate that the LF Hamiltonian approach to bound state dynamics
can be useful in practice.

For example, Akulinichev, Kulagin and Vagradov have proposed that
the binding of nucleons leads to corrections in the nucleon energy and this
correction may be responsible for the observed EMC ratio [43]. They used
ET dynamics in their reasoning.

The struck quark carrying z of a nucleus momentum belongs to a nu-
cleon which carries y momentum of the nucleus, z < y. In order to calculate
the structure function of a nucleus one needs to know the distribution of
nucleons in the nucleus, p(y). The distribution of nucleons is a sharply
peaked function centered at y ~ A~!. A small shift from that point to-
wards smaller y by a few percent could explain the EMC data. In ET
dynamics the variable y for nucleons can be defined as

P’ +p
v="3r (3.60)
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and if p° can be slightly smaller than the nucleon mass then the typical
values of y could be slightly smaller than A~}. Therefore, the effective
mass of nucleons in nuclei which is smaller than the mass of free nucleons
could explain the effect. Alternatively, one could replace a free nucleon
energy by the number p® which corresponds to the shell model energy of a
nucleon in a stationary nuclear level.

However, the effect is small and other effects of the same order of magni-
tude have to be taken into account in addition to the mass shift. For exam-
ple, there is a problem in ET dynamics that the quantity y from Eq. (3.60)
can be less than zero or greater than 1 when p° represents the off mass shell
energy of a nucleon [44]. This effect also leads to corrections to the momen-
tum sum rule for nucleons in relativistic many-body theory [45]. The same
problem appears when structure functions are analyzed in a bag model [46].

In LF dynamics the variable y is defined as

P+
and ranges from 0 to 1 according to the parton model interpretation. In
the previous Section we have shown that the nucleon effective mass m*
obtained in the mean field or Hartree approximation for nuclear matter
in a Yukawa model does not shift the peak in p(y) towards y < A~!. The
momentum sum rule for nucleons is a consequence of dynamical equilibrium
which includes the binding. Additional study of the Walecka model in the
mean field approximation including vector mesons may explain if a shift
towards smaller y can be obtained in the presence of the vector meson field.

Glazek and Schaden have analyzed data for various nuclei using LF
description of nuclear bound states [47]. They assumed that a small part
of the total Pt of a nucleus is carried by mesons, predominantly by pions.
They have obtained a fit to all available data for structure functions of nuclei
with mass numbers A ranging from 2 for a deuteron to 197 for gold with
x? of order 1 using the assumption that the momentum carried by mesons
is a few percent and slowly grows for heavier nuclei. The success of the
mode] indicates that one should consider a possibility that mesons do carry
a visible part of the nucleus inertia. Then, one would conclude that the
mean field approximation is not sufficient for explaining the data, unless
the average vector meson field can produce the shift in p(y). In order to
confirm or exclude that the effective mass shift for nucleons may explain the
EMC effect one needs to consider mean field theory with vector mesons and
consider Fock sectors which contain bare mesons in addition to the nucleons.

When the meson states are taken into account one encounters effects of
retardation in the nucleon-nucleon interactions and also self-interactions of
nucleons, similar to those that one encounters in positronium (Section 2).



1348 St. D. GLAZEK

However, the nuclear forces are much stronger than the electromagnetic
ones and approximations valid in QED are not theoretically expected to
be reasonably good in nuclear dynamics. A host of problems arise in the
relativistic bound state problem in nuclear physics since all terms we could
initially neglect in positronium are not negligible in nuclei. Strong form
factors in nonlocal nucleon-meson vertices are introduced in nuclear calcu-
lations in order to dampen these problems. The EMC effect shows that
the lack of precise method of describing relativistic effects in bound state
dynamics poses practical problems in explaining experimental data. Even
larger relativistic effects appear in dynamics of quarks in nucleons.

4. Quarks in nucleons

Nucleons are relativistic bound states of quarks. The binding of quarks
in nucleons is very strong, nonlocal and confining. By strong we mean that
quarks move fast in a relatively small volume. The interaction is nonlocal
since it binds quarks into a color singlet although the quarks occupy different
positions. The structure of nucleons is not yet quantitatively understood
in a theory based on first principles. In QCD, in addition to the effects of
emission and absorption of vector bosons by fermions, one encounters two
problems. Firstly, the bosons strongly interact with themselves (nonabelian
gluon coupling). Secondly, the QCD ground state is a complicated sea of
condensed quarks and gluons and we do not know precisely how to describe
this medium or compute its excitations.

Despite the theoretical problems with solving QCD at hadronic scales,
phenomenological knowledge about quarks in nucleons is quite rich. There
is a quark model discovered by Gell-Mann and Zweig [48, 49]. There is
Feynman parton model [50]. There are many other models designed for
description of specific hadrons, processes or aspects of the hadronic struc-
ture. Recent progress in the description of hadrons has been achieved by
Shifman, Veinshtein and Zakharov in QCD sum rules [51]. The sum rules
greatly differ from other models by that they are directly related to QCD
itself. The main model assumptions involved in the sum rules are the struc-
ture of operators which create or annihilate hadrons and the validity of
dispersion relations which connect results obtained in the deep Euclidean
asymptotically free region in perturbation theory in QCD to the properties
of the hadronic spectrum. Major technique of the sum rules is the short
distance operator product expansion (OPE) [52]. OPE is used for prod-
ucts of various local current operators whose vacuum matrix elements are
connected to observables for hadrons by the dispersion relations.

In this Section we discuss LF phenomenology of nucleon states which
originates in ideas taken from QCD sum rules. Qur discussion is based on
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a model developed by Glazek, Glazek, Namyslowski and Werner [53]). The
original derivation of the model is described in Ref. [54].

4.1. Phenomenology of vacuum condensates and running quark masses

The QCD sum rules suggest that it is useful to introduce universal
phenomenological parameters called quark and gluon condensates. Namely,

v = (91% : G2, G : |0) (4.1)
and
-x* = (2a; : 99 : |2), (4.2)

where G, symbolizes the gluon field operator, ¢ the quark field operator,
and a, is the coupling constant of QCD. Commonly accepted values of the
condensates are

v~ 0.4 GeV (4.3)
and
x ~ 0.24 GeV. (4.4)

The normal ordering symbol indicates that the divergence in the product
of fields at the same point is subtracted. In practical calculations, the con-
densates appear as phenomenological constants in the momentum space
moments of various Green functions. The moments are obtained by inte-
grating Green functions over regions of soft momenta where perturbation
theory is not applicable. One relies on general properties of the Green func-
tions and parametrizes the unknown integrals using the constants like v or
x- The unexpected result of the QCD sum rules is that the condensates have
rather universal values and can be associated with the vacuum properties,
independently of what kind of a hadronic sum rule is considered.

Ioffe has estimated the mass of a nucleon in QCD using sum rules [55].
He used three different current operators which have nonvanishing matrix
elements between the vacuum state and the nucleon state. The nucleon mass
is proportional to the quark condensate. Note that the quark condensate is
a signature of spontaneous chiral symmetry breaking in the QCD vacuum.

Politzer has noticed earlier that the quark condensate induces a mass-
like term in a quark propagator [56]. This term is a part of the quark self-
-energy. One considers a virtual quark propagation with a four-momentum
p, such that [p?| > A% p. The self-energy diagram contains a mass-like

term proportional to x3p~2. This type of a momentum dependent mass-

like term is called a running mass. The running mass is small for highly
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virtual quarks and becomes large for p? on the order of masses of nucleons,
or constituent quarks. Politzer has suggested that the constituent quark
masses may originate from self-energy effects which involve the vacuum
structure.

The running mass idea in LF dynamics of quarks was introduced in a
model which we briefly present below. The model is useful for the following
purposes. It provides a new method of constructing LF quark wave func-
tions for nucleons with all necessary details, and gives realistic examples of
such wave functions. It illustrates how fast quarks have to move in order
to explain some nucleon properties in the model. It points out that the
vacuum condensates may be a useful concept in LF dynamics. The latter
is important, since naively the vacuum state in LF dynamics is trivial and
there is no vacuum condensates.

4.2. Model wave function for nucleons

The nucleon state is constructed using operators which are similar to
the Ioffe currents from the QCD sum rules. The quark masses are functions
of quark momenta. The LF formalism provides the machinery which allows
calculations of form factors and structure functions.

The nucleon state is represented as three quarks. The only parameters
which reflect the complicated structure of the quarks is their running masses.
The state is of the form

Py= 3 [ldnlidpalldpal 35, 01,92,75)
A1 AzAs

abc, at bt
xe Upiar Yparg PaAsl“O) (4-5)

where we use conventions familiar from previous Sections. Indices a, b and
¢ are color indices. |2) is the physical vacuum state. u! creates the vacuum
excitations called quarks up and d! creates excitations called quarks down.
The quarks are assigned three-momenta p;, p2 and p3 and the effective wave
function is of the form

D3 apns (P1:P2,P3) = N 83(p1 + p2 + ps — P) f (Miy;)
3
Z ka Q‘L,Qh)‘laAZ’A3), (46)

where N is a normalization factor which gives

(P'N|PAY = 2Pt (27)%863(P - P')éxn (4.7)
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when the creation and annihilation operators for the quark excitations of the
vacuum are given standard anticommutation relations, Eq. (2.18), enriched
with color and isospin indices. The argument of the function f is a square
of a four-vector built from individual momenta of the three quarks, M2,; =
(p1+p2+p3)?%. The quark’s momenta have + and L components constrained
by the §-function in front of f and the condition that p}*’ >0fori=1,2,3.
The minus components are calculated using the running mass formula [57]

pi? + m?
o

i ] (4.8)

where m; is a function of the i-th quark virtuality. The quark virtuality is
defined as

p = (P -pj — p)? (4.9)
for i # j # k # 1. The nucleon mass is denoted by M. Thus,
Py + 08 + 5 = P* + 30" (p7 +py +p5 — P7), (4.10)

where the light-front four-vector 17 has components

m*)=(m"=2,nt=0,7"=0) (4.11)

and
M3y = M? + PH(p] +p; +p5 — P7) (4.12)

since 7% = 0. This illustrates how the difference between the energy of an
intermediate state of quarks and the energy of a nucleon, appears in LF
dynamics in the invariant mass expression for the quarks. We also have the
following expression for the virtuality defined in Eq. (4.9),

15? - m% = zi(Mz - M%zs) s (4-13)

where the fractions z; for z = 1, 2, 3 are equal ;n;"/P+ and sum up to 1. The
running quark mass is chosen in the form {56, 57, 58]

3
X

. 2"
m? — p;

m; ~ (4.14)

For large negative virtualities the running mass in the denominator is neg-
ligible. This running mass formula has interesting properties. If one insists
on the consistency of Eqs (4.8), (4.9) and (4.14) with a coefficient of order
1 for all allowed values of the quark momenta p? and p;‘- fori=1,2,3in
the nucleon state, one obtains reasonable expressions for the running quark
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masses. These running masses are close to the constituent quark masses
for small quark virtualities, vanish for the large virtualities, and smoothly
interpolate between these limiting values for intermediate quark momenta.
Numerical consequences of such running quark masses for nucleon observ-
ables are discussed in Ref. [58]. The above definitions of virtualities and run-
ning masses can be generalized to states with arbitrarily many constituent
particles.

The function f(M3,;) in Eq. (4.6) determines the size of a nucleon
state. If it is chosen to be

2 Mias
f(Miz3) = exp (— W) ) (4.15)
then the parameter a plays the same role here as the analogous size param-
eter in a nonrelativistic constituent quark model of Isgur and Karl [59].

The three spin and momentum dependent functions I(g:, Q:, A1, A2, A3)
which appear in the linear combination with coefficients ay, , £k = 1,2,3, in
Eq. (4.6), are constructed using the three Ioffe currents from the nucleon
sum rules in QCD [55]. The Ioffe spin-!/; currents have the structure

n(z) = wTIfCu(z) I'Fd(z), (4.16)

where C is a charge conjugation matrix, u(z) is a quark up field and d(z)
is a quark down field, and there are various possibilities to choose Dirac
matrices I'1 and Iz, numbered by k. The fermionic index of the current is
the left index of the matrix I'f. The corresponding functions in Eq. (4.6)
are [53, 54]

I(gi, Qiy A1, A2, A3) = ﬁmlplAlflkCﬁglzpzAz Umapsra X UMPAy  (417)

where the spinors are defined in Eq. (2.20). Each quark spinor involves its
own running mass. upsp) is the nucleon spinor which contains the nucleon
mass. The coefficients ay, as and a3 are not known ab initio. One can check
if there is a choice which can fit some nucleon observables. The arguments
of I} are the quark spin projections on z-axis and the relative momenta of
quarks, called Jacobi momenta, [17]

g = (2jpi — zip;)(zi + 25) 7" (4.18)
and
Qr = (zi + 2;)p — z1(p: + p;), (4.19)

with ¢, 7, k in a cyclic triple. Any choice of a pair (¢;,Q;) with ¢ = 1,
i=2o0ri= 3in Eq. (4.17), is equally valid since the relative Jacobi
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momenta from one pair can be evaluated in terms of momenta from another
pair. Eq. (4.17) indicates that the functions I}, are independent of the total
nucleon momentum P.

The nucleon wave function from Eq. (4.6) obeys all kinematical sym-
metries of LF dynamics. The wave function describes a nucleon as a super-
position of various quark excitations of the vacuum. Various excitations are
assumed to differ by their masses. The assignment of masses to the quark
excitations is correlated with their relative momenta. The excitations can
be the constituent quarks for small relative momenta, or correspond to
the valence Fock state of three massless quarks for very large relative mo-
menta. The interpolation over many scales of momentum is made using the
simplifying assumption that the whole complexity of the quark and gluon
dynamics can be parametrized by the running quark masses only. At very
large virtualities the quark masses are negligible. For smaller virtualities
the running masses grow in analogy to the self-energy of virtual quarks due
to the quark condensate. And for quite small virtualities the selfconsistency
of the running mass formula provides expressions for the constituent quark
masses which mimic the unknown dressing of quarks with quark-antiquark
pairs and gluons.

Numerical analysis of the model nucleon state from Eq. (4.5) leads to the
following conclusions [53, 54, 58]. The coefficients of the three Ioffe currents
can be chosen together with the radius parameter a from Eq. (4.15) so that
all static electroweak properties of protons and neutrons can be reproduced
with less than 10% error. One should note that the calculation of a charge
radius or a magnetic moment of a nucleon requires inclusion of the recoil
effects and the LF scheme is the only one in which this step is under some
control for relativistic bound states. The momentum distribution for quarks
has to be about 40% broader than in the Isgur-Karl model [59] and the
nucleon constituents are highly relativistic. The model of Eq. (4.5) explains
also the falling off ratio of the d-quark parton model distribution to the
u-quark distribution in the proton for the Bjorken scaling variable z — 1.
It is hard to correlate good results for deep inelastic structure of nucleons
with good fits to the static nucleon properties in other models.

The LF definition of the nucleon state provides a probabilistic interpre-
tation of the nucleon structure functions in terms of parton distributions.
The parton distributions as functions of the longitudinal scaling variable z,
are given by the modulus squared of the LF quark wave functions integrated
over transverse momenta. For example,

e (-2) ()2 e

From this result, it is clear that the experimental value which is close to 0
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requires a significant presence of the third Ioffe current in our nucleon state.
The contribution of the third Ioffe current vanishes in the nonrelativistic
limit ¢ — oo. This fact indicates again that in order to explain the structure
of nucleons one needs a relativistic theory of the bound states of quarks.

The analysis described in Ref. [53] was the first three-body LF model
description of a whole set of nucleon observables. Further studies could in-
clude calculations of form factors and structure functions under additional
assumptions about. internal structure of the quark excitations of the vacuum
which form nucleons in the model. Such studies have not been carried out
yet. Building a theory of the nucleon bound states requires precise defini-
tions of various elements of the model which are defined merely intuitively.

A series of investigations of new LF models of hadrons by Dziembowski
and Mankiewicz has followed construction of this model [60]. Vast amount of
examples of insight into the structure of hadrons is provided by many earlier
and more recent LF models. Special summaries are given in Refs [17] and
[18], and also in Ref. [61] where various hadronic phenomena in high energy
nuclear physics are considered. Relativistic effects in LF models of nucleons
have been recently discussed by Chung and Coester [62].

5. Condensates in LF QCD

The confinement of quarks and gluons and formation of hadrons are as-
sociated with a nontrivial structure of the QCD vacuum. The sum rules of
QCD explicitly involve parameters which have an interpretation of the vac-
uum condensates. These parameters correlate various hadronic observables.
LF models which are based on similar ideas, are capable of describing some
properties of nucleons. LF QCD is also useful in describing phenomena
dominated by short distance dynamics, like for example large momentum
transfer exclusive processes where one may argue for applicability of per-
turbation theory [16]. LF perturbation theory is rapidly developing [63].
In QCD hadrons are represented as multicomponent states in the LF Fock
space. The Fock space wave functions naturally support the parton model
picture of hadrons. Special kinematical symmetries of the LF form of dy-
namics offer a possibility to boost bound states, so that one may correlate
the structure of hadronic states in the IMF with their structure at rest. One
may hope that the LF formulation of QCD may soon unify the constituent
quark model and the parton model in the ultimate theory of hadrons. How-
ever, there is a conceptual problem involved in this picture [22]. Namely,
it is not clear how the nontrivial vacuum structure manifests itself in LF
QCD.

The problem with understanding how a physical vacuum state can be
formed in LF QCD can be illustrated by comparison with ET dynamics in
which the QCD ground state is very complicated.
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In ET dynamics one can expand quantum fields at a given moment
of time into their Fourier components. The Fourier components involve
operators which satisfy commutation relations characteristic for creation
and annihilation operators of bare free particles. Using these operators one
can build a whole Fock space of states created by products of the creation
operators acting on a vacuum state. Then one can ask how does the vac-
uum state evolve in time. Unfortunately, the operator which generates the
evolution, the ET Hamiltonian, does not lead to a simple answer. A trans-
lationally invariant Hamiltonian for quantum fields is written as an integral
over a three-dimensional space. The space is defined at the given moment
of time. The integrand of this integral is a collection of various terms which
contain various products of the field operators. In the case of interacting
fields there appear terms which contain products of at least three quantum
fields. Such products contain terms which are in turn products of creation
and annihilation operators. It is important to observe that some terms
contain only creation operators. Integration over the space coordinates pro-
duces the condition that a sum of the three-momentum components of all
creation operators in the product must be zero. Such terms in the Hamilto-
nian create particles from the Fock space vacuum. In perturbation theory
these terms lead to a spontaneous creation of particles, including discon-
nected vacuum excitations. The spontaneously created particles have the
total three-momentum equal zero in the chosen frame of reference. But
they can fly apart unconstrained in all directions. When the Hamiltonian is
exponentiated to generate the time evolution of states, then arbitrary high
powers of terms involving only creation operators appear, and arbitrary
many particles are created from the vacuum state. There is a problem of
finding states which are sufficieritly stable in time and do not spread to new
Fock sectors for ever. In other words, the eigenstates of the ET Hamiltonian
cannot be approximated by states with finite numbers of bare particles. So
far, this problem prevents computations in the ET Hamiltonian formulation
of QCD, since we cannot calculate the necessary infinitely many numbers.
We have not guessed yet how to approximate the stable states of the theory
so that corrections would be small and could be calculated. In perturba-
tion theory one can eliminate the disconnected diagrams. Problems appear
‘when the coupling constants are not sufficiently small so that one cannot
approximate solutions using Feynman diagrams. Acute practical problems
appear in bound state equations, where perturbation theory to a finite order
is not sufficient even if the coupling constants are not large.

In LF dynamics the situation is surprisingly different. If the reader had
an impression that the LF dynamics is merely a sort of a change of vari-
ables this is a place where it should become clear to her how complicated
this change is. Namely, when one expands the same quantum fields into
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their Fourier components on a LF then the corresponding Hamiltonian, P~
instead of PY, does not contain terms which only create particles from the
vacuum. Such terms are absent. There is only a possibility that already
existing particles emit or absorb other particles, but the vacuum stays un-
touched. It happens in the following way. Let us use the examples of field
expansions from Eqs (2.22) and (2.23). From Eqs (2.15) to (2.17) we see
that a product of n fields may contain a term which is a product of n cre-
ation operators and no annihilation operator. However, such a product is
multiplied by an integral of the type

+oo
/ dz~ exp %(kf-&-----%—k,f):c" = an§(kf + -+ k) (5.1)

-0

and all individual momenta kj’ >0,7=1,2,...,n. Therefore, if the point
k1 = 0 in the Fourier expansions is excluded, there are no terms in the LF
Hamiltonian which could spontaneously create particles from the vacuum.
The same argument applies in case of all normal-ordered terms.

The limit kt¥ — 0 is not simple. On the one hand, it is an infrared
limit of plane waves with wavelength going to infinity. This corresponds
to the infinite volume limit of a theory defined in a box of a large volume.
Therefore, the singularities which appear when £+ — 0 may introduce com-
plicated effects, typical for the infinite volume limits and known to introduce
nonanaliticities [64]. On the other hand, the limit k¥ — 0 can be viewed
for massive particles as an ultraviolet limit. For a free particle of mass m

we have kt = \/(z)z +m? + k% > 0, and the possibility that k¥ — 0 ap-

pears only when (k3/m) — —oo. In fact, both singularities appear mixed
in practical calculations. In gauge theories, a choice of the gauge AT = 0
leads to additional singularities for k¥ — 0 [65].

