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The stroboscopic maps technique is applied to a model of the dynam-
ics of a single haploid population with a natural selection in a fluctuating
environment (genetic model). The stochastic perturbation is replaced by
a deterministic chaotic system which — in a certain limit — has proper-
ties of a white noise generator. First, the white noise limit is discussed
and tested using various statistical methods. The transition from the de-
terministic chaotic behaviour to the stochastic one, depending on the time
scales separation is discussed. We also discuss the results of using differ-
ent underlying chaotic dynamics on the macroscale properties, especially
Lyapunov exponents and dimensions. The paper forms a revision and a
substantial extension of [1].

PACS numbers: 05.45. 4+b

1. Introduction

Systems exhibiting chaos properties can be analyzed by both determin-
istic and stochastic methods [2]. It is also possible to find systems explicitly
showing this “dualism”, t¢.e. in some limit exhibiting purely deterministic,
chaotic motion, but in another limit modelling a stochastic process (having
e.g. correct moments and correlation functions (3, 4]). Such models are
especially interested, because they can offer a deeper insight into a mecha-
nism of generating stochastic processes in nature. Throughout the paper we
will call the limit process as a “stochastic” one, realizing that in principle
it is generated by the underlying deterministic process. This can be done,
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if we show which actual properties of a “really stochastic” process can be
mimicked by the process, and to what extend.

In the paper we follow the ideas of [3], and use a simple chaotic map as
an input for another discrete dynamical system which — finally — produces
a time series of uncorrelated random numbers with Gaussian distribution.
This approach provides us with a randem numbers generator, for which all
characteristics may be calculated analytically [2-4].

Then, we consider a case when the process underlying the random num-
ber generation is not treated as an artificial construction, but as a real pro-
cess, which however cannot be observed directly, but only through its in-
fluence onto a “macroscopic” level dynamics. Depending on the time scales
separation, the transition from the deterministic to the stochastic behaviour
can be observed, and therefore discussed.

In the paper we are studying the influence of such “pseudo-stochastic”
(chaotic) perturbations on the population dynamics of a single haploid pop-
ulation, with a natural selection provided by a fluctuating environment. The
simple model known in literature as “genetic model” has been extensively
investigated from different points of view, and its applications are not lim-
ited to the population dynamics. In fact, the model is the simplest non-
linear system, which can be treated therefore as a “model system” for more
complicated physical, chemical, and biological systems. The deterministic
and stochastic properties are well known from the analysis carried out by
Horsthemke and Lefever [5] in the frame of the stochastic processes theory.
The results of this paper form a substantial extension and revision of the
chapter 3 of [1].

Systems with complicated time- and coordinate-dependence can be eas-
ily analyzed by the stroboscopic maps method joined with the singular
(“kicks”) approximation [6]. In this approach, the time-dependent pertur-
bation, originally not having the impulse form, is approximated by a series
of “kicks” (é-functions) with the distance between the impulses tending to
0 [7, 8]. This technique may be applied either to regular or to stochastic
perturbations. The first case, when a regular, time-dependent perturbation
is replaced by series of kicks, is known in quantum optics as the Modulated
Kicks Approximation (shortly MKA) [7-11]. For a stochastic perturbation,
this approach was first formulated by Langevin and Haken [12-15]. Special
kind of such a perturbation with a finite distance between kicks is known as
a “shot noise” [13, 16] and has been studied extensively by many authors
[17-19]. In particular, van den Broeck has shown that — under some as-
sumptions — a certain kind of a shot noise tends to a Gaussian white noise
when the (mean) distance between kicks tends to zero [16]. The method sim-
plifies the analysis by making at least part of the work analytically solvable,
even if the original system cannot be analyzed by other methods (including
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Fokker-Planck equation). The resulting map is naturally adjusted to the
discrete-like perturbation, which is typical for studying the chaotic systems
(Poincaré maps, discrete maps [20}]).

In the paper, we construct the stroboscopic map for the genetic model,
basing on the results of [6]. The results published in [1] were obtained under
the assumption that the impulses are sufficiently short, and that we can
neglect the changes of the perturbation during the impulse. The subsequent
detailed analysis of the systems with impulses in [6] has shown that the
above assumption is wrong for systems like the genetic model (although gives
good approximation of the results for small perturbation). Moreover, the
chaotic (sub)system used in [1] produced the Ornstein—~Uhlenbeck process
in the limit, and not the white noise, and the comparison with the exact
(stochastic) results are difficult in this case. The (sub)system used here has
additional degrees of freedom, allowing us to discuss the transition in more
details.

First, we shortly review the basic methods used here, i.e. the genetic
model, the Generalized Modulated Kicks Approximation, the stroboscopic
maps approach, and the chaotic (sub)system generating the noise (Sec-
tion 2). Then we proceed to discuss the results of the simulations for the
white noise limit, and for the transition (Section 3). Section 4 contains some
remarks on using different chaotic systems, whereas Section 5 reviews the
chaotic characteristics. Section 6 gives final remarks.

2. Basic elements
2.1. Genetic model

The genetic model (Fisher-Wright’s model) describes the mechanism of
genetic selection in population dynamics for a single haploid population. We
will concentrate on the continuous version (a limit case of a Markov chain
approach). The system is very simple, and was analyzed thoroughly from
both deterministic, and stochastic point of view. However, when perturbed
by noise, it exhibits a transition in modality of its probability distribution
when the noise amplitude exceeds a certain limit (“noise-induced transi-
tion”).