So, one might think that the LF formulation of QCD is destined for
failure due to appearance of such complicated singularities. However, at the
same time many fundamental problems are buried in one place. Namely,
on the boundary k% = 0 of the Fourier expansion of quark and gluon fields.
Therefore, the LF formulation offers a unique setup of the theory. There is
a large domain of the LF Fock space in which the Hamiltonian and other
operators are quite regular and possess helpful symmetries, not available in
ET dynamics. The corresponding annihilation and creation operators do
not contribute to the vacuum structure. And there is a boundary at k* = 0
which is a source of new effects. .

Since the important singularities come from the region of small k* one
can do the following. One can split the region of integration over k™ into two
by introducing a splitting point at kt = §, where § is an arbitrarily small
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number in comparison to the momenta of incoming or outgoing hadrons.
Creation and annihilation operators above § do not change the vacuum
and lead to expressions for various quantities as if the vacuum was trivial.
The operators below § are responsible for the vacuum formation and their
matrix elements in the vacuum bring in new effects. In this situation one
is offered an opportunity to construct semi-phenomenological approaches
to the physics of hadrons. One can replace the Fourier expansion of fields
into creation and annihilation operators with k* < § by some effective
model Fourier coefficients which can mimic the vacuum degrees of freedom
and supply effects of the missing vacuum structure. For example, one can
construct some effective low k* Fourier components which reproduce results
from the QCD sum rules. Thus, we are led to the new concept that the
LF Hamiltonian of QCD contains special terms which reproduce effects
associated with the vacuum structure in ET dynamics [22)].

5.1. Condensates in old-fashioned LF perturbation theory [22]

The Lagrangian density of chromodynamics is

Lcp = -3 Tr F*Y Fyyy + 9u(i Py — m)te, (5.2)
where the total quark field ¥, and gluon field A, are each split into two:
Yve=9Y+w (5.3)
and
At =A + a. (5.4)

The fields ¢ and A are standard LF quark and gluon fields comprising
creation and annihilation operators with k* > §. The fields w and a are
unknown operators involving arbitrarily small k¥ < §. These fields are
called background fields. In order to be able to solve the constraint equations
the background fields are requested to satisfy their own equations of motion:

d* £, = 9@, T*WT® (5.5)
and
id-mw=0, (5.6)
where the color matrices aré normalized as
Te 7°T? = 1§ | (5.7)
and | |
d* = 9* + iga”, (5.8)

= (ig)~d*, d"]. (5.9)
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Using similar procedure as in electrodynamics in Section 2.1. one can
write the LF Hamiltonian for chromodynamics as

H= /dz-d%ln, (5.10)
where

H =¢lo- a¢+ +wloor a¢+ +(om7 a¢+)*w+
+ g(¢ + o) A)(F+0) -
[@ Y Sulst 3+4(¢ o)+ ¢2 o i

T T A ¢2 LA R R Y ey )

Tr!l"
+ TrafAJa'AJ + Trd*'A76%a’ + Tr 0'a’§' A7
+ 2gTri8°‘(fiﬁ + aB) [/ia + aa,.‘iﬁ + aﬁ] - QgTriB"‘aﬁ [aa,ap]
- %g2 Tr [Aa + aa’ -‘iﬁ + a'B] [fia + aa,f‘iﬁ + aﬂ]
+ %92 Tr [aa) aﬁ} [aas aﬁ] (5’11)
and ¥ = ¥°T%;

=@+ TP+ w) - @y T
- [i@'*'(fi" + a%), Aq + aa] : + [i@"’aa,aa]a . (5.12)

The Hamiltonian of chromodynamics looks much more complicated than
the Hamiltonian of electrodynamics given in Eqs (2.9) and (2.10), due to
the nonabelian couplings of gluon fields to quark fields and the gluon field
self-couplings. Additional complications are introduced by the presence of
the background fields in the quantum chromodynamics.

The quark and gluon fields are quantized by expanding into Fourier
components at z+ = 0,

P(z) = / (dk] Z {bz)‘umuuce"ik” + dz/\vmuv*e‘kzl (5.13)
kt+>6 Ae
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and

A¥(z) = / [dk] Z [afc/\s‘;:l\T"e"ik” + ai&efiTceik”] , (5.14)
kt>s  AC

and imposing familiar commutation relations

' ! 1
(st} = {atn i} = [atnaih]
= 1673k 63 (k — k') 650 6 (5.15)

with all other anticommutators and commutators for quark and gluon fields
equal zero, respectively. Renormalization effects are not taken into account
at this point. ¢ denotes color indices, running from 1 to 3 for quark operators
and from 1 to 8 for gluon operators. »

The background fields can be written in the LF gauge AT = at =0
using the know expansion of long wavelength fields in the Fock-Schwinger
gauge [66] and making a gauge transformation to the LF gauge. In the
following discussion we need only leading terms in the background field
Fourier expansion which read

we)= [ ar{y [ i r 5] gt )] + o} ot
kt<s
(5.16)
and

w(z) = / d4k{w0[64(k)]+d”wo [i%:ﬁ“(k)]ﬂ»---}eik”. (5.17)

kt<s
Note that the gluon field expansion starts from terms which are linear in z
and no constant zero-mode is introduced. A constant zero-mode appears in
the background field strength f#¥. According to the conjecture of the QCD

sum rules we postulate that the vacuum matrix elements of the background
fields are

(RNGfawes| ) = $8°° 18ap(RDowo]2), (5.18)
(D|0gd*wis|2) = 7:6°0(1#)gam{R]Gowo|12) , (5.19)
and
(g £ 1370 12)
= & 8°%(9°79P% — g8 PV (0g? f5 517 102) - (5.20)
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The matrix elements on the rhs’ can be identified with the quark and gluon
condensates known from the sum rules. A sketch of the proof from Ref. [22]
is following.

The vacuum polarization considered in the charmonium sum rules is

T ()= i [ dhee (27417t (=), T (O)I2), (5.21)

where .

T (z) =2 ha(z)r¥e(2) : (5.22)

is the quark current operator which has nonzero matrix elements between
the vacuum and the charmonium states. T denotes the z% ordering sym-
bol. Assuming that the zt-evolution of fields is given by an exponential
of the Hamiltonian from Eq. (5.10) one can compute IIt+ = ¢tg¢t1I(¢?)
in the old-fashioned perturbation theory. The background fields commute
with the standard creation and annihilation operators with k* > §. The
annihilation operators can be commuted through the creation operators un-
til the former act on the vacuum state |{2) and annihilate this state as if
it was a bare vacuum. The result is of the form of integrals of some func-
tions of three-momenta of quarks times remaining matrix elements of the
background fields. Leading terms for large negative g2 are

1 -¢2 2m,

+ (1§ 5412 + -+, (5.23)

4872g4
where

c__}3(a+1)(a——1)2 1 va+1l 3a>-2a+3

4a? o/a a-1 aa

(5.24)

and a = 1 - 4m?2q~2. This result matches the vacuum polarization obtained
by Shifman, Vainshtein and Zakharov [51] if we identify the bilinear vacuum
matrix elements of the background fields w and f with the condenstates from
the sum rules. In fact, this result is valid in the limit § « —¢Tm2¢~2. §
is neglected in the final expression. Therefore, Eq. (5.24) cannot be used
when m = 0.

Thus, we have established that the region of k™ < § is responsible for
the formation of condensates in LF QCD. Consequently, prescriptions for
avoiding singularities when kT — 0 in gauge dependent quantities have to
take into account that this region of momenta may be a source of significant
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effects to the whole theory. At the same time we have achieved a situation
in which the vacuum degrees of freedom are well distinguished from the
hadronic constituents with k&t > §. The vacuum is trivial with respect to
action of the constituent annihilation operators. On the other hand, the
LF Hamiltonian contains new operators which induce new effects in the
constituent dynamics due to the vacuum structure. In particular, one can
investigate effects induced by the gluon condensate in transverse dynamics
of bare particles in the LF Fock space.

5.2. Bare particles in the gluon condensate

In this Section we briefly present a study of some terms in the Hamilto-
nian given by Eqs (5.10) and (5.11). One can derive interesting conclusions
about potential significance of the gluon condensate effects in LF QCD using
a set of simplifying assumptions.

Neglecting the quark background field w, the gluon field A and the
instantaneous quark self-interaction in the QCD Hamiltonian, one obtains
the following model Hamiltonian density

. 1 .
Hmoael = ¥} (idtat + ﬁm)ggt(“li”al + Bm)Yy, (5.25)

where the background covariant derivative operator is explained in Eq. (5.8)
and .

al(z) = L=~ ff -2 £]") (5.26)
in the approximation when one keeps only the first term in expansion from
Eq. (5.16) for zT = 0. The Hamiltonian density in Eq. (5.25) describes
quarks interacting only with the background gluon field. The model Hamil-
tonian we consider is

Hpodel = /dm_dzmlt}{model(z‘*— =0,z", a:_L) . (5.27)
Using Eq. (5.20) we have
2
™
%-thol°r<ﬂlg2ai‘(z)a‘l'(y)]ﬁ) = 7_2'1}43"[_3/_!- ~ (0'61’)42:_!_3’_1- (528)

with v given in Eqs (4.1) and (4.3). The vacuum expectation value of the
background gluon field itself is zero, (£2|f3*”[2) = 0.
One can project Hy,oqe1 on the space of quark—-antiquark pairs created
from |£2). The basis states are defined as
1 ) .
lpA, ko) = —ﬁ/dz;dzz:} d:cl-dg:uiLe_”""-’e"””cl

@4 (22)umpr exp [—=ig(z2 — 21)ua" (2)] Umrav4(21)|2),  (5.29)
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where u4(z) and v4(z) denote the quark and antiquark parts in the inde-
pendent quark field 4. The exponential gauge factor between the quark
fields is introduced in order to preserve gauge invariance of the basis states
under a limited class of gauge transformations which are independent of
z~ in order to preserve the gauge condition a¥ = 0 and are independent
of the LF time z+. We have zt = z~ = 0 and z+ = (23 + 2{-)/2. The
gluon field potential a~ does not enter since the basis is defined at equal
LF times z;*’ = :c.j = 0. The argument of the exponential function is a
result of integrating the background field potential along a straight path in
transverse coordinates from zj to z3 for z~ = 0.

The spinorial indices of the quark fields are contracted with the spinors
written in Eq. (5.29). The color indices of the quark and antiquark fields
are contracted with the color indices of the exponential matrix factor, which
transports the quark color indices from :ciL to a:éL. We also assume that the
background gluon field f}'* from Eq. (5.26) has a direct tensor product
structure in the color and space indices,

fiv =71 ® fuvs (5.30)

which allows operations with a'(z) as if it was an abelian field. Although
colors of quarks and antiquarks in the basis states are contracted in a way
which depends on the background gluon field potential, we have simple
completeness relations,

('NE'o'|pA ko) = 1673pT 6% (p — p') 1673k T 63 (k - £'), (5.31)

as if there was no gauge factor between the quark operators acting on the
vacuum |£2). The basis states are colorless.

In order to write the eigenvalue problem for the model Hamiltonian
projected on the colorless basis of g§-states, we define a meson-like state as

1P)= 3 [1dplldilu, p. BlipA ko) (5.32)
Ao

where

¢fo(p, k) = 167363(P — p— k)v/pH kT dyro(z, k1) (5.33)
in analogy to Eq. (2.26) for positronium. The meson-like state from Eq. (5.32)
differs from positronium-like states in that the basis states contain the color
factors which depend on background fields and the background fields have
special properties which distinguish them from classical external fields in
electrodynamics.

The projected eigenvalue problem for the model Hamiltonian is

(PA ko|Himoaall P) = P~ (pA kol P). (5.34)
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Evaluation of the matrix element on the rhs of this equation gives the wave
function from Eq. (5.33) and evaluation of the matrix element on the lhs
produces an operator acting on the same function.

The lhs matrix element involves differentiation in transverse directions,
due to the presence of covariant derivatives d' in Eq. (5.25). The derivatives
act not only on the wave function but also on the basis states. The argument
of the exponential function transporting color indices in transverse direction
is

ig(zs — z1)Yat(2) = igzgat(z;) = —igeiat(zs). (5.35)
Therefore, the differentiation with respect to 23 brings down a factor a1 (z;)
and differentiation with respect to z7- brmgs down a factor at(z2). In the
covariant derivatives we have subtracted a'(z;) and a'(z;), respectively.
One has to be careful about sign changes due to integrations by parts, dif-
ferent signs in the exponents and also the anticommutation relations for
fermion creation and annihilation operators. The lhs matrix element de-
pends only on the difference at(z;) — a*(z2). This difference is invariant
under translations. Translational invariance is broken by the expansion in
Eq. (5.26) which distinguishes the point 2~ = z1 = 0. The exponential
color matrix factor in the basis states restores the translational invariance
in the Hamiltonian matrix elements. Thus, the gauge invariance restores
the translational invariance.

There are terms on the lhs of Eq. (5.34) which are independent of the
background field, terms linear in the background field and terms bilinear in
the background field. The terms independent of the background field rep-
resent familiar LF free energies of quarks. The linear terms would normally
lead in electrodynamics to Lorentz forces acting on charged quarks. The
expectation values of the potential operator A# in QED produce a classical
vector potential of external fields. Here the background gluon field operator
appears in a vacuum matrix element. There are no classical external gluon
fields. The exponential factors in the basis states cancel each other and we
are left with the vacuum expectation value of a*(z2)~a"(z1), which equals
0 by definition. The vacuum background is not modified by the presence
of a quark-antiquark pair. The pair is a local object and cannot interfere
with the long wavelength vacuum dynamics. This a qualitatively different
situation than in QED. The bilinear terms contribute to the lhs of Eq. (5.34)

through the square of at(z;) — at(z2) = al(z; — z3) for z] =z, = 0.
Using Eq. (5.28) we have
3 T(2lg%[at (1) — et (22)P10) ~ 7 (21 — 22)°, (5-36)

where we denoted 7 = 0.6v. In terms of relative momenta of quarks defined
in the same way as for positronium in Eqs (2.29) to (2.32), 22 = z and
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21 =1 -z, we have

2 o0 0
(ziL - zZL)- = _ani 8ﬂi = _(a;»L)2 . (5‘37)

The center of mass motion can be eliminated by writing the eigenvalue as
P~ = (M? 4 P12)/P*. Then, one obtains the following equation for the
relative motion wave function ¢y, (z,x") from Eq. (5.33) and the mass
eigenvalue M:

K.L2 mZ - 174 aJ_ 2
[ +z(1 _m)( 2 e brolz, k1) =0. (5.38)
The spectrum of masses is continuous due to the free motion of quarks in
the longitudinal direction. However, the transverse motion is quantized into
discrete levels of a two dimensional harmonic oscillator. The wave function
is a product of a corresponding delta function of the longitudinal momentum
fraction z and a Gaussian function of the transverse relative momentum x-+
in the ground state, times a polynomial in transverse momentum compo-
nents for excited states. The Gaussian function is of the form exp —x?/(25?)
and V2 ~ 340 MeV. Experimentally observed width of quark transverse
momenta in hadrons is of that order. The high transverse momentum tail
of the quark wave function cannot be discussed without including radiation
of gluons, which we ignored in order to derive this toy model. Nevertheless,
the model illustrates how the infinitesimally small region of kt < § in LF
QCD may induce significant dynamical effects. The transverse confinement
of quarks in colorless states which is associated with the vacuum structure
in ET dynamics may be supplied by new terms in the LF Hamiltonian. This
idea will be further pursued later when we discuss renormalization of LF
Hamiltonians.

The free LF energy of quarks is quadratic in their transverse momenta
and p* in denominator of p~ is analogous to a mass in nonrelativistic kinetic
energy expression (§)%/(2m) [15]. Led by this observation, Glazek and
Schaden have proposed a nonrelativistic constituent quark model in which
the confining harmonic forces are induced by the gluon condensate [67].
A constituent quark is connected to an antiquark in a meson state by an
exponent of a straight path integral of the background field. Three quarks in
a baryon are connected by three exponents of three straight path integrals of
the background fields. The three paths form a star with a junction located
in a geometrical center of the three quarks. The model naturally leads to
the harmonic confining potentials which are familiar from the nonrelativistic
constituent quark phenomenology [59]. We refer the reader to Ref. {67] for
details.
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Following further the analogy with positronium, one may ask what hap-
pens in Fock states involving one gluon in addition to the gg-pair. The basis
states are defined as

pAge ko) = [ desd?zd de d*ed de] d?ef e PR igm0 ik
2 2 1] 0 1 1

@4 (22)Umpa exp [igeia’(2g)][~i0T e B (20)] Fmio v (21)192), (5.39)

where B is the part of the gluon field potential A+ which comprises the
gluon annihilation operators. The longitudinal LF coordinates in arguments
of the background field are put to zero. The above basis states also satisfy
orthogonality relations as free quark-antiquark-gluon states, but the color
indices of bare particles are contracted through the exponential factors de-
pending on the gluon background field. One can include the free energy
term for gluons and the coupling of gluons to the background field in the
model Hamiltonian, still neglecting all couplings of gluons to quarks and
gluons to themselves. One can carry out the procedure of projecting the
eigenvalue equation for such extended model Hamiltonian on the ggg-states.
One obtains the following result for the energy of such system:

pt? 4+ m? + 174(2:% - 1361“)2 N kL2 4?2 + 134(.7331- — :c(,L)2
I =

¢ + (25 — 21)? - (Ca/Cr)(zq — 2{)(zg — 25)]
gt ’

+

(5.40)

where ziL, zi and :c]l denote the transverse space coordinates of the quark,

gluon and antiquark fields, respectively. For SU(3) the ratio of the Casimir
invariants is %j;. We see that the quarks are attracted to the gluon by
harmonic forces in transverse direction. The gluon interaction with quarks
through the background field provides a position dependent mass-like term
for the gluon. This can be rewritten as

zi + zt 2
Fi(et - et 4§ fof - 12 (5.41)

times 7%, The formula explains that the gluon energy grows when quarks
move apart and the gluon is strongly attracted to the center between quarks
in the transverse plane. One may speculate that when more gluons are
allowed a string of them is formed between quarks and leads to a linear
potential for large separation of the quarks.

One can study the QCD Hamiltonian given by Eqs (5.10), (5.11) and
(5.12) in application to the quarkonium eigenvalue problem in analogy to
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the positronium case described in Section 2. One can project the Hamil-
tonian eigenvalue problem on the space spanned by the new basis states
for the ¢7 and ggg-states in the gluon background fields. Complications
quickly grow with the number of included terms from the QCD Hamil-
tonian. Our experience with the positronium case from Section 2 becomes
insufficient. Many terms which are negligible in positronium are of unknown
size in the quarkonium case. One cannot eliminate the three-body sector
algebraically due to complicated interactions of the three constituents with
the background fields, potentially significant seagull interactions of quarks
with gluons and instantaneous potentials between quarks and a gluon in the
three-body sector. Despite extensive efforts little progress has been made
beyond merely writing down the equations themselves and studying their
partial wave structure. Preliminary attempts to understand these equations
were reported by Glazek in Refs [68] and [69] but they contained a mistake
in analysis of the transverse divergence in the instantaneous gluon exchange
between quarks. That mistake invalidated some of the conclusions. The
mistake was discovered by Franke and Prokhvatilov [70]. Further develop-
ments were blocked by the fact that the LF QCD Hamiltonian is strongly
divergent. The divergences appear when one tries to remove the cutoff §
limiting k* from below and the cutoff A which limits the transverse mo-
menta from above. There also appear infrared singularities for massless
particles when k1 — 0, and complications due to the gauge choice AT = 0.

Naive attempts to diagonalize a divergent Hamiltonian by brute force
without understanding divergences in its matrix elements fail. The LF diver-
gences pose difficult problems and are different from typical divergences in
ET Hamiltonians. The QCD Hamiltonian contains many structures which
need understanding. We shall have to study these and similar structures for
a long time before it will become clear how much of the quark and gluon
physics can be described by the Hamiltonian. The remaining Sections of
this paper are devoted to such studies and aim at finding new methods
for solving renormalization problems in LF Hamiltonians of quantum field
theories.

6. Local interactions and divergences

The matrix elements of the QCD Hamiltonian depend on the cutoffs
which limit the momentum range in the Fourier expansion of fields ¥4 and
A+ in Eqs (5.13) and (5.14). For example, we describe below cutoff effects
which appear in the eigenvalue problem of the LF QCD Hamiltonian. We
consider a simplified model situation for definiteness. The eigenvalue equa-
tion for the QCD Hamiltonian given in Eqs (5.10) and (5.11) is projected
on the Fock space spanned by the colorless basis of gg-states, Eq. (5.29),
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and ggg-states, Eq. (5.39) [71]. Then, in order to simplify presentation of
the cutoff dependence we throw out all interactions of the quarks and glu-
ons with the background fields. This way we obtain a simple model picture
of the quarkonium wave functions as if we considered a canonical QCD
Hamiltonian, expanded fields into creation and annihilation operators and
projected the eigenvalue problem on the space of ¢g-states and ggg-states
which are created by the creation operators from the bare vacuum state |0),
i.e. as if not from the fully interacting ground state |£2). The bare eigenvalue
problem which we describe is a small part of the full eigenvalue problem in
QCD. However, this problem is already so strongly cutoff dependent that
we need to understand this cutoff dependence before we can estimate any
size of finite terms in the Hamiltonian and proceed to more complicated
problems.

The projected ¢ eigenvalue problem is derived by analogy to the positro-
nium case from Section 2. Many terms can be neglected and verified a
posteriori to be small in the case of a very small coupling constant. A long
range instantaneous Coulomb potential is a dominant interaction in positro-
nium and the bound state is selfconsistently described in the nonrelativistic
approximation. The momentum cutoffs force interaction energies to be al-
ways small in comparison to the bare particle masses. In QCD we cannot
achieve such simple situation for light quarks. Therefore, we do not omit
here various terms which were neglected in positronium.

The quarkonium state is constructed as

Py =3 / (dp)[dKE, (p, k)| pA ko)
Ao

+> /[dP][dQ][dk]Wﬁa(p, g, k) pAgeka). (6.1)

Aeo

In order to evaluate matrix elements of the Hamiltonian one needs to limit
momenta in the Fourier expansions of the independent fields ¢4+ and AL.
Various limits can be imposed [72]. We come back to this issue in next Sec-
tions devoted to the theory of renormalization. Here we assume that cutoffs
are imposed independently on the transverse and longitudinal momenta in
the Fourier expansions of both quark and gluon fields equally. Namely,
[pt] < A and A > pt > §. This choice regulates most of the singularities
arising in the procedure of normal ordering the Hamiltonian and renders
finite expressions which depend on A, A and §. One has to introduce ad-
ditional regulators which damp the fields at spatial infinities on the LF, in
order to validate integrations by parts without complicated boundary terms.
This is achieved by introducing factors exp [—¢(|z}| + |2%| + |2~})], which
multiply the quark and gluon fields, § > ¢ — 0. We shall not exhibit such
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details unless they appear in our results. Introducing cutoffs in the quark
and gluon field expansions is not sufficient to remove all singularities from
the Hamiltonian matrix elements. The instantaneous seagull terms require
additional specification of bounds on arguments of functions of momenta
transferred in the instantaneous vertices.

The subtlety involved in the instantaneous seagull terms appears in
evaluating inverse powers of 7. These are defined to be

+ o0
(@) @) = 3 [ d e =vf0mY, (62)

—_0

and
+ o0

[(i0%)"2f)(=z) = ~} / dy |2~y f(y 2 ), (6:3)

for functions which vanish when y~ — +oo. This condition is insured
by the exponentially damping factors introduced above. For example, the
instantaneous gluon exchange involves the following type of integrals

-+ 0o + oo
%/dr / dy~ e(i/DaF T =262y = _ = =G/Daf v —2elyT] | (g.4)
—co -0

The exponent —2¢(|z~| 4+ |y|) leads to a complicated algebra of oscillating
functions which can be avoided when [z~ +y~|+ |y~ — 27| is put instead of
[z=| + |[y~|- The latter also merely damps fields at infinity. It makes
no difference which exponent is used for finite distances |z7| <« e~! and
ly~| < €~1. The latter leads to simple expressions in momentum space.
For example, the expression (6.4) becomes equal after this modification to

g% — 16¢2

+_

-

(6.5)

qi*' or q;' have the interpretation of the longitudinal momentum transferred
by an instantaneous gluon exchange. If we require lqi" | > 8 > € the subtlety
of choosing the damping factors becomes irrelevant and the instantaneous
gluon exchange gives a factor

ogF1-5)

and(gy - q3) =
1

(6.6)
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Both sectors in Eq. (6.1) contain a ¢g-pair. Only those terms of the
QCD Hamiltonian contribute to the eigenvalue problem projected on the
space |¢g) ® |ggq) which preserve the numbers of quarks and antiquarks and
change the number of gluons by at most one. Using field expansions from
Eqs (5.13), (5.14) and (5.16), it is a straightforward but tedious calculation
to evaluate matrix elements of the Hamiltonian in the space |¢7) ® |qg9q)-
One derives two coupled bound state equations for the multicomyponent spin
wave functions

of (p k) = 2(27)%% (P - p - k\/P+’~+¢,\a($2, Y, (67

and

¥f (P, k) = 2(27)263 (P —p—q—k) VPt zokt drco(22, 21,65, p 1) (6.8)

with the same interpretation in terms of quark and gluon momenta as we
had for electrons and photons in the case of positronium in Egs (2.27) and
(2.28), c¢f. Eqs (6.11) to (6.13). Since we keep all interactions induced by
the QCD Hamiltonian in the three-body sector we cannot express the three-
body wave function in terms of the two-body wave function algebraically.
The coupled integral equations are

Parc (22, £T)

+

pr2+md+or+Ga kPP 4+ m?toy+Gro
T2 L1

—4C’pa(27r)"2/d:c'zdzn"l‘-———}i—;—)—cb,\a(m.'z,n'l)

(z2 — 23)?

\{(i:ysz/d Pt o2 (kL — kL)
A’ 1

1
X W“I\p](s')uk’qsk’e’a(mfb Z1, K'IJ_’ P,-L)

0

V3 Crg /
_ ¥ dz' dzn'J‘dzp"Lﬁz(p'J‘ _ pJ‘)
2 (2n)3 jL; 1

t 4 I..L)

1
* \/—'-va'[l](f:')vod’/\e‘é'(m?v 1”1 sK TP
Zg

= (M? + P?)¢xo (22, 87) (6.9)
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+

P2 +mi+ o+ G | ¢+ o0+ Gan
T2 Ty
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x 8(2z — 25)62(p% — p L) Broi(2h, £'L)

01{1](5 Vo

= (M? + P1?)¢rco(22, 21,85, p7F). (6.10)
We have
+ + +

P q k .
$2=F,2}0=F,2}1=—P:, (0.11)
kt = (:c]p‘l‘ - :cgk']‘)(:cl + 2}2)_1 , (6.12)
= (z1 + -'Ez)qJ' - fco(PJ' + kl)a (6.13)
A=Ay {xo*] : (6.14)
vo=A4| 0 (6.15)

o + OX—o ) .

and x denotes a two component Pauli spinor. Similar notation is adopted
for primed variables.

We do not indicate explicitly the comphcated integration limits for rel-
ative momentum variables. The total momentum of the bound state cannot
be completely removed since it appears also in the ratio §' = §/P* limiting
integrations over various momentum fractions z, and the total transverse
momentum P+ cannot be quite removed since it modifies limits of inte-
gration over transverse momenta around A. We could have no such cutoff
dependence if and only if the eigenvalue problem would be insensitive to
the cutoffs, and this is not guaranteed. In positronium we have chosen a
special approximation in which the cutoff effects were very small. In the
quarkonium case we cannot argue the same way since the coupling constant
is allowed to be significantly larger and we assume the quarks to have mo-
menta comparable with their masses. We can still consider P+ = 0 and
Pt = M, where M is the bound state mass. We shall have to come back to
the issue of cutoff dependence and restoration of symmetries after we find
the form of divergences in renormalization theory.

The symbol R in Eq. (6.10) indicates regularized expressions given in
Eqs (6.5) or (6.6). Also,

1. L 1L 4 ) o 1l
[2](51) = p_a— + fmy atet + ate 1LP o + fmy _ g (6.16)
1
z9 z) Zy

and
_nLlad L L
O P L WA O SPONN dlce Lic W i S PR
z zq zg
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The self energies o;, ¢ = 2,0, 1, result from normal ordering of various
seagull terms in the Hamiltonian. They are divergent functions of the cutoffs
and depend on the constituents longitudinal momenta. Therefore, they
cannot be removed by introducing constant counterterms. We have

A2 p+ S p+2
gy = 2Cpaz; {log . 2p+2 — 62] , (6.18)
A? A? 2Ny A? gt +46 gt?
ao—CAa:i—;[Iog%—z—— Ca logq+2_52+log 5 —2q+2—62]’
(6.19)
A2 kt + 46 k2
oy = 2CFa4—ﬂ_ [Iog . 213+2 — 62] , (6.20)
where the quadratic divergence originates from
A2 d2rL
— = [ ——0(4% - k1Y), .
=] @ ) (6.21)
Ny is the number of the quark flavours. For SU(3), C4 =3, Cp = 4/3 and

Cr=-%.

The interactions induced by the gluon background fields are indicated
in Eqgs (6.9) and (6.10) by letters G with various subscripts. We have con-
sidered these terms in Section 5, ¢f. Eqs (5.38) and (5.40). The subscript
2 refers to a quark, 0 to a gluon and 1 to an antiquark. These terms do not
matter in our discussion of the cutoff dependence below.

The second term in Eq. (6.9) represents an instantaneous gluon ex-
change between quarks. The third term represents absorption of a gluon by
a quark in a transition from the three-body to the two-body sector, and the
forth term represents the gluon absorption by an antiquark.

The second term in Eq. (6.10) is the instantaneous gluon exchange be-
tween quarks in the three-body sector. The third term is an instantaneous
¢ annihilation channel interaction in a color octet state, accompanied by
a gluon in the three-body state. The fourth and fifth terms represent in-
stantaneous gluon exchanges between a quark and a gluon, and between an
antiquark and a gluon, respectively, in the three-body sector. The sixth term
describes instantaneous absorption and reemission of a gluon by a quark,
and the seventh term the same by an antiquark, in the three-body channel.
The terms eighth and ninth represent emission of a gluon from a quark and
from an antiquark, respectively, in a transition from the two-body sector to
the three-body sector.
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Egs (6.9) and (6.10) are strongly cutoff dependent and singular. It is
visible that many large matrix elements emerge from interaction terms in
the LF QCD Hamiltonian when the bare coupling constant g is not very
small and cutoffs become extreme. Local interactions would require A = oo
and § = 0. It is clear that one cannot discuss the relativistic bound state
structure in local QCD without formulating a new renormalization theory
which is capable of explaining how to treat the singular cutoff dependence.
In the baryon-like states of three quarks exchanging gluons, similar singu-
larities appear in more complicated combinations of various terms.

6.1. Divergences in quark self-energy

The quark self-energy o from Eq. (6.18) originates from normal order-
ing of two terms in the Hamiltonian. The logarithm results from a gluon
emitted and absorbed in a fermion seagull term. The other term originates
from a fermion emitted and absorbed in the instantaneous gluon exchange
term. (Useful tables of matrix elements of various terms in the LF QCD
Hamiltonian are given by Brodsky and Pauli in Ref. [18], where one can also
find references to earlier literature.) Several features of the divergent term
are visible. The self-energy appears in a form similar to a mass squared
which is quadratically divergent as a function of the transverse momentum
cutoff. However, it is also a diverging function of the longitudinal momen-
tum of a quark. This divergence cannot be removed by introducing a con-
stant bare mass squared term in the free energy of quarks. This indicates a
qualitatively new feature of LF dynamics which is distinct from ET dynam-
ics. Removal of divergences in LF Hamiltonians may require counterterms
which are functions of quark momenta, while in ET dynamics counterterms
involve only constants. From Eqs (6.18) and (6.20) it follows that the anti-
quark self-energy o, as a function of the antiquark longitudinal momentum
kt, and the quark self-energy o, as a function of the quark longitudinal
momentum p7T, are different functions. The notion of a mass squared for
a quark or an antiquark is obscured by the cutoff dependent effects and
we cannot decide how large are the quark masses without understanding
renormalization theory for LF Hamiltonians.

Suppose we had no divergent fermion self-energies of the above type.
Assume we could neglect other troublesome terms in the three-body sector.
Suppose we could express the three-body wave function by the two-body
wave function as in the case of positronium in Eq. (2.38). Then, we would
have obtained another self-energy term for the quark, and still another one
for the antiquark. They would be equal to the self-energies from Eq. (2.46),
with a coefficient C'r in front due to the color algebra and «a denoting
g%2/(4x) instead of ~ 1/137. The limits of the integration would depend on
the total momenta Pt and P+, individual particle momenta and the cutoffs,
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in a complicated way. However, it is clear that the quark self-interaction
due to emission and absorption of gluons, is quadratically divergent as a
function of the transverse cutoff A and linearly as a function of the inverse
of the longitudinal cutoff §. A different choice of cutoffs would lead to a
different divergence structure.

Thus, we see that the quark mass squared term is significantly altered
by the interactions. Separating a finite part of the self-energy and calling it
a quark mass squared requires precise explanation of what happens with the
cutoff dependent pieces which are potentially much larger than any finite
pieces. For example, even if the coupling constant would vanish for large
cutoffs as inverse powers of logarithms of the cutoffs, the quadratically or
linearly divergent terms would still diverge to infinity. The most singular
pieces have to be subtracted first.

If we were considering perturbation theory to a finite order, we could
consider interplay of various terms, require special cancellations due to spe-
cial choices of some parameters and eventually get rid of the cutoff depen-
dence. For example, one often finds that the terms resulting from normal
ordering automatically cancel most divergent parts of the self-energies in-
duced by radiation and absorption of transverse gluons. The terms resulting
from normal ordering are sometimes called self-induced inertia and some
discussions of this type of terms can be traced, for example, in references
quoted by Pauli and Brodsky in Ref. [18].

However, we are facing a difficulty that the divergences appear in a Ha-
miltonian eigenvalue problem. For example, the self-energy from Eq. (2.46)
depends on the eigenvalue M? through the denominator of the integrand.
The quadratic divergence can be subtracted. But after this subtraction
the remaining term still contains logarithmic divergences and the diverging
logarithms are multiplied by the eigenvalue. The eigenvalue is unknown
before we solve the secular equation. In order to remove the divergence
by a counterterm we would have to know the eigenvalue solution before we
know the Hamiltonian counterterm. This is not possible without imposing
complicated selfconsistency requirements on the Hamiltonian. Fulfillment of
such requirements is hardly conceivable when more interactions and more
Fock sectors are included. In order to understand what to do with the
eigenvalue dependent divergences one needs to develop a renormalization
scheme which can consistently deal with all divergences; quadratic, linear
and logarithmic, and can tell us how to avoid the problem of divergences
proportional to eigenvalues. The self-induced inertia are not helpful until
one can show how they enter in such a procedure. We discuss the renor-
malization theory which solves the problem of the eigenvalue dependent
divergences in Section 9.

Numerical studies and phenomenology may be helpful in finding useful
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solutions to problems with diverging self-interactions. We have already seen
in Sections 3, 4 and 5 that phenomenologically interesting dynamical effects
in many bound states can be described as corrections to a mass formula
for the constituents. One can even use variational technics to find opti-
mal values of the mass parameters, which involve subtractions of the cutoff
dependent diverging terms [72]. Unfortunately, the variational approach
introduced in Ref. [72] is not applicable to theories like QCD where fields
have spin degrees of freedom. Straightforward variational estimates are also
not useful if they are strongly cutoff dependent.

The important guide in defining the quark self-energies and masses can
be attributed to chiral symmetry and its breaking. However, we cannot
preserve symmetries when introducing cutoffs. For example, chiral sym-
metry and gauge symmetry are not quite compatible with each other [73].
The spontaneous chiral symmetry breaking is related to the formation of
the quark condensate. We have seen in Section 5 that in LF dynamics the
condenstates are formed from the modes of arbitrarily small k*. Therefore,
the modes which might lead to the spontaneous chiral symmetry breaking
are cut off by introducing the longitudinal cutoff §. Thus, renormaliza-
tion and removal of this cutoff dependence should be able to contribute to
our understanding of the mechanism of chiral symmetry breaking in QCD
[22,74].

6.2. Gluon self-energy and related divergences

We consider gluon self-interactions and consequences of their appear-
ance. Important constraints on the gluon self-energy may be expected due
to the gauge invariance.

In QED one is formally used to have massless photons. Vanishing of
the photon mass in perturbation theory is inevitably connected with gauge
invariance, current conservation and renormalizability. Still, some calcu-
lations may require introduction of an infinitesimally small photon mass
parameter for regulating behavior of some intermediate gauge dependent
results which are singular when photons are massless. The limit of the pho-
ton mass going to zero is taken only in the complete gauge invariant result
which is well defined in this limit.

In LF Hamiltonians of QED or QCD gauge invariance is not explicit.
Firstly, one has to choose a gauge to define a Hamiltonian. For example,
one requires AT = 0 in order to solve the constraint equations in LF gauge
theories. Secondly, one has to limit the number of gluons and their momenta
in order to define a finite domain of a Hamiltonian. Thirdly, in the bound
state problem, experience from perturbation theory for free incoming and
outgoing particles is of little use since binding causes significant deviations
from the free particle spectrum. Gauge invariance is by no means clear in
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the cutoff Hamiltonian eigenvalue problems in QCD. These issues will have
to be discussed in more detail later.

Eq. (6.19) illustrates some difficulties with divergent gluon self-inter-
actions. There is one constant term which diverges when any single cutoff
becomes extreme. This is the first term on the rhs of Eq. (6.19). It originates
from normal ordering of the usual quartic gluon vertex in which one gluon
is emitted and reabsorbed, the last line in Eq. (5.11) with a# put zero,
and also from normal ordering of the four-gluon seagull interaction due
to the instantaneous gluon exchange, a pure gluon part of the fifth line
in Eq. (5.11). There is also a number of singular functions of the gluon
longitudinal momentum in Eq. (6.19). The second term depends on the
number of quarks in the theory. It results from emission and reabsorption
of fermions by a gluon, due to the fermion seagull interaction, third line in
Eq. (5.11) with a# and w put zero. The terms third and fourth result from
normal ordering the quartic seagull gluon interaction, which is again the
purely gluon part of the fifth line of Eq. (5.11).

If we considered corrections to the gluon state due to creation and
annihilation of a ¢g-pair (vacuum polarization), we would also find that the
corresponding gluon self-energy contains a term resembling a mass squared.

In QCD gluons couple to gluons and low energy behavior of gluon self-
energy is not known. Phenomenology does not indicate low mass excitations
which could correspond to light constituent gluons. It seems reasonable to
consider that the gluon mass which results from cancellations of huge diver-
gent numbers, is not zero and quite sizable. Strictly speaking, in renormal-
ization theory one is forced to consider what effects are caused by the gluon
self-energy. One could even turn the whole reasoning around and consider
massless gluons as quite unrealistic idea in comparison to massive gluons
(74,75).

Here we illustrate what may happen when gluons acquire a self-energy
term. For simplicity, the self-energy will be represented as a mass squared
term in the gluon energy and denoted by x?%; ¢~ = (g% + u?)/qt. The
number of gluon degrees of freedom is 2 X 8 with 2 for two transverse po-
larizations and 8 due to the SU(3) color group. The number of the gluon
degrees of freedom is not changed by the presence of the self-energy.

When in Eq. (6.10) we neglect the background fields, drop the o; and
o2 in quark self-energies assuming that m} and m3 are some effective mass
squared parameters and ignore all interactions but the last two terms on
the lhs, then we can make the same steps in the case of Eqs (6.9) and
(6.10) which we have already discussed in case of Eqs (2.38) to (2.45) for
positronium. We have purposely indicated there the photon mass squared
by the same symbol u? and can use here the formulae from Section 2. The
gluon mass squared does not contribute to the numerator of the fermion
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self-energy term in Eq. (2.46). But it appears in the denominator, where
it removes a part of the infrared singularity when k2 — 0 and z — 0. The
fermion self-energy will not concern us here any more.

In Eq. (2.47) in the limit y — y' when the gluon mass is not zero one
has

1 (nJ- — KIJ_)z N 1
-y p+ (-t (y-9')?
(y — yl)Z #2 + (,C.L — nIJ.)Z :

This is a singular interaction which would normally disappear when the
gluon mass squared is not allowed. However, we know that forcing the gluon
mass squared to zero requires control over various large cutoff dependent
terms. Such control is still lacking. Instead of discarding the possibility that
u2 # 0 for no apparent reason, we can inspect the singular ¢ interaction
in Eq. (6.22) and observe that the cutoff dependence problem may have an
interesting alternative solution [74]. Namely, one can limit the momentum
transferred by the gluons to be |y — y'| > §' = §/P*, ¢f. Eq. (6.6), and
consider very small §. Integration over y' produces a factor 2/8'. This inter-
action is very large for small §' and strongly depends on this infrared cutoff.
The counterterm to this cutoff dependence has an intriguing structure,

(6.22)

I
#2 + (nl _ KI_L)z :

- 26(3) (6.23)

This term is a gg-potential acting in the transverse direction, it is strong
for small §' and involves §(y). This last feature is particularly interesting.
Wilson suggested that this feature may be the key to constructing a LF
theory of quarks and gluons [74]. He observed that counterterms which
contain such é-functions require operators of the form

[ vl (6.24)

in order to induce no transfer of the longitudinal momentum. Such oper-
ators have the unique LF property discussed already in Section 5. They
can neither create nor annihilate particles. The remarkable feature of the
counterterms built from such operators is that they obey Zweig’s rule: they
preserve the number of quarks, and gluons too when the full color density
operator is considered. Therefore, the counterterms to the longitudinal sin-
gularities lead to a conjecture that the renormalized Hamiltonian of LF QCD
may contain strong potentials which preserve the number of bare particles.
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Such possibility is welcome, since it provides a hope that one may be able
to incorporate confinement of quarks in the LF QCD Hamiltonian using po-
tentials. Such potentials should have structure dictated by the appropriate
renormalization theory. We shall study methods of constructing such theory
in next Sections. This idea adds a new element to the original Dirac pro-
posal of having relativistic LF dynamics with nontrivial interactions. Dirac
had only considered most general covariance conditions imposed by special
relativity in quantum mechanics. Renormalization theory helps in finding
more details of the interactions using local quantum field theory.

After subtracting the leading infrared divergence in the one gluon ex-
change one is left with a logarithmic infrared divergence which is propor-
tional to the eigenvalue [76]. Again, as in the case of self-interaction of
fermions, we face the problem that construction of a counterterm seems to
require knowledge of the eigenvalue which is not known until we know the
counterterm. In Ref. [77] in the case of positronium the problem of infrared
divergences has been avoided by inventing modifications of the one photon
exchange so that the divergence disappeared. Liu and Soper proposed to
adapt the Leibbrandt-Mandelstam prescription for removing similar singu-
larities to the case of exchange of massless photons in some bound state
equations [78]. In Section 9 we present an introduction to a renormalization
theory for LF Hamiltonians which is capable of avoiding eigenvalue depen-
dent divergences. We also describe there the corresponding counterterm
for second order one gluon exchange interaction between quarks since the
method applies to massive as well as massless hosons.

6.3. Wave function divergence

An example of a wave function divergence appears when one consid-
ers an exchange of bosons with large transverse momentum bhetween two
fermions. Making ad hoc simplifications and eliminating the three-body
sector from Eqs (6.9) and (6.10) one obtains an integral equation for the ¢g
wave function, as discussed in Section 6.2. One can drop the divergent quark
and antiquark self-interactions due to emission and reahsorption of trans-
verse gluons. One can also cut off the infrared singularity in the one gluon
exchange interaction between the quark and the antiquark. The resulting
equation is still divergent {30, 31]. The remaining divergence is called the
wave function divergence and arises in the following way.

The one boson exchange behaves for large transverse momentum trans-
fers as a constant. Therefore, the wave function falls off as the inverse of
the squared relative transverse momentum of fermions. The inverse of the
squared momentum originates from the inverse of the two fermions free en-
ergy. Such a slow falloff of the wave function produces a logarithm of the
upper limit of integration in the integral equation. Another way to see the
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divergence is to iterate the bound state equation and consider a “box” dia-
gram which contains two one boson exchanges one after another. The box
diagram is logarithmically divergent. The result of integration in the box
loop depends on the cutoff on the transverse fermion momenta.

It may look like that the above problems are peculiar to the model
where the number of constituents is arbitrarily restricted to two. This is not
the case. Such divergences are generic to LF Hamiltonians for relativistic
fermions. We postpone further discussion of this point to Section 7.

6.4. Vertex corrections and asymptotic freedom

In the projected eigenvalue problem used for illustration in this Section
some features of QCD are not visible and were not discussed so far, One such
feature requires mentioning. Namely, the coupling of quarks and gluons, as
well as other couplings in QCD, exhibit asymptotic freedom. It is calculable
in perturbation theory in vertex corrections. Incorporation of asymptotic
freedom in Hamiltonian studies of QCD is essential. Unfortunately, little
progress has been made in this direction in the Hamiltonian eigenvalue
problems.

However, there already exist results obtained by Perry and Wilson in
the old-fashioned LF Hamiltonian perturbation theory and using renormal-
ization group techniques [79]. One can find references to some earlier studies
of asymptotic freedom in Lagrangian and Hamiltonian QCD in Refs [79].
The important observation discussed by Perry is that the most divergent
cutoff dependent terms in the vertex corrections can be subtracted by coun-
terterms and the remaining divergence is only the familiar logarithmic ul-
traviolet divergence which leads to the asymptotic freedom. All light-front
infrared divergences cancel out in the ultraviolet divergent vertex correc-
tions. But they do not cancel out in ultraviolet finite terms. Perry and
Wilson, and Perry initiated extensive studies of renormalization group dif-
ferential equations in application to LF Hamiltonians [79].

7. Cutoffs and renormalization

In the previous Sections it is shown that LF Hamiltonians of quan-
tum field theories are divergent in the following sense. Suppose we have a
Hamiltonian

H=Hy+V, (7.1)

where the part Hp has a known spectrum of suitably normalized eigenstates

Holi) = Eslil). (7.2)
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The number of the eigenstates |7} is infinite and the energies (P~ in the LF
case) are ranging from 0 to co. In order to solve the eigenvalue problem for
H we have to-define the domain and image of H. We are forced to choose
a subset of eigenstates of Hy in order to he able to define a finite space
in which our Hamiltonian is to act. Then we can pose a finite eigenvalue
problem which we may attempt to solve. The boundary of the chosen set
of basis states is called a cutoff, and denoted symbolically A. The space
spanned by the chosen set is called A-space. The Hamiltonian which acts
in the A-space is denoted as H 4. The first natural guess is that

HA . = P,HP,, (7.3)

guess

where P, is a projection operator on the A-space. In principle, one can
solve the eigenvalue problem for HgAeuss from Eq. (7.3) because it is reduced
to a finite problem by introducing the cutoff. Divergences arise when we
attempt to let A — oo in order to remove the artificial cutoff’ and obtain
the spectrum of the Hamiltonian H itself. H is divergent if a finite limit of

the spectrum of HgAuess when A — oo does not exist. In such cases we face

a fundamental problem of how should we define /4 so that it can give us
interesting solutions to the eigenvalue problem for H. This problem is called
a renormalization problem. We need to define renormalized Hamiltonians
in order to be able to calculate observables. LF Hamiltonians for local
quantum field theories pose particularly complicated divergence problems.
This is the price to pay for taking advantage of the unique properties of LF
dynamics in constructing a relativistic bound state theory.

7.1. Theory of fized sources [80]

Surprisingly little is known about renormalization of LF Hamiltonians
for quantum fields. In ET dynamics the Hamiltonian renormalization theory
has been developed by Wilson [24]. Wilson considered a model of a fixed
source interacting with a scalar field. A demonstration of how the original
Wilson model can be formulated in LF dynamics has been given by Glazek
and Perry [80]. Although the modelis unrealistic from the phenomenological
point of view, it is instructive to see the full analysis and to appreciate the
procedure required to find a renormalized Hamiltonian that can be used
to calculate physical observables. We describe the model as a preliminary
step in the development of the renormalization theory for LF Hamiltonians.
We extensively quote Ref. [80] below in order to provide the reader with a
selfcontained material. The reader may consult Ref. [80] for more detailed
discussion.

The canonical Hamiltonian for Yukawa theory has been already consid-
ered for quite different purpose in Section 3, where we assumed to ignore



Relativistic Bound States of Elementary Particles. .. 1381

renormalization problems. Here we focus our attention on the singularities
which appear in the limit where the fermion mass becomes infinitely large.
A single heavy fermion will play the role of the fixed source for a scalar
boson field.

The canonical LF Hamiltonian for Yukawa theory can be written as

m + 2+ 12
Hc—~Z/dP p bt bp,\+/[dQ]p—p;g‘"‘a;aq

+g [dp ] [dq} [d 2]2(21)363(13“&3& ed — Panni ilate )
%/ 1 / Azzf P ted hilated

X Tmpyry L Umpy Ay b;zkz(a; +ag)bp n
+ [seagull terms with operators b!, b, a! and q]

+ [terms that change fermion number or involve antifermions].
(7.4)

The subscripts A are spin/isospin indices and I' is a spin/isospin matrix.
One may suppress isospin indices in the initial discussion. It is sufficient
here to focus on the case I' = 1. The seagull terms and the terms involving
antifermions are not important in the discussion of a fixed fermionic source
and we skip them.

The momentum integrals in the canonical Hamiltonian extend to infin-
ity and must be replaced by limits of integrals over select finite ranges of
momenta in order to define the heavy fermion limit. The simplest way to
consider the infinite fermion mass limit is to specify that the ratio of the
fermion mass to the range of the momentum integrals becomes infinite. The
fermion mass then becomes the dominant scale in the Hamiltonian. How-
ever, strictly speaking, restrictions on the particle momenta would require
us to limit the total momentum of any system considered. In the ET anal-
ysis one is forced to simultaneously limit both total and relative momenta
in order to obtain the fixed source Hamiltonian. In the LF scheme it is pos-
sible to exactly separate the total momentum of the dressed fermion source
from its internal dynamics. Therefore, we require only relative momenta to
be negligible in comparison to the fermion mass, and can allow arbitrary
motion of the source.

We consider the effective Hamiltonian in the one fermion sector. Eigen-
states of different fermion number are widely separated in the spectrum
because of the large fermion mass. The one fermion eigenstates of the
Hamiltonian have the following general form implied by the LF symmetries
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|PX) = 2}: [1aa [taa... fdan

2(27(’)3P+63(P—p—q1 - '—qn)¢f\7;)(yla K'iL) ceesYny "%J{)IPO’(II e qn) ) (75)

where
Ipoq1...qn) = b;,‘,ag1 ...a$n|0) . (7.6)

Pt and P1 are components of the total momentum of the fermion eigen-
state. The arguments of the Fock space wave functions #(") are

gt
y; = F’I s (7.7)
kb =g - yiPt. (7.8)
It follows that the bare fermion momentum in the n-th sector is
pi =z, P, (7.9)
pr = Pt — ki - — ki, (7.10)
where,
z, =1l-y1— .. — Yn. (7.11)

The effective Hamiltonian for the fixed fermionic source is obtained by
projecting the equation

P.L2 + M?2
Pt
on the one fermion Fock space sectors,

(Pog1...qnl HIPA) =

>
2(27()3P+63(P—p—Q] — ""Qn)——'PT"“ﬁ()\T;)(yl’ K’iL’ * 9 Yny K‘i-) . (713)

HIP)) = |P)) (7.12)

One evaluates the fermionic part of the Hamiltonian matrix elements for
large m and leaves the bosonic part untouched. M is the physical fermion
mass. One obtains

PL 4 M?
Dkt Y e) =
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o0

l ’ !
3 :/[di*k;].../[d?'k;] S0 (5 kit i)
=0 o'

432 2
P +m ! - !
X {g1..-qnl [( = )P+ 877 + Po,bosonsaaa
n
UpnoUp,+q,0' t , Upnolpy—q,0’ ' '
+g/[d3q][ Pn? P al + aglilar---qp). (7.14)
pr+gt 0 piogt LT

Only three terms on the right hand side of this equation contribute to the in-
finite fermion mass limit; the free energy term with #(™) and two interaction
terms, one with ¢{"*1) and one with ¢(7~1),

In LF dynamics we are not forced to assume that P+ differs little from
M and that PL/M is negligible, in contrast to the ET analysis. Here, we
can treat Pt and P+ exactly and separate the center of mass motion of
the dressed fermionic source from its internal dynamics. Pt and P~ drop
out of the eigenvalue equation for the physical fermion mass M? as usually
in LF eigenvalue problems. As a consequence, one can obtain the boost
invariant results by considering only the special case P* = M and PL = 0.

Boost invariance is usually violated by the introduction of momen-
tum cutoffs. Demanding that individual momenta of all particles be much
smaller than the bare fermion mass prevents the fermion from moving with
large velocity and implies that there cannot be boost invariance in the
Hamiltonian spectrum. Fortunately, in the LF form of dynamics we can
impose cutoffs on relative momenta. It is these that are small in compar-
ison to the fermion mass. We can only maintain explicit boost invariance
while limiting the relative momentum variables. Thus, a “fixed source” in
the LF dynamics can move with arbitrary velocity. Evaluating the spinor
matrix elements and working in the rest frame of the physical fermion we
obtain

MED(1,. )= S /[1']...[n']¢§';)(1',...,n')
nl=n~1
m? + (T si)? | o 2 4 kg
1, ’ T Y2
a I[(I—Ziz-lyi)M +,.=1 viM
+2g/[dq](a; + aq)] [t',...,n'), (7.15)

where we use an abbreviated notation for momentum variables, exhibiting
only their subscripts. We consider eigenvalues of the form

M=m+E, (7.16)
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for (E/m) < 1 and Y[, yi < 1, both of which are easily shown to hold
for low-lying eigenstates a posteriori. Eq. (7.15) becomes

n=n+1l ,
E¢™(1,...,n) = z /[1'] I A P TS L
n'=n-1
n 2, .12
x{1,...,n| [mzl% <y,~m+ %) + g/{dq](a; + aq)] It',...,n").

(7.17)

Therefore, the effective LF Hamiltonian for the fermionic source internal
dynamics is

1o+, Bt t
Her= [ ldg [5 (q +~7;—~)aqaq+g(aq+aq)]. (1.18)

The integral extends over momenta that are negligible in comparison to
the fermion mass. Therefore, for the infinite fermion mass we obtain the
effective Hamiltonian of Eq. (7.18) in which no restrictions on the boson
momenta appear. Note that when the fermion mass is large the LF energy
¢~ is naturally accompanied by ¢t to form the analog of the ET energy,
(¢* + ¢7)/2 . Similar feature appeared in Section 3 where we considered
nuclear matter. In the rest frame of the dressed source the transverse meson
momentum ¢ coincides with the relative momentum x+ and the longitu-
dinal momentum ¢* coincides with ym, because the difference between m
and P* = M can be neglected in the product yP+.

The eigenvalue equation for the Hamiltonian of Eq. (7.18) leads to di-
vergent results. The Hamiltonian is divergent in the sense defined at the
beginning of Section 7. Therefore, it requires renormalization. Wilson found
a way to define a class of renormalized Hamiltonians that corresponds to
the fixed source Hamiltonian in ET dynamics, and discovered the renor-
malization group theory for quantum field Hamiltonians. Wilson’s work on
the fixed source model in ET dynamics produced the first nonperturbative
renormalization group analysis of coupling constant renormalization. We
refer the reader to the two remarkable articles by Wilson [24] where he
formulated foundations of the renormalized Hamiltonian dynamics. It is
recommended to read the two articles in Ref. [24] before attacking the more
complicated theory of renormalization for LF Hamiltonians.

Now we describe the situation in LF dynamics. In order to define
Wilson’s model on the LF we need to introduce momentum ranges analogous
to his ET energy shells [24]. Since we have only one unrestricted momentum
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integration to sample we can use our previous experience from the model in
Section 3, Ref. [39], and from Ref. {72], where a mass parameter has been
introduced to define limits on the Fourier expansions of scalar fields. We
introduce the following regions of momenta:

2 12
ut+q
p<i (9+ + T-) < By, (7.19)
2 12
v (34mko) + 42 < } (q+ + f‘——;—‘;i—) < J(Arko) + 42, n21,
(7.20)

where

Eq = 4/ u? + kg . (7.21)

The LF eigenvalue problem for the resulting Hamiltonian is isomorphic to
the ET problem considered by Wilson. We change variables from ¢t and

¢+ to k% and kL = (k?, k?) which form the three-vector k;

gt =kt (7.22)

gt = w,u (k) + &3, (7.23)

wu(k) = y/u? + (k)2, (7.24)

d*k
2, (R)(27)?
The Hamiltonian from Eq. (7.18) in terms of these variables reads
H= / ([dH][w, (F)alax + g(al + ap)]. (7.26)
shells of k

One can now step back to the initial theory with fermions and bosons
carrying isospin. We recall that there are two kinds of bosons in the Hamil-
tonian (operators a and b) and isospin matrices 7+ and 7~. We change the
normalization of the creation and annihilation operators to match Wilson’s
convention and let the coupling g be Wilson’s bare coupling constant gg.
After these steps the LF fixed source Hamiltonian is identical with Wilson’s
model described in Ref. [24]. The whole discussion from Ref. [24] follows.
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This last step is a major one. Following Wilson’s work in ET formula-
tion one obtains the LF version of Wilson’s model of the coupling constant
renormalization in quantum field theory. To our knowledge this allows one
to complete the first example of a nonperturbative renormalization group
analysis in LF dynamics.

This example provides a starting point for studies of significantly more
complicated renormalization problems which we already met in previous
Sections and will have to confront in future in LF quantum field theories of
bound states of elementary particles.

This model implies several conclusions concerning the renormalization
of relativistic LF Hamiltonians. The LF construction of the model of cou-
pling constant renormalization is not merely a change of variables in the ET
model. It is actually both nontrivial and instructive. In the ET analysis one
employs momenta canonically conjugate to the ET spatial variables. One
places the fixed source at the origin of the coordinate system, and all boson
coordinates are given relative to this position. The LF analysis is neces-
sarily more complicated, because a source fixed in LF space would move
at the speed of light in ET coordinates and has an infinite energy. In the
LF analysis a different approach is needed. One considers a fixed source
as an arbitrarily moving dressed fermion bound state, which contains in-
finitely many bosons piled up into a hierarchy of layers of structure. The
Poincaré generators of boosts do not contain interactions and one is able
to completely separate the total momentum of the bound state from the
problem. In an ET analysis the boost operators contain interactions and
the separation of the total momentum from the problem is not possible.
In ET dynamics one is forced to assume that the fermion momentum is
small in comparison to the fermion mass in order to complete the analysis.
In the LF model one automatically obtains a theory of heavy sources that
can move with arbitrary velocity. The momentum IZ, (or ¢t and ¢t), is
considered as a relative momentum of a boson and the center of mass of
the dressed source. The motion of the dressed source is separated from its
internal dynamics. This is a second and distinct example of highly nontriv-
ial bound state dynamics of relativistic bound states of many elementary
particles. The first example is described in Section 3.

For infinitely heavy fermions the distinction between relative and ab-
solute spatial coordinates is not significant. However, for quarks (baryons)
coupled to gluons (mesons) there is no reason to believe that the difference
does not matter. In order to understand relativistic bound state dynam-
ics in QCD or nuclear physics, one must understand the relative motion
of constituents over many-scales of momenta at once. It is not possible to
employ nonrelativistic ideas of considering only rest frame of reference or
fixed sources everywhere. One must expect several important new features
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to appear in renormalization of relativistic Hamiltonians.

In Wilson’s ET model the only interactions allowed are between a non-
relativistic source and relativistic bosons. In the analogous LF model one
can see that it is the negligible recoil of the source that selects the mo-
mentum scales in Eqs (7.19) and (7.20). These scales imply a relationship
between the scaling of longitudinal and transverse momenta. However, we
know no reason for this relationship to hold for light sources. We consider
it an outstanding problem to discover the principle that will allow one to
establish a set of scales appropriate for the study of relativistic sources anal-
ogous to those employed by Wilson for the study of a fixed source. We shall
come back to this problem:in Section 10.

In the case of infinite fermion mass the key role is played by the meson
mass parameter, u, which is used in sampling longitudinal and transverse
momenta in the LF renormalization group analysis. The sampling is pat-
terned after ET sampling of a free boson energy because the ET free boson
energy is naturally selected in the LF Hamiltonian for the internal dynam-
ics of a heavy source, as displayed in Eq. (7.18). When fermion and boson
masses are comparable, or when the bosons have self-interactions, the ET
free boson energy does not naturally arise in a LF analysis and a unique
momentum sampling does not exist. Both fermion and boson masses need
renormalization, as we have clearly seen in previous Sections. It becomes
clear that one is forced to fermulate an analysis that samples longitudinal
and transverse relative momenta in a new way.

One is also forced to make restrictions on the number of particles in
Fock space as a practical limitation on the analysis [81]. A considerable
effort over a period of time will have to he devoted to the study of how the
renormalization group transformation depends on the Fock space sectors
considered. In Wilson’s model the number of bosons in a single quantum
state has been artificially limited to one and the number of fermions has nec-
essarily been fixed. In order to be able to firmly connect renormalized LF
Hamiltonians for quantum chromodynamics at hadronic scales with Feyn-
man’s parton model and perturbative QCD one has to go a long way. An
example which illustrates that LF Hamiltonians need more general renor-
malization counterterms than just a coupling constant renormalization is
given in the next Section.

7.2. Overlapping logarithmic divergences [82]

Glazek and Wilson have constructed a new example of a renormalization
procedure for LF Hamiltonians [82]. Their model is specially designed to re-
semble some phenomenological models which we have discussed in previous
Sections. In order to be able to understand basic features of renormaliza-
tion theory, drastic simplifications have to be made in comparison to what
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one might imagine to be required when approaching canonical Hamiltoni-
ans for local quantum field theories. Our aim is to understand the rules one
can use in building H4 from a known bare H. The particular structure or
limitations of H used for the exposition are of secondary importance. In
this Section we reproduce essential parts of Ref. [82]. We present the main
elements of the model but many details of the original work are omitted.
Previous Sections provide a lot of examples of the notation used here.

The construction starts from a Hamiltonian which acts in a space span-
ned by free states of two fermions and states of two fermions and one scalar
boson. The starting Hamiltonian resembles a canonical Yukawa Hamilto-
nian projected on the model space. It is regularized by chopping factors
in the interaction vertices. Then, an effective Hamiltonian acting in the
space of two fermions is derived in analogy to the case of positronium in
Section 2 and to the case of ¢§-states in Section 6. At that point ad hoc
simplifications in the effective two-body Hamiltonian are made to produce a
model that one can analyse. Namely, fermion self-interactions are dropped
and the eigenvalue in the effective one boson exchange term is replaced by
a constant. The resulting model Hamiltonian involves logarithinic ultravio-
let transverse divergences which we have already mentioned in Section 6.3.
These divergences are analogous to overlapping divergences in perturbative
Lagrangian S-matrix calculations. We introduce a small cutoff A « 4 and
explain how one can derive the renormalized interaction V) from the knowl-
edge of the bare and divergent interaction V. We explain the construction of
a Hamiltonian counterterm that removes divergences from V) to all orders
in the Hamiltonian perturbation theory. The renormalization group trans-
formation for V), is determined by a nonlinear integro-differential equation
of the form dVy/dA = —V, K, V), where K is a known kernel.

The model counterterm turns out to be local in the transverse direction
and contains an arbitrary function of the longitudinal momenta of fermions.
A suitable choice of the arbitrary function may partly remove the violation
of rotational invariance in the spectrum of the model Hamiltonian. Initial
results of numerical analysis concerning this issue are described in the next
Section.

In Section 6, a set of perturbative power counting rules discovered by
Wilson is mentioned. Wilson used his power counting to classify operators
which may appear in the LF QCD Hamiltonian [74]. Here we consider a
much simpler model situation. The power counting in the model suggests
which counterterms need to be present in the Hamiltonian to all orders in
perturbation theory. We briefly describe the general idea of power counting
and then return to our simple model.

Transverse and longitudinal dimensions count differently. The light-
front fermion fields have dimension (z+v'z~)~! while the LF Hamiltonian
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density has dimension z1+~4, since the light-front Hamiltonian has dimen-
sion z~/z12 and the density is integrated over the front z+ = 0 to obtain
the Hamiltonian. It is straightforward to analyze dimensions of fields in
Hamiltonian densities from Eqs (2.10), (3.5) or (5.11). The notion of a
size of a quantum field is introduced by expanding it into a complete set
of orthgonalized wave packets called wavelets. Creation and annihilation
operators for the wave packet states are of order one. An excellent intro-
duction to such analysis in ET dynamics is given in Ref. [24]. LF version
requires a distinction between the transverse and longitudinal dimensions in
construction of the wavelets. Roughly speaking, Heisenberg’s uncertainty
principle tells us how large the wavelet coefficient must be in front of a single
particle creation or annihilation operator, if the corresponding wave packet
state (wavelet) has some dimension z in transverse and z~ in longitudinal
direction. Power counting amounts essentially to counting orders of mag-
nitude of terms which appear in old-fashioned Hamiltonian perturbation
theory. The expansion of quantum fields into wavelets times corresponding
creation and annihilation operators must be limited, in the sense that a
finite number of wavelets can be used in practice. One needs to introduce
cutoffs on the space of wavelets. Results of the perturbation theory depend
on the cutoffs and diverge for their extreme values. Divergences in pertur-
bation theory arise due to the large energies of single particle wavelets, large
sizes of individual wavelets and large numbers of wavelets coupled together
by the interactions. Power counting allows estimates of the cutoff depen-
dence and provides clues about the structure of necessary counterterms.
This means, it tells us crudely how the Hamiltonian H4 must differ from
Hg’{ms. For example, power counting tells us that there can be a LF Hamil-
tonian counterterm which removes transverse ultraviolet divergences. Such
counterterm involves four fermion fields. It must be local in the transverse
dimension, should not involve either derivatives in the transverse direction
or mass parameters, and must involve a function of longitudinal fermion field
coordinates which has dimension (z7)%. We describe, following Ref. [82],
how such counterterms appear in a simple model.

The ultraviolet transverse momentum cutoff in the model is analogous
to the transverse momentum cutoff A of Section 6. It is different from the
infrared cutoff § which is responsible for cutting off the vacuum problem.
However, understanding the renormalization procedure in the model is a
prerequisite to tackling the renormalization problems with severe longitudi-
nal singularities in QCD where the §-dependence of the spectrum has to be
removed by different counterterms.

We proceed to the description of the model. The initial Hamiltonian
acts in a space spanned by Fock states containing two fermions and states
containing two fermions and a boson. After elimination of the three-body
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wave function, the two-body wave function satisfies a familiar effective two-
body equation

m? + k% + 6m?, + T +m2+n2+5mi€+21 s
:czM :1:1M

+ Z/KVOBE) +{(Va¢=0. (7.27)

The new features of this integral equation are the special integration
limits and the presence of a counterterm (V). The counterterm is the dif-
ference between H4 and Hg’{xess in the case of this model. Without the
counterterm the model contains a transverse divergence of the type dis-
cussed in Section 6.3. Principles of construction of the counterterm (V)
in Eq. (7.27) are explained below after some simplifying assumptions are
made. The wave function ¢ represents a column of four wave functions
corresponding to four possible spin configurations of two fermions. (Vopg)
represents the one scalar boson exchange potential, which depends on the
eigenvalue M. The vertices of a fermion-boson coupling are given by prod-
ucts of fermion spinors as in Yukawa theory. Detailed derivation of this
equation is given in Ref. [82]. The simplified model is obtained by making
two ad hoc changes in Eq. (7.27). First, 6m318, ¥, and X, are completely
neglected. Second, the one boson exchange term, (Vopg), contains the
eigenvalue M in the energy denominator. We replace the eigenvalue in the
denominator by a constant, Mg, which is smaller than 2m.

The resulting bound state equation can he viewed as an eigenvalue equa-
tion for a simplified Hamiltonian which acts in the space of two fermions
only. The model Hamiltonian commutes with the kinematical operator J,,
generator of rotations about the z-axis. The total z-component of the an-
gular momentum can be decomposed into the orbital angular momentum
of the bound state relative to an arbitrary axis parallel to the z-axis, L,,
and the total internal angular momentum of the bound state, j, = I, 4 s,.
The model Hamiltonian commutes also with j,. Divergences appear when
|7z] < 1. Let us consider here the case j, = 0.

Using notation ¢f\‘2 », One obtains the following j, = 0 part of the model
Hamiltonian eigenvalue equation

(M - M?) ¢£T] - %g;/dif'/dh:a(?(mn,m'n')
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0
g J¢] v é ¢gi
a =& -« 0 ity _
x{ . S e +M(VA)} o =0. (7.28)
p - p w ¢1T

The integration limits in this equation are defined by the factor

C(zr,z'k')= O(z —2z' —ez)O(z —2' — (1 - z))
X O(z — £)O(1 — z — €)0(4% - k1?)
X O(z' —€)O(1 —z' — €)0(A% - k') + (z & 2').
(7.29)

Thus, the transverse relative momenta of fermions are limited in modulus
by A. Longitudinal momentum fractions carried by fermions are limited
from below by the longitudinal cutoff ¢ = § /M.

From Eq. (7.29) we see also that the longitudinal momentum integrals
are chopped off in the region where 2 ~ 2', i.e. the momentum fraction
carried by the boson in the intermediate states is not allowed to vanish. In
QCD, z ~ z' is a region where a strong longitudinal singularity appears and
a renormalization group analysis of the singularity is essential. Therefore,
it is assumed in the model that ¢ is finite and we do not need to worry
about the limit ¢ — 0. We study divergences that appear in the transverse
direction for finite ¢ which is sufficiently large.

VX is proportional to the j, = 0 projection of the counterterm. The
counterterm must commute with 7, because the initial Hamiltonian does.
V) is present to make solutions to Eq. (7.28) independent of the cutoff A.
The coupling constant ay = g2/4rn, where g is a coupling constant analogous
to g in front of ¥ ¢ in the Yukawa theory. For completeness we quote from
Ref. [82] various functions denoted by Greek letters in Eq. (7.28). They are

11 1 1
a = m? (—+ -;,—) ( + ,) A°, (7.30)

z -z 1-1z
K2 k2
A <:c'(1 - 2') * z(1 - :c)) 42
) 1 1
m (z'(l ~z) z(1- :c')) 4 (7:31)

1 1 K &'
7=m(;+;7)(1_z.41-1_z,.40), (7.32)
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_ 1 1 £ 1 K&
o (e 1) (B ), a9
(1) (- ). -
1 1 £ 1 K o
<p—m(1~z+1_z,) (EA -;A), (7.35)
1 1 1 1
— 2 (2 - 1
w=m (z+z,) (1—z+1—~:c')A’ (1.36)
K2 K2
o 1
p= (z'(l—m')+a:(1—w))A
! 1 _ 1 ) 0
+ KK (:c’(l—:c) 20 =) A, (7.37)
where
1
1 a2 —b2-a
l-—-.—_—
PR CE 2 -

¢1=;12-{-n2+»c'2

- i i
k2+m? k24+m? K24+m? n2+m2)

Py (A el

z 1-—2 1-2 z
2 2 ‘9 2
101 K+ m”° K*+4+m* 2
sle - - 2M, .
+ 3z’ - 2 (:c(l—:c) Sy s o) : (7.39)

and

b= —2xk'. (7.40)

Asymptotic behavior of the wave functions ¢gfq A, (#) when the relative
transverse momentum becomes large is given by the inverse of the invariant
mass squared of the two fermions, M ;22, multiplying the potential term.
From Egqs (7.30) to (7.37) we see that almost all entries in the one boson
exchange potential in Eq. (7.28) behave for large transverse momentum as
at least one inverse power of the transverse momentum. These terms lead
to asymptotic behavior of the wave functions which is at least as convergent
as =3 and produce no large cutoff dependence in the integral equations.
However, the first term of 8 in Eq. (7.31) behaves like a constant as a func-
tion of the transverse momentum for large &. The asymptotic tail of f is a
function of z and z' only. Therefore, the wave functions with [, = 0 obtain
contributions which fall off at large « like k2. Substituting such a function
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under the integral with a constant potential, we see that asymptotic behav-
ior of the wave function in the transverse direction leads to a logarithmic
divergence in the one boson exchange potential. This is a common feature
of all one boson exchange interactions between relativistic LF fermions.

The logarithmically divergent integral in the potential term generates
A-dependence of the eigenvalue problem. The spectrum is cutoff dependent.
Numerical estimates of the cutoff dependence will be discussed in the next
Section. We cannot simply let A tend to co. The Hamiltonian H4 must
contain the counterterm indicated in Eq. (7.28).

The model Hamiltonian with the cutoff A is now denoted by H and its
free part by Hy. E denotes the eigenvalue and gV the potential term, where
g symbolizes a coupling constant which is equal to oy in our model. Thus,
H = Hy + gV. One introduces projection operators Py and @ = 1 — P;.
P, projects on the space of states of two fermions with relative transverse
momentum squared smaller or equal to A < A%. The corresponding space
of two fermion states is called A-space. The free Hamiltonian Hy commutes
with the projection operators. Note that the dimension of the cutoff A is
transverse momentum squared. The effective Hamiltonian in the A-space,
denoted by H,, contains the effective interaction, Vy, which is given by the
formula [83]

1
Va=PrgV P+ P,\QVQ,\E T,

P, . .
Tora VR (14D

If the limit of V, when A — oo existed, then H, would have a cutoff
independent spectrum and the counterterm would not be necessary. Since
the limit does not exist one can attempt to add counterterms to H so that
the dependence of V) on A disappears for 42 > A. In other words, one
is seeking a method to solve a divergent Hamiltonian eigenvalue problem
and find a special new operator which removes the divergent parts from all
eigenvalues in a well defined procedure. Hy which results from H including
counterterms has a finite limit when A formally tends to infinity. The new
finite limiting H is called the renormalized Hamiltonian, Hg).

Hpy = lim H,. (7.42)
A—co

Since the cutoff X is chosen arbitrarily, the spectrum of common eigen-
states of the renormalized Hamiltonians Hg, must be independent of the
cutoff A\. Renormalized Hamiltonians at various cutoffs A are related by a
renormalization group transformation. The objective of the renormalization
procedure is to find the necessary counterterms to he added to the Hamil-
tonian H so that the formal limit of the new H when A is sent to infinity
exists but it is not obvious how to construct the Hamiltonian counterterms.
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Analysis of divergences in the effective Hamiltonians H) when A — oo,
indicates which counterterms should be added. -

There are two steps to make. The first step is to find the general
structure of the counterterms. One can use power counting in perturbation
theory to isolate divergences in the effective Hamiltonian and discover the
structure of the necessary counterterms.

The second step involves identifying special conditions, such as, for ex-
ample, Poincaré invariance of the spectrumn, and using these to constrain
finite parts of the counterterms. This means one fits the free finite pa-
rameters in the Hamiltonian to observable physical features. That includes
also symmetries like Poincaré symmetry. The second step may require a
numerical procedure involving diagonalization of the full Hamiltonian with
counterterms containing the adjustable finite parts.

The first step can be done using differential equations for the effective
interactions as functions of the cutoff A. By definition

dVy = P\VayarPr — Vs (7.43)

Multiplication of matrices in spin space and integration over longitudinal
momentum fractions are represented as multiplication. Integration over
transverse momenta is denoted by integration over variable z for k2, z' for
k' etc.. In this convention, the kernels of the projection operators are
represented by

Py(z,2') = O(X - 2)0(2)8(z - '), (7.44)
Qa(z,2') = 0(A% - 2)0(z = N)é(z - £'), (7.45)

and an infinitesimal projection operator is introduced
dQa(z,2') = —dA6(z — A)b(z - 2'). (7.46)

The corresponding space of states is called dA-space. Using the identity

1 1 1
E-Ho-QxgVQx 1- E%q;gVQAE—Ho (7.47)
one can rewrite Eq. (7.41) as
Va =Py\gV P,
* ‘p“’V[.ECEAH0 * E63'\}109‘/}5CLJAH0
4@ gV Qa gV @, JgVPy. (7.48)

E-Hy" E-Hy" E-~Hyg
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Then,
dvy = PAgV[Ed_Q,I\IO + Ed?;IogVEC_?_,\HO + Eﬁ_),}fo ngd__Q;IO
+ Ed?gogVE?AHogVE?)}IO
+ EC—L\H gVEd?;JOgVEC-b}IO
+ EQAH ngQAH VEdf?;{O +..]gVPy,  (7.49)
so that

dQ
dvy = P’\V)‘E T
Due to the simplicity of the model Hamiltonian the projection operator d@ x
is infinitesimally small and action of the potential term takes states out of
the d\-space. Therefore, dQ 5 appears at most once in each term of the sum
in Eq. (7.49) and the resulting Eq. (7.50) takes a simple form. In terms of
potential kernels the latter equation reads

VAP, . (7.50)

4 (e ') = Va2 )

1
= Va(), 2). (7.51)

1
Ho(A) - E

Divergences in the effective potential V), when A — oo and no countert-
erms are included, are only logarithmic, and one may consider such cutoffs
A that eigenvalues E are much smaller than Hg(A). Therefore, one may ne-
glect the eigenvalue in the denominator on the right hand side of Eq. (7.51).
It is convenient to include a factor PT in the denominator, and consider
interaction term which includes another factor of Pt and a minus sign.
These conventions allow easier notation when we focus on the transverse
divergence. So, denoting the inverse of the product P* Hy(\) by K, one
obtains the following differential equation,

%V)‘(Z,Z’) = —V)‘(Z,/\)I(,\V,\(A,Z’). (7.52)

The integral form of this equation is

>

Valz,2') = Vyo(2,2') + | dsV(z,8) K Vi(s, 7). (7.53)

y«\>

The initial condition at s = A% — oo is

Var(z,2) = gV (2, 2') + calz, ), (7.54)
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where ¢ 4(z, z') denotes a counterterm. The problem is to find the structure
of the counterterm in the limit A — oo. The difficulty is that one has
to solve a first order differential equation with two boundary conditions.
Namely, one needs to specify the potential at s = A% and request that the
effective potential is independent of A at s = A &« A2,

The generally valid structure of the counterterm can be defined by re-
cursive relations among terms involving different powers of g in the appro-
priate expansion. One writes the counterterm as a series in the coupling
constant. The series for the counterterm starts with a term proportional
to g2. The family of kernels V,(z,2') for Ay < s < A? is also written as a
series in the coupling constant g. The family is viewed as a single function
of three arguments z, z’, and s. The first term in the series expansion of
the kernel is proportional to g. It is equal to the original kernel gV (z, z')
(including the factor PT). The term of order g is independent of s. Xg is
much larger than M? but otherwise it is arbitrary. Order by order in the
series expansion one can show that the divergences due to A — oo appear
in the effective potential at small cutoffs only in V) (0,0). Therefore, it is
sufficient to subtract the divergent part of ¥ (0,0) to obtain cutoff inde-
pendence of the effective Hamiltonian H,. The recursion and proof to all
orders in g are given in Ref. [82].

Once it is established that divergences appear only in V),(0,0) the
renormalized Hamiltonians can be found in the following iterative proce-
dure.

We assume that the counterterm is independent of z and z', i.e. c4(z, 2')
= cp. Eq. (7.53) takes the form

A2
Va(z,2') = gV(z,2') +ca + / dsVy(z,s)K,Vs(s, 2'). (7.55)
A

The first approximation to the effective kernel is the bare potential itself,
Via(z, ') = gV (z,2"), (7.56)

and
Ci1A = 0. (7.57)

The second approximation is given by

A2
V2/\(za ZI) = gV(Za z') +c24+ /dsgV(z, S)K,gV(S, z')a (758)
A
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A'.’
Cop = fz - /dsgV(O,s)I(sgV(s,O), (7.59)
Ao

where f, is allowed to be a finite spin matrix which is a function of the
longitudinal momenta of the fermions. Looking at Eqgs (7.30) to (7.37) and
K, we see that the counterterm contains two factors of the longitudinal
momentum fractions in denominator. This implies that the counterterm is,
in fact, containing a function of dimension (2 ~)2. In the second approxima-
tion it is (%)~ acting twice on various fermion fields in the four-fermion
term suggested by the power counting.
The procedure can be iterated according to the recursion

A2
V(n+l))\(z’z') =gV(z,2')+ frns1 - /dSVnS(O’s)KsVnS(s) 0)
Ao
A2
+/amwﬁmw%@£y(mm
A

At the n + 1 iteration, one has to choose the arbitrary finite function fr,41
so that some symmetry requirements are satisfied. It is a matter of case by
case study to find how can one implement such constraints.

If the limit of the iteration procedure for n — oo exists, the solution
to the renormalization problem is given by the potential which satisfies the
following equation

A2
Va(z,2') = gV(z,2) + f - /dsV,(O,s)I{,V,(s,O)
Ao

A2
+/ammnmnhjx (7.61)
A

when A? — oo0. f = o(g?) is the finite part of the counterterm that is
defined using the cutoff A\¢ as the lower limit of integration. Therefore, f
and A\g are related. ,

In practical calculations, one considers V2 which is a sum of gV (z, 2')
and certain unknown function of the longitudinal momentum fractions of



1398 St. D. Grazex

the fermions. Equation (7.61) can be solved numerically. One has to fit
the A-dependence of the counterterm so that no A-dependence appears in
observables. In simple models, one may also study analytic examples that
illustrate what kind of solutions are expected. The renormalized interactions
V may develop singularities for some values of the cutoff A.

We quote below three instructive examples from Ref. [82]. If the kernel
is independent of transverse momenta then the renormalized interaction is
too,

ea(z,2') = ¢y (7.62)
Eq. (7.61) simplifies to
A? A?
ex=f- /dS[g + 5] Ko[g + cs] + /dS[g tes]Kslg+es],  (7.63)
Ao 2
which is equivalent to
A
ex=f- /ds[g+c3]1(,[g+c,], (7.64)
Ao
The solution is
A A
ey = [1+(f+g)/dsKs]_l{f— (f-}-g)/ds[(sg], (7.65)
o Ao

so that the renormalized interaction is

A
Vi = [1+(f+g)/ds[(s]"’(f+g). (7.66)
Ao

In this example the renormalized interaction vanishes when the cutoff A
tends to infinity, which is analogous to asymptotic freedom in QCD. When
the bare interaction is of the form gV(z,z') = igd(z — z') — igf(z' — z), the
integration of Eq. (7.61) produces a singular behavior of the renormalized
interaction at certain values of the cutoff A. The example is motivated by
analysis of the partial wave potentials for |j,| = 1 in the Yukawa model,
where antisymmetric imaginary kernels appear. One considers

Vi(z,2') = igb(z — ') ~ ig0(2' — z) + ¢cs, (7.67)
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where ¢, is independent of the transverse momentum as in the example
above. Here it is assumed that g and ¢, are numbers independent of the
longitudinal momenta and spins of the fermions. Only then can a simple
analytic form for ¢, be easily derived. K, is put equal to s~ for simplicity.
With the above simplifications direct integration of Eq. (7.61) leads to the
solution

f - gtan (glog ;’\;)

g + ftan (glog ;"—\6) .

eA=¢ (7.68)

Note that the renormalized coupling strength tends to infinity for certain
values of the cutoff A. Near such values of the cutoff perturbation theory
becomes invalid. In order to avoid such features it is desirable to incorporate
asymptotic freedom in model Hamiltonians for quarks and gluons. The
advantage of asymptotic freedom is that it forces the renormalized couplings
to approach zero so they cannot go to infinity instead. If the renormalized
kernel V), can be approximated by a separable form,

Va(z,2') = ) hi(2)ei(Mh;(2"), (7.69)
ij

or, equivalently, in abbreviated notation,
Va(z,2') = hi(z)eah(Z'), (7.70)

and satisfies Eq. (7.52), then the matrix ¢ may be written explicitly as

A
ey =[1+4¢y, / dsh(s)I(‘,h’(s)]"lc)o . (7.71)
Ao

This example implies that using basis functions instead of grids in momen-
tum space helps in constructing numerical renormalization procedures.

7.3. Numerical studies in the Yukawa model

First numerical attempts to investigate renormalization effects in two
fermion bound states in the LF Yukawa theory have been reported by
Glazek, Harindranath, Pinsky, Shigemitsu and Wilson [84]. These authors
studied a Yukawa model of Eq. (7.27) in full detail. When the self-energies
of fermions are included one has to subtract their divergent parts. The



1400 St. D. GLAZEK

fermion self-energy in the Yukawa model, analogous to ¥ from Eq. (2.46) in
QED and a similar expression for quarks from Section 6, is

1 qq ) 2 [(m?(1+ 271)? + £2277]

I = ~102 dz | d°k 5 T >
2{(M12~M)+ z t =™

(7.72)

This is divergent and needs subtraction. The self-energy can be written as

3; = Blei(Mi, ~ M?)]. (7.73)
The function £(a) can be written in the form
£(a) = £(0) + aX'(0) + rest. (7.74)

The first term is strongly cutoff dependent and can be subtracted by intro-
ducing appropriate §m?2 for fermions in the two-fermion Fock sector. The
second term is logarithmically divergent and, combined with the free ener-
gies of fermions in the two-fermion sector, leads to the term

1+ Z(0)|(ME, - M?) (7.75)

in the once subtracted two-body equation. £'(0) is logarithmically divergent
and positive. In order to remove the divergence one may divide the effective
two-body bound state equation by the hare coupling constant ay. Then,
one can see that the logarithmic divergence can be removed by requesting

14+ Z'(0 1
1+30) 1 (7.76)
ag a
where a is a “physical”, i.e. cutoff independent, coupling constant. This
is an ad hoc procedure. It leads to the problem that the bare coupling
constant is related to the physical coupling by
a
g = ———— 7.77
T - aay ' T(0) (7.77)

Since Z'(0) is positive and grows when the cutoff becomes more extreme we
have the feature that ¢ becomes imaginary for sufficiently large cutoffs if «
is kept fixed. This is called a triviality problem, since when one attempts
to send the cutoff to infinity the “physical” coupling goes to zero and no
binding or nontrivial interaction occurs. Thus, for a fixed value of the
coupling constant a we have certain maximal allowed value of the cutoff.
The numerical studies in Ref. [84] were carried out within the bounds set by
the triviality. The coupling a should be sufficiently strong in order to create
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bound states; for massive bosons the fermion-boson coupling constant is
required to exceed certain minimal value for that the binding is strong
enough and bound states exist. On the other hand the coupling should not
be too large in order to allow sufficiently large cutoffs. Large cutoffs are
needed to make the renormalization procedure, based on the assumption
that the cutoff is large, work. The compromise has stiff limits. For each
value of the cutoff there is a critical value of the coupling, a. which is the
maximal possible coupling for that cutoff. In the range of the transverse
momentum cutoff 10m < A < 100m the approximate result is that

A
ac~3.2-0.5log p (7.78)

For such couplings and cutoffs the binding is weak. The bound state mass
squared, M? is only a few % smaller than 4m?. Still, the difference 4m?—M?
may vary in the above range of the cutoff A by about 7 to even 13% if no
counterterms are included. Therefore, although the cutoff dependence is not
dramatic, it is clearly visible. By introducing counterterms of only fourth
order in g (second order in &) one can reduce this cutoff dependence by an
order of magnitude, roughly.

The important point is that the spectrum of bound states of the bare
Hamiltonian does not exhibit degeneracy which is required by rotational in-
variance. The counterterms not only remove the cutoff dependence but also
provide a possibility to make the spectrum become degenerate as required.
The finite parts of the counterterms are fitted to obtain the degeneracy.
Then, one can calculate the bound state wave functions and consider their
implications for the bound state observables. Ref. [84] provides examples of
numerical solutions for the wave functions.

One should keep in mind that the ad hoc coupling constant renormal-
ization used in Ref. [84] is not a general solution to the acute problem with
the logarithmic divergences in self-energies which are proportional to an
eigenvalue. It is the simplicity of the Yukawa model which lets us get away
with the coupling constant renormalization as a cure for the eigenvalue de-
pendent divergences. This problem has already been discussed in Section 6.

7.4. Couvariance conditions

In the previous Section it was ohserved that the finite parts of the coun-
terterms provide an opportunity to obtain a physically acceptable spectrum
of bound states which exhibits the mass degeneracy as required by rota-
tional invariance. Without having the freedomn to fit the finite parts of the
counterterms one could not achieve this result. Wilson suggested that ma-
trix elements of current operators should provide additional constraints [75].
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Below, we explain how a covariance condition may enforce constraints on a
theory.
Let us consider a hypothetical matrix element

v# = (0]J#(0)|bound state), (7.79)

where J#(z) is called a current operator and the bound state is assumed to
be

[bound state) = Z/d“'dz"}ﬁf’/\a(% N_L)blp-i—n,/\d(rl—z)}’—n,alo) - (7.80)
Ao

Suppose the current operator is

J#(0) = $(0)744h(0) . (7.81)
Then

v# = Z/dzdzn’l‘ﬁm‘(l_z)p,n,a7"u,n,zp+n,)\¢’\°(:c,A’L). (7.82)
Ao

Let us assume that
$*(2,18) = 77 (e, [k b). (7.83)
Evaluating the spinorial matrix elements one obtains the result
v# = ¢ P* + cagtH, (7.84)

where

€1 =~ ;/dcd'zul‘f’\(a;,inli)%/z(l ~ z) (7.85)

and
k2 + m?

1 YT
e = F;/dzdzn"‘f’\(fc,iﬂll) z(1-2) [M2 )

] . (7.86)

We see that the matrix element has a covariant structure in v+ and vt
independently of details of the wave function but contains a noncovariant
part in v~. Moreover, if the function f(z,|x"|) is real and positive the
coefficient ¢, cannot vanish. A function which changes sign is required.
One could also introduce nondiagonal spin structure and angle dependent
wave functions in Eq. (7.83). More complicated discussion is required for
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more complicated wave functions. However, this example already illustrates
some important features.

The first feature is that in LF dynamics under some general assump-
tions the structure of certain phenomenologically relevant matrix elements
may automatically have the structure required by special relativity, inde-
pendently of details of a wave function. This result follows from the LF
symmetries which determined the structure of the state and the spinors in
the current.

Second feature is that in order to obtain acceptable structures of some
bound state matrix elements one has to consider Hamiltonians acting in a
bigger space than the space sufficient for the description of the bound state
itself. Namely, some matrix elements, here v~, are not obviously relevant to
physics until one formulates a more complete theory in which such matrix
elements may appear. For example, the problem with v~ does not appear
in the case when a vector field component AT which is able to couple to
v~, is put equal to zero.

The third feature is that there may be required considerable variations
in the bound state Hamiltonian parameters in order to obtain desired struc-
ture of some bound state matrix elements. One has also to consider the
possibility that the current operators which may give physically relevant
transition amplitudes will have to have more complicated structure than in
free field theory or in perturbation theory. For example, in the elementary
example of this Section one could pose a question how should the operator
J# be defined so that ¢; = 0 in v~ and the same ¢; is obtained from cal-
culating v~ as from calculating the other matrix elements with x4 = + or
p=1.

In more complicated matrix elements the issues of rotational invariance
and angular momentum (spin) become complicated. It is not possible to
obtain rotationally invariant results without introducing new terms in a
Hamiltonian. The new terms should allow wave functions and operators
to combine into the rotationally invariant answers for physical observables.
The importance of such considerations in numerical calculations is stressed
in Refs [36] and [85]. See also Ref. [34] which gives an explicit evaluation of
current matrix elements in a model spin-1 bound state. In the next Section,
we discuss another model example which further illustrates how Poincaré
covariance constrains LF Hamiltonians.

8. Model study

In this section we present a model which illustrates that a Hamiltonian
acting in a small space restricted by strong cutoffs may lead to nontrivial
relativistic results. We have seen in LF QED that imposing a restriction on
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the number of bare particles to at most three and considering only small rel-
ative momenta leads to phenomenologically valid approximation for positro-
nium. The small coupling constant made this approximation selfconsistent
in QED. However, if the coupling was considerably larger one would en-
counter problems discussed in Section 6. The present model provides an
example of a LF Hamiltonian theory which can be considered for coupling
constants of order one, or even much larger in some cases, and the solution
for the fermion-boson scattering amplitude is covariant. This is achieved
by introducing counterterms. It is important to have this example since
otherwise one might question the possibility to obtain relativistic results
from quantum theories constructed in limited Hilbert spaces. The model
we discuss has been originally formulated by Glazek and Perry [86] and
we reproduce parts of that formulation in Section 8.1. The Hamiltonian of
the model acts in a space of two Fock sectors. Namely, a sector with one
fermion and a sector with one fermion and one boson. This feature makes
the model resemble a sector of the Lee model [87]. The major difference
is that the Lee model and its relativistic generalizations were constructed
using ET form of dynamics while the new model is constructed using LF
dynamics in a way which is motivated by renormalization theory for Hamil-
tonians. Fuda [88] has considered a model resembling this one but he does
not discuss the problems of regularization and renormalization of LF Hamil-
tonian eigenvalue problems which is the central issue of this paper. Without
special terms in the Hamiltonian one could not obtain rotational invariance
in the model. There are two kinds of such terms. There are seagull terms
which correspond to the fermion-antifermion pair creation in the ET dy-
namics and there are counterterms which remove divergences. A side effect
of the renormalization is that the new model exhibits triviality, a feature
found in a two-fermion system from the previous Section and known in the
Lee model. In this Section we discuss three physical properties of the new
model: fermion-boson scattering, physical fermion form factors and the
fermion structure functions.

8.1. Fermion-boson binding and scattering [86]

To restrict the number of necessary counterterms in the model Hamilto-
nian, we want to maintain as many symmetries as possible. We must violate
the dynamical rotational symmetry, but it is still possible to maintain the
kinematic symmetries. For example, these symmetries are maintained if we
choose cutoffs that are functions of longitudinal momentum fractions and
relative transverse momenta. In order to present the model as an example of
a more general LF Hamiltonian renormalization program we give a slightly
broader discussion than this limited example truly requires.

The Hamiltonian must be constructed using only the dynamical degrees
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of freedom on the LF and it is restricted by simple dimensional arguments.
In canonical LF Hamiltonian densities one has field operators, derivatives
and masses. There appear inverse powers of 1 but no inverse powers of
8+ or masses. As we already explained in Section 7, one must consider
longitudinal and transverse dimensions separately, so there are two length
scales, z~ and 2z [74]. Dimensions of fields are easily determined from a
free field theory. Two components of a Dirac field are constrained, leaving
two dynamical degrees of freedom, 94 (z). The scalar field is ¢(z). The
engineering dimension of each of these variables is

=[] - [ (2]
et = [ =] 0t =[] (81)

The Hamiltonian H = fdm“dza:‘LH is the integral of the Hamiltonian
density, so that

z~ 1

m= 23] pa=|k] (5.2)
One should mention that the association of dimensions with fields is not
equivalent to estimating their size in a sense of some metric. The latter
requires introduction of wave packets (wavelets). We will not be concerned
with that issue here, ¢f. Section 7.2. and Ref. [24]. Before we can list the
allowed terms in the Hamiltonian we need to mention that operators that re-
quire inverse powers of a mass are typically discarded as non-renormalizable.
For example, ¢°/m leads to a ¢®/m? counterterm in perturbation theory,
which in turn leads to higher powers of ¢. In perturbation theory one must
introduce all powers of ¢ if one includes ¢°/m, and delicately balance their
couplings to obtain finite results. This problem does not occur in the model
Hamiltonian because high powers of a field operator cannot act in a trun-
cated Fock space.

With all of these simplifications we can list the remaining terms allowed
by such dimensional analysis. The terms that involve no fermion operators
are

m*¢, m’¢?, 812¢%, m¢’, ¢*. (8.3)

All of these terms should be understood to be normal-ordered. We do not
specify how the derivatives are to be distributed. The term linear in ¢
contributes only if we allow a zero longitudinal momentum mode. Since
the free energy of any mode with zero longitudinal momentum is infinite,
we will discard this mode when we regulate the theory; therefore, we can
ignore the linear term. We will not encounter infrared features which would
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force us to reconsider this step in the limited model. Also, neither the ¢3
term nor the ¢* term can contribute because we never allow more than one
boson. Including fermion fields one obtains

1 9
*a—:"_"lﬁi_r{mz ) 8_L- » m’Y‘Lal ) ¢7L6J_ ,md) ) ¢2}¢+ 9 (84)

2
(51;) Pl gyl Dy, (8.5)

Again we do not specify how derivatives, including inverse powers of deriva-
tives, are to be distributed. Moreover, we do not list all possible gamma
matrices that can occur in these terms. For example, in equation (8.4)
one can have I' = 1,vs,0;2, etc. These cannot be restricted, except to
insist that all transverse indices be contracted, until one brings in other
considerations, such as parity.

At this point we have drastically limited the class of Hamiltonians we
consider, and as a final limitation we assume that the tensor structure of
the interactions is the same as found in the canonical scalar Yukawa Hamil-
tonian. This leads to the Hamiltonian

H=Hy+ H; + Hy, + Hj, (86)

Ho = %/dz*'d%l[m)(—a“ + ,ﬂ)qs(m)

r2ul(e) (-0 4 mi ) e . (8.7)
-2 1t L (.1 o1

H, :gI/dm d*z ¢+(w)¢(:c);—a—+(27 -0 )1/1+(:c)+h.c., (8.8)

Hy = gomy / dz-d2z¢¢1(m)¢(m);§¢¢+(a¢) the., (8.9)

Hy = g} [ da= e 9 (2)o(2) g (@) (o). (8.10)

All of these terms occur in the canonical Hamiltonian; however, in the
canonical Hamiltonian my = my; = m and g1 = g = g3 = g. If we were
to consider more particles (eg., two fermions and one boson), we would
need terms that are not found in the canonical Hamiltonian to obtain finite
covariant results.

This Hamiltonian requires one further modification before we can obtain
covariant results. We must allow the parameters to depend on the Fock
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space sectors in or between which they act [89, 81]. To accomplish this we
can introduce Fock space projection operators

Pp=7) . /[dp] [pA)(pA, (8.11)
A

Ppy =), / [dp][dg] IpX, 9) (P, ql, (8.12)
A

where
lpA) = b¥(p, )[0) (8.13)
and
IpA, q) = bi(p, A)al(q)]0) . (8.14)

We need to apply proper combinations of these projection operators to each
term in the Hamiltonian, and introduce separate coeflicients for each resul-
tant term. Since the projection operators are simple only in momentum
space, it is easiest to work entirely in momentum space. One uses the fa-
miliar expansions of fields into creation and annihilation operators. We
also rewrite various terms in the Hamiltonian using operators which involve
the Dirac spinors from Eq. (2.20), uy,p2, instead of using only the dynam-
ically independent components . This simplifies the task of deriving a
manifestly covariant T-matrix, because the fermion field corresponds to a
physical particle and covariant matrix elements are most easily written in
terms of u,,,p) in this case. These spinors involve the mass parameter m, as
indicated by the subscript. Moving to momentum space, recombining H;
and H; so that u,,,) appears, and redefining some of the mass parameters,
we have

H=H+H®+ H, + Hy + H3, (8.15)

1.2 mz Zw
" =;/[dp] [pA) (p * p}f“’ Z)WI, (8.16)

L2 2 12 2
pi4m? P4y
H{* = ;/[dp] [dq] lp«\,q)( P )(p/\,ql,

(8.17)
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Hi+H, =Y [ld5)[at][da)0(4* - ) 202080 + 4 - b)
Ao
X [lp)‘a q) ﬂmp)\ (1 + ;%7+> Umko (kal

_ dm
+ Ik‘7> Umko (1 + EF7+> UmpA (p’\) QI] ’ (818)

H =¢'% / (dpa)dp2)(das ) da2]
Ao

x (A% — k3)0(A% — k3)2(27)%6(p2 + @2 — p1 — @1)
+
2(p1 +4i)

The relative momentum variables are

X |p2/\,Q2)'ﬁmp2)\ Umpo (pla', 91] . (8'19)

L_gtptoptet L dfet-piet

pt+gt 7 7 P+ gt

We have dropped a part of H3 in going from Eq. (8.10) to Eq. (8.19), a
part that is identical in form to the expression shown in Eq. (8.19) but with
pi" - q;' replacing pi" + qiF . As mentioned above, when we make the Fock
space truncation, we must project each interaction and break it into pieces,
allowing each piece to vary in strength to restore covariance. H3 provides
a simple example. When one goes beyond this model such functions of
longitudinal momentum must be further generalized.

In this Hamiltonian the transverse momentum cutoffs appear as vertex
regulators that limit only the momentum transfer. The total transverse
momentum is not limited. This will regulate all ultraviolet divergences that
are caused by states with large relative transverse momentum, but will not
regulate divergences caused by states with small longitudinal momentum.
To regulate these one imposes an additional cutoff on the longitudinal mo-
mentum integrals everywhere in the Hamiltonian,

(i=1,2).  (8.20)

pT kY > T, ¢t >t (8.21)

In other words, all fermion longitudinal momenta are greater than f+ and all
boson longitudinal momenta are greater than b¥. Since this cutoff employs
the longitudinal momenta themselves instead of the momentum fractions,
it breaks longitudinal boost invariance and we have to carefully choose the
ratio f* /b to restore this symmetry. It is possible to use other cutoffs.
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In general one should allow separate couplings to appear in H; + H;
and in Hj, but in this special example covariance requires that the same
coupling appears. H({ gives the free energy of a fermion before interactions
are turned on, and the bare mass is divided into two terms, m? + g%w?, for

later algebraic convenience. H, ‘{ b gives the free energy of the states with one
fermion and one boson. Because of the Fock space truncation, a state in
which a fermion and a boson propagate at large separation experiences no
interactions. We have not allowed direct long-range interactions, so at large
separation particles must exchange additional particles to interact, and the
Fock space truncation excludes this possibility in this sector. As a result,
the masses in H({ % must be the physical masses. H; and H, are grouped
together, but the possibility that they differ in strength is maintained by
the terms proportional to §m.

The operator {1 + (6m7+)/(2k+)] acts on the spinor u,, ;) and converts
it into a spinor which satisfies a Dirac equation with mass m + §m [39]. If
we use a subscript for the fermion mass appropriate to a given spinor, we
find that [¢f. Eq. (3.40) in many-body nuclear bound states]

+
— — 7 —
UmpAUmko T ump/\é'g:f_'(rnl - M)Uppo = UmpAUm ko - (822)

Thus, H; + H; causes transitions from a fermion of mass m; to a fermion
of mass m and a boson, and vice versa. The occurrence of such an operator
should not be surprising, because fermions in different sectors of Fock space
can become dressed to a different extent. In addition to requiring different
masses to occur in Hp when projected on different sectors, this requires
different spinors to appear in transition matrix elements that occur in the
interactions that connect different sectors. This completes the definition of
the model as described in Ref. [86].

The calculation of all fermion-hoson scattering observables begins with
the division of the Hamiltonian into a free and interacting part. The free
part governs the propagation of particles when they are separated by a
sufficient distance that interactions can be neglected. We write H = Hy +
H;. Hy is given by H({ + H({b, with g2w? set equal to zero in Hof. The
remainder of the Hamiltonian gives Hj.

Following Gell-Mann and Goldberger [90], the S-matrix elements can
be calculated from

Sti = (Ds|S1¢:) = b5; — 2mib(Ey — E;){¢¢|T(E;)|¢i) (8.23)
where T(E) satisfies the equation,

1

T(E)=Hi+ Hrg—g—v

T(E). (8.24)
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|¢:) is an initial state with a fermion of mass m, momentum p and polar-
ization A, and a boson of mass y and momentum k, while |¢f) is a final
state with a fermion of mass m, momentwun p' and polarization X', and a
boson of mass g and momentum k'. Eq. (8.24) for the T-matrix can be
solved analytically in the present case because H has a sufficiently simple
algebraic structure. Solving for T includes defining how w, my, §m, f* and
bt are chosen when 4 is large in comparison to m and u. The choice which
renders a covariant scattering amplitude is described in detail in Ref. [86].
Here we quote the result

2

= 3¢3 g
(8.25)
The self-energy L(P;) has the covariant form
2(P;) = a(M;) P; + B(M;)m, (8.26)
where
1 2
o(M) = /dh (A2 - K2)
1
x / dz ks (8.27)
K2+ p2z + m2(l—z)~ M?2(1 —z) — de )
0
and
B(M) = ——1—/dn2®(A2 - k%)
T 1672
1
X /dz : (8.28)
K2 + pPe + m?(1—-z) — M2z(l —2)~ie”

0

The functions a(M) and B(M) depend on the cutoff A and diverge when
A — oo0. Recently, Burkardt and Langnau studied similar fermion self-
interactions in perturbation theory [91]. The scattering matrix T has a pole
at the invariant mass M; of the scattering state equal to the physical fermion
mass. The physical fermion states of various velocities form a continuum
of eigenstates of our model Hamiltonian with a single discrete bound state
mass eigenvalue m. The bare mass is defined to be

my = {1 - g% [a(m) + B(m)]} m. (8.29)
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This choice follows from solving the Hamiltonian eigenvalue problem for a
physical fermion state. Due to this definition the divergence in A(M;) in
the fermion self-energy in the T matrix is cancelled. Note that the physical
fermion bound state eigenvalue equation is not derivable in perturbation
theory. The remaining divergence due to a(M;) can be cancelled by intro-
ducing the renormalized coupling constant §(M),

=2
§*(m)
= . 8.30
T 37m) (a(M) = a(m)] (830
On the other hand, Eq. (8.30) and the requirements that the bare coupling
constant is real and finite, impose triviality limits on the maximal value of
the renormalized coupling constant at a given cutoff 4,
m) 1

gfrlax(
Gmax = "y T ~dra(m)’ (8.31)

(The longitudinal cutoffs f* and b are sent to zero at an appropriate ratio
[86].) amax behaves like (log(A/x))™" for large A. This means that for
larger boson masses stronger renormalized coupling constants are allowed.

Substituting the renormalized expressions into Eq. (8.25) one obtains
the scattering amplitude 4 ; which equals T'y; without factors 2(27)363( Py~
P;). Namely

~2 2 2 2 2
_ Ge(M;)0(A% ~ k'°)0(A° ~- &
Api = Uppr s = (171' - m(l\zh() )u""”'

(8.32)

The running mass (M;) is
m(M;) = {1+ §*(M;) [a(M;) — a(m) + B(M;) - B(m)]}m  (8.33)

and equals m for M; = m at the bound state pole. The total unpolarized
fermion—-boson scattering cross section is

; df? Agil* 8.34
s = g | > ias (8:34)

and using Eq. (8.32) one obtains [92]

lg(M)|*
8 M2 |M'2 ~ m2(M)|?

X {(Qm2 + p?)(M? + |m(M)|?) + 4mM /m? + p?Re } (8.35)

o= (A% - k2)6(A% - k'?)
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where p? is the center of mass momentum;

M = M; = My = /m? +p? + /2 + p2. (8.36)

A comment is necessary about the seemingly noncovariant factors of 6-
functions in Eqs (8.32) and (8.35). k and k' are invariant under kinematic
LF transformations (eg., boosts and rotations about the z-axis), but they
change under rotations about one of the transverse axes. Therefore, co-
variance is violated if two observers disagree on whether either of the step
functions is zero or one. The invariant mass for scattering states is given by

2 2 2 2 12 2 12 2
Y R NN s e N SN T X Y

z 1-2 z! 1-2

It follows that

2 2
n2=(M2—m-——— i )w(l—:c)<A2. (8.38)

T 11—z

Since z(1 — 2) < 1/4, we cannot find a frame of reference in which x? > A2
if
M? < 44%. (8.39)

In other words, all scattering observables are perfectly covariant for states
whose invariant mass satisfies M> < 44%. This is a remarkable result in a
Hamiltonian approach to quantum field theory. To our knowledge this is the
first time such precise maintenance of Lorentz covariance has been achieved
using a field theory truncated to a few particles. In fact, even for cutoffs
smaller than m+ u one can ohtain covariant results. All interactions required
for this result are found in the canonical Hamiltonian for the Yukawa theory.
However, one cannot use the canonical Hamiltonian without modifications.
The strength of various parameters in the Hamiltonian must be allowed
to depend on the Fock space sectors within which or between which they
act. In this special example one does not encounter the need to introduce
renormalization functions as it was necessary in the model from Section
7.2. This is because this model resembles closely perturbation theory and
does not involve full complexity of the relativistic Hamiltonian eigenvalue
problem.

Numerical studies of the cross section from Eq. (8.35) are presented in
Ref. [92]. Practically no residual cutoff dependence appears in the whole
range of cutoffs allowed by the triviality bounds. We proceed to the discus-
sion of the physical fermion form factors.
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8.2. Form factors [92]

The triviality bounds force us to keep the ultraviolet cutoff finite and
we cannot make the cutoff go to infinity, as it is possible in the case of
asymptotically free theories. A critical question arises how strong is the
dependence of observables on the large but finite cutoff. The answer deter-
mines whether it is useful to consider such models with finite cutoffs and
without asymptotic freedom.

We consider fermions to carry a charge e = 1 and bosons to be un-
charged. The physical fermion state is a superposition of a bare fermion
state and a fermion-boson state

|PA)= N [bLA + / [dpl[dk]2P+(2m) 8% (P - p - k)fsblaal] 10,

(8.40)
where

g —1

fg = gO(A2 — K,z) [m2 - ; - :’ ﬁmpaumPA (8'41)

and N is a normalization constant which also gives Fy(0) = 1.

We extract the form factors from matrix elements of the current j# =
Py#e for u = +, between states with the same P so that the momentum
transfer ¢t = 0. In this way one can avoid contribution from the pair
creation by the current. The standard expression for a fermion current
matrix element is

. _ P (q?) .
(PAITHOIPA) = Guprse [Fila 1 + 5 gyio? | s (842
and evaluation of the matrix element in the model gives
(P'M15T(0)|PA) = @ pr v

2 H
2 |+ g dz . 1 0'6 , +
xeN [7 +(27‘”)3./‘:1,'2(1—2:)(1'c D'D (' +m)y (?H”m)] UmPA
(8.43)

where 8 = 0(A% —k2), 6' = §(A% - x'*), and D and D' are the denominators
of the initial and final state wave functions of Eq. (8.41) with &'t = x+ +
(1 - z)¢gt. Using properties of the Dirac spinors and substituting st =
ul — 12(1 - z)g and dropping terms linear in u* which contribute zero
when integrated one can replace the product (¥' + m)y (¥ + m) under the
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integral by a simpler expression and obtain the matrix element in the form
of Eq. (8.42). Thus, the form factors are equal

Fi(¢®) = N*[1+ ¢*I(¢°)] (8.44)
and
F(¢®) = N?g*J(Q), (8.45)

where N=2 =1 + ¢%1(0),

1 ded?skt 0'6 1
2y _ 2,2 L4 oN2,2 12
I(q )"‘ (27‘,)3/22(1_ :z:) D'D [(1‘*‘1:) m”® + 4(1 z) q° +u ]

(8.46a)
and

1 ded*ct 00 _ .
2y _ 9 201 _ .2 . .
J(¢) (21)3/732(1_:,;)1)/13 m(1 - 2?) (8.46b)

When the bare coupling constant is expressed by the renormalized coupling
g = §(m) one obtains

2y _ 14+ §*[I(¢%) + a(m))]
B = T332 00) + alm)] (8.47)
and
Fy(¢®) = 7*J(g%) . (8.48)

One finds by inspection that the divergent parts of the integrals in I(g?)
or I(0) are cancelled against the divergence in a(m). J(g?) is a convergent
integral. Thus one could obtain fully cutoff independent predictions for
the form factors in the model if not the triviality bounds which prevent
letting A — oo0. Numerically, the residual cutoff dependence of the form
factors within the triviality bounds is negligibly small, on the order of a few
percent or less for light bosons [92]. The cutoff dependence originates from
the momentum dependent fermion spin effects. For light bosons, the bare
fermions do not move much within the physical fermion bound state and
the form factors are not sensitive to the cutoff. For heavy mesons, effects of
the fermion motion are growing up to the scale of the meson mass and the
two-body sector contribution to the Dirac form factor hecomes considerably
sensitive to the cutoff. However, when the boson mass hecomes much larger
than the fermion mass the contribution of the fermion-boson sector to the
physical fermion eigenstate is strongly suppressed and the physical fermion
approaches a pointlike bare fermion structure rapidly. The study of Ref. [92]
suggests that renormalized Hamiltonian models with triviality may be useful
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in phenomenology. This is encouraging for relativistic nuclear physics where
asymptotic freedom does not appear and cutofls cannot be made arbitrarily
large.

It is not enough to calculate only j+ matrix elements for ¢+ = 0, since
other matrix elements in configurations rotated around transverse axes may
lead to different results and they actually do. A model cannot aspire to
an explanation of the composite particle structure if it is not consistently
describing the full scattering amplitude. One is forced to consider correc-
tions to the current operator and to the bound state. Model corrections in
perturbation theory involve fermion—antifermion pairs (85]. The fermion-
antifermion pairs may alter results for matrix elements of jt through a
change in the normalization of states and through their own contributions
even for ¢t = 0 if the fermion and antifermion contributions do not cancel
each other.

It has been stressed by Karmanov [36] that few-body models usually
do not automatically give results which conform to requirements of special
relativity, charge conservation, etc. One can obtain different results for form
factors choosing different components of the currents in different frames of
reference [93]. For example, for a spin one bound state of two fermions one
can build models which lead to acceptable structure of matrix elements for
+ or L components of the current and two longitudinal polarizations when
gt = 0, but not otherwise [34]. In order to obtain covariant answers for the
scattering amplitudes one is forced to consider the bound state dynamics in
the presence of projectiles which are introduced to measure the bound state
structure and construct a complete Hamiltonian for such system. This is
not meant to contradict the principle that the nature of the projectile may
not alter the bound state structure. However, one needs a consistent de-
scription of the bound state currents and couplings to the fields or particles
mediating the projectile-target interaction. That includes a theory of vir-
tual intermediate states involving the projectiles. So far, no complete bound
state theory of that kind, or even a practical suggestion how to formulate it
has been known to the present author. The more general need for correc-
tions to the current operators and Hamiltonians in renormalization theory
has already been discussed in Section 7. We proceed to a limited discussion
of the deep inelastic structure functions in the model.

8.3. Structure functions

Our interest in the structure functions follows from the unusual prop-
erty of the model that one can calculate these structure functions using
fully interacting final states as described by the model Hamiltonian. This
is another feature of this model which deserves attention .as a source of
understanding and intuitions in consideration of more complicated cases.
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A standard analysis of deep inelastic lepton scattering [94] off a target of
momentum P, P2 = m?, leads to

Fy(2,4%) = 5= O [(PAITOIW)|* )8 (W - P -q),  (8.49)
AW

where j1(0) = e(0)yT¥(0), |mA) is the physical fermion state at rest (in
the abbreviated notation P = m in the rest frame of the target), Pg = 2mv
and we consider the final scattering states |W) with masses W such that
W? = (P + ¢)? > (m + u)?. Following Ref. {90] we have

: 1
W) = lim [1 t W H et } lpok), (8.50)

where |pok) = b;‘,aa,UO) and W = p+ k. An algebra of expressing the above
formula by the T-matrix from Eq. (8.25) gives

2

9 -1
W) = lim [1 + Z /[dp'] [W' ~ Py ~ gﬁ“ + "f] Ip’v'>(p'a’IH1]

X Z/[dp"][dk"]]p“a"L")(p”a”k"! [t + (W™ = Hq + i)' T] |pok).

ol

(8.51)

Under the assumption that the momentum transfer is such that ¢* = 0 the
only term in the current operator which contributes to the matrix elements
in Eq. (8.49) is

it= Z /[dpl][dPZ]eﬁmpz>\37+”"lP1>\1b;zxszlAl : (8.52)
A1z .

Evaluation of the current matrix element between the bound state of Eq.
(8.40) and the scattering states of Eq. (8.50) gives

. _ m _ Ne
(P’\I]+IW> =gNetnppy (I‘_d"“m7+'ll1rlpa + umP/\_g_'
+ 2 / dZdz L ﬁz'{'m + ﬁz"‘ Q'+m
7 167r3 22(1 - z)m? - M2 V2 —[(pz + @)m + k2] + i€
§*(w)

m(W) + Zf mpa ? (8'53)
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where we have explicitly introduced the solution for the final state scatter-
ing amplitude and some of the renormalized quantities. Also, p, = zP + p,
k, = (1 - z)P — p as usual, with the minus components calculated from the
mass shell condition using the mass values indicated by the corresponding
subscripts. M, denotes the corresponding invariant mass, M2 = (p,+k.)?,
and the same convention applies to symbols with the subscript z instead of
z. Substituting Eq. (8.53) into Eq. (8.49) produces nine terms. One of them
is a “handbag diagram” and the eight other terms appear as a consequence
of the final state interactions. The studies of models of deep inelastic scat-
tering including final state interactions have been recently carried out in ET
dynamics by Celenza, Koepf and Shakin [95] but no renormalization issue
has been considered by those authors. They used special regulating factors
in the interaction vertices which guaranteed convergence of the integrals
and dominance of the “handbag diagram” in the Bjorken limit where exact
scaling appeared. In the present model one has the quantum mechanical
Hamiltonian dynamics at her disposal.

One can observe that the cutoff dependence drops out from the structure
function thanks to the same mechanism as in the form factors. However,
there is a difference that one of the denominators has W? as the mass
shell value in place of the physical fermion mass squared. Moreover, the
integrals are logarithmically sensitive to Q* and scaling is violated. We
have an example for that the bound state wave function has a tail in the
relative transverse momentum of partons which extends so far that scaling
is never achieved and logarithms of Q2 must appear. This is a first example
of a relativistic Hamiltonian analysis of deep inelastic structure functions
known to the present author. Numerical studies of scaling violations in the
mode] will be presented elsewhere. The model is an interesting laboratory
for studying Hamiltonian dynamics of relativistic elementary particles. In
particular, apart from scaling violations, one can study the small z behavior
of the model structure functions including various spin configurations of the
target fermion and its constituents.

9. Advanced theory

The divergence problems listed in Section 6 included the problem of
divergences proportional to exact eigenvalues when one attempted to elim-
inate the three-particle states and obtain an effective Hamiltonian acting
in a two-particle state. These divergences appeared because the Hamilto-
nian coupled states of limited energies to all states of energies ranging up to
the cutoffs. This coupling caused strong divergences in the few particle dy-
namics. Subtractions led to the eigenvalue dependence of the counterterms
and triviality. The natural attempt to solve the problem was an applica-
tion of the R operation from Ref. [24]. However, the R operation involves
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small energy denominators in perturbation theory. For example, in the lan-
guage of Section 7, small energy denominators appear when the free energies
above the arbitrary cutoff A are subtracted from the energies below this cut-
off. This makes it practically impossible to isolate divergences and find the
counterterms since arbitrarily large and complicated terms are generated
due to the small denominators. The new renormalization theory given in
Ref. [96] is designed to solve this practical problem. Our quotation of the
new method from Ref. [96] is given for completeness of this paper and is al-
most a copy of the essential part of Ref. [96]. We reproduce it here since we
find it impossible to make the presentation understandable and still shorter.

In the new theory the bare Hamiltonian with an arbitrarily large, but
finite cutoff, is not reduced to an effective Hamiltonian with a small cut-
off but it is transformed by a specially chosen similarity transformation.
The similarity transformation has two desirable features. Firstly, the trans-
formed Hamiltonian is band-diagonal: in particular all matrix elements van-
ish which would otherwise have caused transitions with big energy jumps,
such as from a state of bounded energy to a state with an energy of order of
the cutoff. At the same time, neither the similarity transformation nor the
transformed Hamiltonian, computed in perturbation theory, contain van-
ishing or near-vanishing energy denominators. Instead, energy differences
in denominators can be replaced by energy sums for purposes of order of
magnitude estimates needed to determine cutoff dependencies. These two
properties make it possible to determine relatively easily the list of coun-
terterms needed to obtain finite low energy results (such as for eigenvalues).

9.1. Similarity renormalization scheme [96]
One considers a Hamiltonian
H = Ho + H[ (9.1)

with a cutoff A, where H includes both a bare interaction and any neces-
sary counterterms. Strong A-dependence of the eigenvalues and eigenvec-
tors of H will be generated in perturbation theory unless one has found the
structure of the necessary counterterms, because the bare interaction cou-
ples states below a fixed energy A to all states from between A and A with
growing strength. The similarity renormalization scheme is based on the ob-
servation that if those couplings with large energy jumps were removed, the
divergences could not be generated in finite orders of perturbation theory.
So, one considers a similarity transformation of the Hamiltonian matrix H
such that the transformed Hamiltonian matrix H' has all troublesome ele-
ments far away from its diagonal equal zero. A-dependence appears in the
transformed Hamiltonian in the nonzero matrix elements which are close
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to diagonal. The cutoff dependence can be removed from these matrix ele-
ments by introducing counterterms. The similarity matrix should approach
unity when the troublesome interaction is zero, since one works in the basis
of eigenstates of Hy and Hj is therefore already “band-diagonal” too. Sim-
ilarity transformations preserve eigenvalues and therefore the transformed
Hamiltonian H' has the same spectrum as H.

The new Hamiltonian H' is given by the formula

H' =85"'HS, (9.2)

where § is the similarity matrix which is unitary, §~! = §!. § can be
written as

§=1+4+T, (9.3)
where T — 0 when Hy — 0. Unitarity of § implies that

T+T'+TIT=0. (9.4)

We introduce two parts of T'; hermitean, h = 15(T+T'!), and antihermitean,
a =12(T - T1). Eq. (9.4) can be rewritten as

h=1(a® - R?). (9.5)

Thus, h and a are not independent and h is of higher order in the bare
interaction than a.

The new interaction Hamiltonian is defined as Hy = H' — Hy, so that
the new free Hamiltonian is the same as the old one and one has

Hy=H;+T'H+ HT + T'HT. (9.6)

Then, we demand that H} is “band-diagonal”, which means that the ma-
trix elements of H} which are far away from the diagonal are zero. In order
to define what is meant by the matrix elements which are far away from
the diagonal one introduces notions of diagonal remotum of a matrix M,
denoted DR[M], and diagonal proximum of M, denoted DP[M]. Diago-
nal proximum refers to the “band-diagonal” part of a matrix and diagonal
remotum to the “far off-diagonal” part. )

Suppose an operator M has matrix elements M;; = (i|M|j) between the
eigenstates of Hg, Ho|i) = E;|i). The indices 7 and j run from 0 to some big
number determined by the cutoff A which defines the size of the matrix M.
The diagonal remotum of M has the same matrix elements as M when ¢ is
far away from j in some prescribed way, and the matrix elements DR[M];;
for the close indices ¢ and j are equal zero. Then, DP[M] = M — DR[M],
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i.e. DP[M];; are the same as M;; when indices ¢ and j are close to each
other in the prescribed way. For example, one may choose

DP{M};; = M;; (9.7)

when
(B + 1)|E; - Ej| < (B — 1)(E: + Ej) + 2Eq, (9.8)

where 8 > 1, E; and E; are the eigenvalues of Hy (assumed to be positive),
and Ej is some fixed constant. Eq. (9.8) implies that (9.7) holds when

E; - Eq
7 .

Otherwise DP[M];; = 0. The above choice removes the possibility that
small energy differences appear in the denominators of perturbation theory.
This becomes clear in further discussion.

The new interaction Hamiltonian is demanded to satisfy the proximity
condition,

BE; + E¢ > E; > (9.9)

H; = DP[H]], (9.10)
which implies the following condition on the similarity matrix through
Eq. (9.6),

DR [H,+TTH+HT+TTHT] =0. (9.11)

This equation may be slightly rewritten

DR [H, + {Ho,h} + [Ho,a] + T1H; + HiT + TTHT] =0, (9.12)

and then satisfied by imposing the following condition on the matrix a,
[a, Ho) = DR [H, +{Ho,h} + T1H; + H/T + T*HT] . (9.13)

From this condition one can find the similarity matrix recursively in pertur-
bation theory to all orders in the interaction Hy since we know the eigen-
states and eigenvalues of Hy. The commutator of a with Hg is the lowest
order term in Eq. (9.12) involving the similarity matrix and it may be used
to begin the recursion. Then, it follows that

H! =DP [H, + {Ho, k) + TtH; +HIT+T"HT], (9.14)

since DP[a] = 0 by definition. We observe that the arguments of DR and
DP in Eqs (9.13) and (9.14) are the same. We denote this argument by Q.
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For the purpose of carrying out the renormalization program in pertur-
bation theory to all orders one rewrites Q in a different form. Namely, one
can use the inverse of the similarity relation from Eq. (9.2) and the unitarity
condition from Eq. (9.4) to express Hy by H} in all terms of Q except for
the first term which is Hj itself;

Q=H;-{Ho,h} + Hi(a—h)~(a+R)H;+ (a+ h)H'(a - k). (9.15)

The similarity renormalization scheme is defined recursively in powers of
the bare interaction Hamiltonian in the following way.

Let us assume for simnplicity that the bare interaction Hamiltonian is
proportional to a coupling constant g, with counterterms of higher order:

Hr =g+ g Va+ g’ Va+---. (9.16)

gV1 is the bare interaction projected on the space limited by the cutoff A
and V;, for k = 2,3,... denote the counterterms. Correspondingly:

Hy=gV{+¢*V, +*Vi + -+, (9.17)
and
a =gay+giar+glaz+---. (9.18)

The matrix h is of order g2,

h=g*hs +g%hs +---, (9.19)
where, from Eq. (9.5),
hy =1 Z (ara; — hihy). (9.20)
k;k+l=n

In order to define the recursion formulae for the counterterms one
rewrites Q from Eq. (9.15) as a series in g,

Q=9Q1+9°Q2+9°Q3+ -, (9.21)
so that
n—1 -
Qn = - {HO’ n} + Z Vk An—k — n k Z Qpep + hn-—-k)Vlé
k=1 k=1

n-1 - 1=
+ Y (arthe)Ho(an—p—hn_t) Z Z (ap+hi)V)(an—k—1=hn-k-1)-

k=1 k=1 I=1
(9.22)
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Eq. (9.22) is the basic result. It is seen that the structure of @, is
generated by terms involving only V}, ar and hj; with k < n, except for
V.. and one term on the right hand side of Eq. (9.22) which involves Ay,
h,, is expressed by lower order terms through Eq. (9.20) and V,, completes
the definition of @), by eliminating the divergent cutoff dependence of other
terms. Now, since all V) and q; for £ = 1,2,...,n -1 are generated
from Q, ¥ = 1,2,...,n — 1, we have the recursion which expresses @,
by Qr,k = 1,2,...,n — 1. Expression (9.22) for @, is designed in such a
form, that the counterterm V,, appears in it only once and linearly, added
to potentially divergent terms. Thus, the necessary structure of V,, which
makes @), independent of the big A can be determined from the knowledge
of finite Q’s of lower orders and operators appearing in Eq. (9.22).

Finally, one obtains expressions for V,, and a,. Namely,

V, = DP[Q.], (9.23)
and
ani; = DE[Qnl;
" E;j-E;
This is the only equation which involves energy denominators. Since

DR[Qy)i; vanishes unless E; and E; lie outside the band condition from
Eq. (9.8) one can verify that

(9.24)

92E,
ﬁ+1 B+1°

which confirms the claim that energy differences are of order their sums.

The induction to all orders in g defines the similarity renormalization
scheme in perturbation theory. One is interested in construction of the
counterterms V,, forn = 2,3,..., c0.

Knowing the generally valid structure of counterterms, one can use
Eqs (9.5), (9.13) and (9.14) to find the new Hamiltonian H' for some values
of B and Eq in Eq. (9.8) in an iterative procedure which is not confined to
perturbation theory. In the first approximation one has

Q1=gWN. (9.26)

Neither divergences nor counterterms appear in this case. The first approx-
imation to a new interaction is

Bi— Bj| > P= LB, + ;) + 250 (9.25)

Hp, = DP[gV], (9.27)
and the similarity matrix is

[a1, Ho] = DR[gV1], (9.28)
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together with
hy=0. (9.29)

Thus, the unitarity condition is not manifest in the first approximation.
The nonperturbative iterative procedure is defined by

Qn+1 = Hyn+1) — {Ho, hn}
+H'IN(GN —hn) - (an + hN)H}N + (an + hN)H}V(aN ~hn), (9.30)
where the (N +1)-th approximation to the counterterm in Hy(n41) = gV1+

VN+1 is defined to remove all divergences in Qpn43. The complementary
recursive relations are

Hiny1) = DP[QN+1), (9.31)
lan+1, Hol = DR[QN+1], (9.32)

and ‘
hnvir =3 [ay - Ay] - (9.33)

If a limit of this procedure when N — oo exists, the resulting limiting
matrices for large N provide a solution to the renormalization problem for
the initial Hamiltonian H. It is seen that the unitarity constraints on the
similarity matrix are satisfied only in the limit N — oco. Eq. (9.33) implies
unitarity constraints if hy4+; ~ hn. One has to verify this procedure on
a case by case basis, since it is not possible to generally determine if it is
convergent. When the unitarity condition is satisfied the Hamiltonian H'
is hermitean and has the same spectrum as H.

Although H' does not introduce cutoff dependence to a desired order
of perturbation theory for a sufficiently large A it may still happen that H'
has large off-diagonal matrix elements so that its eigenstates may depend
on the cutoff A in a genuinely nonperturhative way. An example of such
situation is considered in Appendix B of Ref. [96].

The bare Hamiltonian may be cut off in various ways, not necessarily
only by restricting its domain. One may consider the initial Hamiltonian to
have built in diagonal proximity hounds with Eq ~ A and/or B very large in
comparison to 1. Then, one can reduce the bounds to finite Eg and 8 in the
same renormalization scheme. The resulting Hamiltonians H' for different
parameters Ey and 3 are related by a new renormalization group relations.
A whole variety of alternative definitions of the diagonal proximity can be
considered [97].

An illustration of the similarity renormalization scheme to all orders in
perturbation theory in a model familiar from Section 7 is given in Ref. {96].
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9.2. One gluon exchange

This Section demonstrates how the troublesome longitudinal logarith-
mic divergence discussed in Section 6.b cancels out in the one gluon ex-
change interaction between two fermions in the second order terms in the
coupling constant. The one gluon exchange is a sum of two terms originat-
ing from two possible orderings of the emission and absorption of the gluon
by the fermions. The intermediate state contains the gluon of a longitudinal
momentum fraction denoted by 2. We are interested in what is left after
subtracting the leading singularity 272 for z close to the infrared cutoff §',
cf. Section 6.2.

The second order term in the operator Q from Eq. (9.15) is

Q2 =Vs — %[Hoalal - 2a1Hgay + (lla]Ho] + Vlla,] - a1V1' (934)

and
la1, Ho] = DR[H/], (9-35)

where the interaction H; induces the emission and ahsorption of gluons
by the fermions. The leading divergence in z is to be removed by the
operator counterterm V5. It is the same as in Eq. (6.22) where z = y — /'
and V; must contain the term indicated in Eq. (6.23). Now, in Section 6.b
we have encountered the problem that the remaining logarithmic divergence
was proportional to the unknown full Hamiltonian eigenvalue. This problem
does not appear now. First of all the denominator in the one gluon exchange
does not contain the full Hamiltonian eigenvalue. Moreover, the logarithmic
divergence is totally gone. The reason is that the characteristic combination
of Hy and a; in the square bracket in Eq. (9.34) and the energy denominators
in ay combine to the result which is in fact behaving like a constant divided
by z for z ~ 0. Therefore, the logarithmic divergence cancels out as in
the principal value of a constant. This is a solution to a long standing
problem in LF Hamiltonian QCD [76]. No counterterm for the logarithmic
divergence is necessary.

10. Conclusion

A series. of examples of LF Hamiltonian models discussed in this pa-
per leads to the conclusion that the LF Hamiltonian approach provides a
new and unexplored opportunity for making progress towards solution of
the relativistic bound state problem for elementary particles. The bound
states are defined as eigenstates of the Hamiltonian. However, attempts to
build LF Hamiltonians in local quantum field theories demonstrate that they
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involve divergences. These divergences appear in the bound state eigen-
value equations and raise very complex renormalization issues. Further-
more, traditional Lagrangian approaches to renormalization do not apply
to the eigenvalue problems of LF Hamiltonians. Fortunately, a new for-
malism for renormalization of Hamiltonians including determination of the
required cutoff-dependent counterterms has been formulated and one can
begin systematic studies of the eigenvalue equations for the bound states.

Although the renormalized LF Hamiltonian approach may contribute
to the development of relativistic nuclear physics, our primary interest in
the formalism is stimulated by its potential applicability to QCD. The basic
reasons for the counterterms in LF QCD Hamiltonian to be so interesting
are following.

The LF Fock space description of elementary particles is a natural ba-
sis for explaining the Feynman parton model of hadrons. This is not yet
accomplished because of severe divergences in LF dynamics. There is an
urgent need for constructing Hamiltonian counterterms which remove the
divergences and understanding the field theoretic LF basis of the parton
model for hadrons.

The LF counterterms have complex structure and contain free functions,
not just a few free parameters in their finite parts. Physically required val-
ues of the functions have to be found in part by fitting experimental data.
But, the functions can be severely constrained by symmetry requirements.
Full rotational symmetry, which is not explicitly satisfied in the LF formu-
lation, provides the most powerful constraints. In turn, the counterterms
are necessary to obtain rotational invariance and may effectively become
the key to obtain the full Poincaré covariance of theoretical predictions.

The infrared longitudinal cutoff properties of LF theory suggest another
fundamental role for the counterterms. Namely, the longitudinal infrared
cutoff in LF dynamics makes it impossible to create particles from a hare
vacuum by a translationally invariant Hamiltonian and in addition the num-
ber of constituents in a given eigenstate is limited. LF counterterms to the
longitudinal infrared cutoff dependence become a possible alternative source
for features normally associated in standard ET dynamics with a nontrivial
vacuum structure - including spontaneous symmetry breaking and confine-
ment.

Finally, even if it turns out that the LF Hamiltonian counterterms are
not able to solve all problems, we may still learn ahout why they fail.

The renormalized LF Hamiltonian approach suggests the following strat-
egy for approaching QCD. One can write a canonical QCD Hamiltonian
imposing general cutoffs in the field expansions into creation and annihi-
lation operators. One can then choose the least complicated bare states
to form a core in the Fock space which has the quantum numnbers of the
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bound states to be considered. One can define the diagonal proximity con-
ditions for states which can be created from the core by the canonical QCD
interactions. One may then attempt a construction of the effective “band
diagonal” Hamiltonian expanding the core states and find counterterms to
arising divergences. The finite parts of the counterterms will be used to in-
corporate confinement and enable fits to the ohserved hadronic symmetries
including Poincaré symmetry and chiral symmetry breaking. Dressing of
the bare core states within the diagonal proximum is expected to build the
effective constituent quark picture of hadrons.

There is a possibility that the dressing of quarks and gluons will not
saturate until a whole LF Fermi sphere of wee quarks and antiquarks in
interaction with wee gluons will be formed [98]. Then, one will have to
consider new many body LF theories and explicitly discuss excitations of
the ground state medium.

REFERENCES

(1] P.A.M. Dirac, Rev. Mod. Phys. 21, 392 (1949).

[2] S. Weinberg, Phys. Rev. 150, 1313 (1966).

[3] K. Bardakci, M.B. Halpern, Phys. Rev. 176, 1686 (1968).

[4] L. Susskind, Phys. Rev. 165, 1535 (1968).

[5] S.-J. Chang, S.-K. Ma, Phys. Rev. 180, 1506 (1969).

[6] D. Flory, Phys. Rev. 186, 1701 (1969).

[7] S.D. Drell, D.J. Levi, T.-M. Yan, Phys. Rev. D1, 1035 (1970).

(8] J.B. Kogut, D.E. Soper, Phys. Rev. D1, 2901 (1970).

[9] 1.D. Bjorken, J.B. Kogut, D.E. Soper, Phys. Rev. D3, 1382 (1971).

{10] D.E. Soper, Phys. Rev. D4, 1620 (1971).

[11] H. Leutwyler, J.R. Klauder, L. Streit, Nuovo Cimento LXVIA, No. 3 (1970).

[12] R.A. Neville, F. Rohrlich, Phys. Rev. D3, 1692 (1971}.

{13] T.-M. Yan, Phys. Rev. D7, 1780 (1973).

[14] S.J. Brodsky, R. Roskies, R. Suaya, Phys. Rev. D8, 4574 (1973).

[15] J. Kogut, L. Susskind, Phys. Rep. C8, 75 (1973); see also E. Tomboulis, Phys.
Rev. D8, 2736 (1973); A. Casher, Phys. Rev. D14, 452 (1976).

[16] S.J. Brodsky, G.P. Lepage, Phys. Rev. D22, 2157 (1980).

{17] J.M. Namystowski, Prog. Part. Nucl. Phys. 14, 49 (1984).

[18]) S.J. Brodsky, G. McCartor, H.C. Pauli, S.S. Pinsky, SLAC-PUB-5811, June
1992. See also S.J. Brodsky, H.C. Pauli, SLAC-PUB-5558, June 1991. An ax-
iomatic review of null-plane dynamics is given by F. Coester, Argonne National
Lab. preprint No. PHY-6910-TH-91.

[19] An updated list of papers which involve light-front dynamics is available from
A. Harindranath at The Ohio State University, 174 W. 18th Ave., Columbus,
OH 43210, USA; or Hari@ohstpy.bitnet. A bulletin board for current light-
front literature has the e-mail address Hib@fuw.edu.pl.



Relativistic Bound States of Elementary Particles. .. 1427

[20] H.A. Bethe, F. de Hoffmann, Mesons and Fields Vol. II, eds Row, Peterson,
Evanston, Illinois, 1955; Mietod Tamma-Dancoffa, Probliemy Sovriemiennoy
Fiziki, 10 (1955).

[21) J.B. Zeldovitch, Usp. Phys. Nauk 95, 209 (1968).

[22] St. Glazek, FERMILAB-PUB-86/123-T, Aug 1986; Phys. Rev. D38, 3277
(1988).

[23] K. Hornbostel, Cornell Preprint CLNS 91/1078, Aug. 1991; G. McCartor, D.G.
Robertson, Z. Phys. C85, 679 (1992).

[24] K.G. Wilson, Phys. Rev. 140, B445 (1965); K.G. Wilson, Phys. Rev. D2, 1438
(1970); see also: K. G. Wilson, Generalized Wannier Functions, a manuscript,
Cornell University, for more discussion of wave packets.

[25] H. Leutwyler, J. Stern, Ann. Phys. (USA) 112, 94 (1978); cf. T. Maskawa, K.
Yamawaki, Progr. Theor. Phys. 56, 270 (1976); M. Ida, Progr. Theor. Phys.
56, 297 (1976).

[26] 1. Tamm, J. Phys. (USSR) 9, 449 (1945).

[27] S.M. Dancoff, Phys. Rev. 78, 382 (1950).

(28] 3.M. Namystowski, Phys. Rev. D18, 3676 (1978).

[29] P. Danielewicz, J.M. Namyslowski, Phys. Lett. 81B, 110 (1979).

[30] St. Glazek, Warsaw University MSc Diploma Paper 1980 (in Polish).

[31] St. Glazek, Acta Phys. Pol. B15, 889 (1984).

[32] B.A. Thacker, G. Peter Lepage, Phys. Rev. D43, 196 (1991).

[33] P.M. Fishbane, J.M. Namyslowski, Phys. Rev. D21, 2406 (1980).

[34] St. Glazek, Acta Phys. Pol. B14, 893 (1983).

[35] St. Glazek, Acta Phys. Pol. B18, 85 (1987).

[36] V.A. Karmanov, A.V. Smirnov, Nucl. Phys. A46, 691 (1992), and references
therein; V.G. Kadyshevsky, Sov. Phys. JETP 19, 443, 597 (1964); V.G. Kady-
shevsky, Sov. Phys. Dokl. 10, 46 (1965).

[37] B.D. Serot, J.D. Walecka, in Advances in Nuclear Physics, Vol. 16, eds J.W.
Negele and V. Vogt, Plenum, New York, 1986.

[38] L.S. Celenza, C.M. Shakin, Relativistic Nuclear Physics: Theories of Structure
and Scattering, Vol. 2 of Lecture Notes in Physics, World Scientific, Singapore,
1986.

[39] St. Glazek, C.M. Shakin, Phys. Rev. C44, 1012 (1991).

[40] S.-J. Chang, R.G. Root, T.-M. Yan, Phys. Rev. D7, 1133 (1973); S.-J. Chang,
T.-M. Yan, Phys. Rev. D7, 1147 (1973).

[41] C.M. Shakin, M.S. Weiss, Phys. Rev. C15, 1911 (1977).

(42] J.J. Aubert et al., Phys. Lett. 123B, 275 (1983).

(43] S.V. Akulinichev, S.A. Kulagin, G.M. Vagradov, Phys. Lett. 158 B, 485 (1985).

[44] G.B. West, Ann. Phys.(?!) 74, 464 (1972); A. Bodek, Phys. Rev. D8, 2331
(1973); A. Bodek et al., Phys. Rev. D20, 1471 (1979).

[45] C.M. Shakin, private communication.

[46] R.L. Jafte, private communication.

[47] St. Glazek, M. Schaden, Z. Phys. A328, 451 (1986) and references therein,
see also Ref. {35] above.



1428 St. D. GLAZEK

[48] M. Gell-Mann, Phys. Lett. 8, 214 (1964); G. Zweig, CERN reports Th.401 and
412 (1964), and in Proc. Int. School of Phys. “Ettore Majorana”, Erice, Italy
(1964), ed. A. Zichichi, Academic, New York-London, 1965, p.192.

[49] H.J. Lipkin, Phys. Rep. C8, 173 (1973); O.W. Greenberg, Ann. Rev. Nucl. Sci.
28, 327 (1978); F. Close, An Introduction to Quarks and Leptons, Academic
Press, New York 1979.

[50] R.P. Feynman, Photon Hadron Interaction, Benjamin, New York 1972.

[51] M.A. Shifman, A.l. Vainshtein, V.I. Zakharov, Nucl. Phys. B147, 385, 448
(1979); ¢f. L.J. Reinders, H.R. Rubinstein, S. Yazaki, Phys. Rep. 127C, 1
(1985). See also F.J. Dyson, Proc. Roy. Soc. A207, 395 (1951); F.J. Dyson,
Phys. Rev. 82, 428 (1951); K.G. Wilson, Relativistically Invariant Lattice The-
ories, in New Pathways in High Energy Physics, ed. A. Perlmutter, Plenum
Press, New York 1975, Vol. II, p. 243.

[52] K. Wilson, Phys. Rev. 179, 1499 (1969); K.G. Wilson, Phys. Rev. D2, 1473
(1970).

[53] A. Glazek, St. Glazek, J.M. Namyslowski, E. Werner, Phys. Lett. 158B, 150
(1985).

{54] St. Glazek, J.M. Namystowski, Acta Phys. Pol. B15, 569 (1987).

(55) B.L. loffe, Nucl. Phys. B188, 317 (1981); B.L. Iofle, Z. Phys. C18, 67 (1983);
Y. Chung, H.G. Dosch, M. Kremer, D. Schall, Phys. Lett. 102B, 175 (1981);
Nuel. Phys. B197, 55 (1982).

[56] H.D. Politzer, Nucl. Phys. B117, 397 (1976).

[57] J.M. Namyslowski, Warsaw University preprint No. IFT/12/87; Phys. Lett.
192B, 170 (1987).

[58] M.J. Lavelle, E. Werner, St. Glazek, Few-Body Systems, Suppl. 2, 519 (1987).

[59] N.Isgur, G. Karl, Phys. Rev. D18, 4187 (1978); Phys. Rev. D19, 2653 (1979);
Phys. Rev. D20, 1191 (1979).

[60] Z. Dziembowski, L. Mankiewicz, Phys. Rev. Lett. 55, 1839 (1985); Z. Dziem-
bowski, L. Mankiewicz, Phys. Rev. Lett. 58, 2175 (1987); Z. Dziembowski,
Phys. Rev. D37, 768, 778 and 2030 (1988); ¢f. C.-R. Ji, S.R. Cotanch, Phys.
Rev. D41, 2319 (1990). ,

[61] L.L. Frankfurt, M.I. Strikman, Phys. Rep. 76, 215 (1981); Phys. Rep. 160,
235 (1988).

[62] P. Chung, F. Coester, Phys. Rev. D44, 229 (1991).

[63] A. Langnau, M. Burkardt, SLAC Preprint No. SLAC-PUB-5668, May 1992.

[64) K.G. Wilson, Phys. Rev. B4, 3174 (1971).

[65) A. Bassetto, G. Nardelli, R. Soldati, Yang-Mills Theories in Algebraic Non-
covariant Gauges, World Scientific, Singapore 1991.

[66] V.A. Novikov, M.A. Shifman, A.l. Vainshtein, V.I. Zakharov, Fort. Phys. 32,
585 (1984).

[67] St. Glazek, M. Schaden, Phys. Lett. B198, 42 (1987).

(68] St. Glazek, in Recent Developments in Mathematical Physics ed. H. Mitter
and L. Pittner, Springer, Berlin 1987.

(69] St. Glazek, Invited talk at the IX International Seminar on High Energy
Physics, Relativistic Nuclear Physics and QCD, Proceedings JINR, Dubna 1988.



Relativistic Bound States of Elementary Particles. .. 1429

[70] V.A. Franke, E.V. Prokhvatilov, private communication. I am grateful to Profs.
Franke and Prokhvatilov for the illuminating correspondence.

[71] St. Glazek, Regensburg University, June 1988, unpublished.

[72] A. Harindranath, J.P. Vary, Phys. Rev. D37, 3010 (1988); E.A. Bartnik, St.
Glazek, Phys. Rev. D39, 1249 (1989).

[73] J. Bell, R. Jackiw, Nuovo Cimento 60A 47 (1969); S. Adler, Phys. Rev. 177,
2426 (1969).

[74] K.G. Wilson, Light-front QCD, OSU internal report, 1990 (unpublished).

[75] K.G. Wilson, private communication.

[76] St. Glazek, Invited talk at the First Light-Cone QCD Workshop, Aspen Insti-
tute of Physics, Aspen, Colorado, August 1991.

{77] M. Krautgartner, H.C. Pauli, F. Wolz, MPI preprint No. MPIH-V36-1991.

(78] H.H. Liu, D.E. Soper, Univ. of Oregon preprint No. OITS 497, Dec. 1992.

{79] R.J. Perry, Asymptotic freedom in Hamiltonian light-front QCD, OSU Pre-
print No. OSU-NT-92-163; R.J. Perry, K.G. Wilson, Perturbative renormaliz-
ability with an infinite number of relevant and marginal operators, OSU-NT-
93-07, Nucl. Phys. B, in press; R.J. Perry, A renormalization group approach
to Hamiltonian light-front field theory, OSU-NT-93-117, submitted to Ann.
Phys. (USA).

(80] St.D. Glazek, R.J. Perry, Phys. Rev. D45, 3734 (1992).

[81] R.J. Perry, A. Harindranath, K.G. Wilson, Phys. Rev. Lett. 85, 2959 (1990);
R.J. Perry, A. Harindranath, Phys. Rev. D43, 4051 (1991).

[82] St.D. Glazek, K.G. Wilson, Phys. Rev. D, in press.

[83] C. Bloch, Nucl. Phys. 6, 329 (1958); C. Bloch, J. Horowitz, Nucl. Phys. 8, 91
(1958).

[84] St. Glazek, A. Harindranath, S. Pinsky, J. Shigemitsu, K. Wilson, Phys. Rev.
D47, 1599 (1993).

{85] St. Glazek, M. Sawicki, Phys. Rev. D41, 2563 (1990).

[86] St. Glazek, R.J. Perry, Phys. Rev. D45, 3740 (1992).

[87] T.D. Lee, Phys. Rev. 95, 1329 (1954); S. Schweber, An Introduction to Rela-
tivistic Quantum Field Theory, Harper and Row, New York 1961; E.M. Henley,
W. Thiring, Elementary Quantum Field Theory, McGraw-Hill, NewYork 1962.

[88] M.G. Fuda, Phys. Rev. D41, 534 (1990).

[89] A.C. Tang, Ph. D. thesis, Stanford University, 1990.

[90] M. Gell-Mann, M.L. Goldberger, Phys. Rev. 79, 398 (1953).

[91] M. Burkardt, A. Langnau, Phys. Rev. D44, 3857 (1991).

[92] M. Brisudové, St.D. Glazek, OSU preprint, June 1993.

[93] M. Sawicki, Invited talk at Workshop on Light-Cone Quantization, SMU,
Dallas, Texas May 1992,

[94] For example, J.D. Bjorken, Phys. Rev. 179, 1547 (1969).

[95) W. Koepf, L.S. Celenza, C.M. Shakin, Phys. Rev. C43, 425 (1991); Phys. Rev.
44, 2130 (1991).

[96] St.D. Glazek, K.G. Wilson, Renormalization of Hamiltonians, Warsaw Univer-
sity preprint No. IFT/6/93.



1430 St. D. GLAZEK

[97] St. Glazek, Invited seminar Nuclear Matter and Seagulls on the Light-Front at
Nuclear Theory Group, OSU, November 1990,

[98] St. Glazek, Invited talk at the WE-Heraeus-Seminar Gauge Field Theory on
the Light-Cone, MPI Heidelberg, June 1991.

[99] R.D. Field, R.P. Feynman, Phys. Rev. D15, 2590 (1976).