After several simplifications and assumptions [1, 5, 21] it can be shown
that the frequency (z) of a given allele changes from generation to generation
according to the equation

t=a-z+Az(l-2), (1)

where a is related to mutation rates of two possible alleles of a genetic locus
and ) to natural selection coefficients.
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The system can also be understood as describing a concentration of
a chemical substrate &, put into a flow reactor with the speed a, and
undergoing the following reactions

xSy
x+y 2N oax,

where ) is taken out from the reactor with the same speed a,soz+y =1
with y being a concentration of ), and the second reaction is characterized
by A.

- Without a loss of generality & may be fixed as /2 [5]. It is easy to check
that z lies always inside the interval [0,1]. When A = const, Eq. (1) has
only one stable state, namely z,, = [A — 1+ (A2 +1)1/2]/(2)) = Y.

If an environment becomes fluctuating and the selection coefficients be-
come stochastic variables, the deterministic steady state may lose its stabil-
ity. When a critical value of the fluctuations of ) is exceeded, two new states
appear, close to 0 and 1. For the white noise perturbation with zero mean
and variance "'%VN’ the transition from the unimodal probability distribu-
tion of z to the bimodal one occurs at o2, = 4 (Stratonovich interpretation),

and new maxima have positions 2,4+ = 2 [1 £ (1 - 4/0%,)1/2] [5].
2.2. Stroboscopic maps for system with impulses

Eq. (1) belongs to a class of 1-dimensional dynamical systems

¢ = f(z)+ Mt)g(z), (2)

where f(z) determines a free (unperturbed) evolution and A(t)g(z) is a
time- and coordinate-dependent perturbation (regular, chaotic, stochastic,
continuous or impulse). There are several methods for solving this equation,
depending on the character of A\(t). For A(t) being a noise, it is possible to
employ the methods of the stochastic theory (e.g. Fokker-Planck equation)
to analyze the time-dependent and stationary properties of (2); for a review
of.[1,5,17-19].

Let us concentrate on the case with general A(¢) (deterministic or stochas-
tic). One of the methods of analysis [6] approximates A(t) by a series of
infitely short impulses with the weight and centers chosen according to the
type of A(t) (see below). Then, it is possible to integrate Eq. (2) both
between the impulses (assuming that the equation # = f(z) can be solved
easily), and during the impulse (assuming that the equation £ = g(z) can be
solved), basing on the fact that the impulses are very short [6]. The result-
ing map depends on the (arbitrary to some extend) division between f(z)
and g(z). Both [1] and [6] assume f(z) = 12 — z, and g(z) = A(t)z(1 — z).
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More natural choice, dictated by the stochastic theory, is to divide the right
hand side into a drift term f(z) = 12 — z 4+ Aoz(l — z), and a diffusion
term g(z) = (A(t) — Ao) (1 — z). As we will assume that the mean value of
the noise (time-dependent) perturbation is 0, both cases produce the same
result, namely

z, = %(1 —exp(-T)) + z:_l exp(-T) )
T 2y (1—exp(—2a))+exp(—An) ’

3]
3+
|

if the perturbation A(t) has the following form
M(t) ~ A(t) = ((T) Y Anb(t ~ tn), (4)

where t,, are moments in time, ordered (¢, > t,—j foralln), t, —tp—1 =T»
may be a constant (T,, = T'), a regular or a stochastic function of n, impulses
are assumed to be well separated, t.e. T, > A for all n, and {(T') is a scaling
function discussed below in details. The above map will be called the gentic
map throughout the paper.

The following notation has been used here

2)
=2z(t, — %) (5)

reflecting the fact that as the impulses form the reference system of moments
in time, they make it natural to consider values of the dynamical variable
z at times correlated with the impulses. This leads us to a concept of a
stroboscopic map, being in fact a discrete transformation

A —»z;—»z:—»....

n—1

The stroboscopic map is especially suited if the perturbation can be
thought of as a discrete transformation (map), or if we assume that the
environment acts upon the system at certain times only. This may actually
be true for the case of a genetic selection, when there are critical moments

in the life-history of one generation.

The result (3) differs from Eq. (1.11) of [1], because the “naive” way of
integrating the equation (1) during the impulse, assuming that g(z) does
not change, was used there. In fact, z, and therefore g(z) has a jump at
every ty, and the equation becomes singular. The only correct way to treat
this problem is to use continuous approximations of §(t) functions, cf. [6}.
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2.3. Singular approzimation

In the above considerations we have approximated A(t) by a series of
impulses. Now, the correct weights )\,, and points in time t,, need to be
chosen in order to model A(t) correctly.

For regular A(t) the most natural choice is ¢, — t,—; = const = T and
An = ((T)e(tn), with {(T') being a scaling function needed to keep chosen
characteristics of A(t) and the approximation the same, independently of
T. The compatibility criterion is usually defined in terms of an integral of
[A(t)| and a sum of |A,|. This leads to the scaling {(T') ~ T'. For stochastic
perturbations there are two basic ways: one can chose t,, —t,.; = T, to be
a stochastic variable with A, oscillating between two values (shot noise). In
this case the limiting procedure is defined for the mean value and variance
of T, (going both to 0). The other approach is based on the assumption
that the impulses are equidistant (T, = const = T with T — 0), but the
amplitude is a random variable. In both cases the scaling is usually based
on the autocorrelation functions for A(t) and A,. This leads to the scaling
law ((T) ~ T/2. The second approach was chosen by Beck and Roepstorff
[3] and, as we follow them in construction of the random number generator
in the application, we choose this one.

2.4. Chaotic random number generator

In our paper we focus on the white noise simulations. Following 3, 4] we
consider a function S, (¢) built from the step (piecewise constant) functions

Lt/7]
S:(®) =77 5 F(w) (6)
Vp = (Tk‘vo) y

where 7 is a discrete dynamical system with certain properties (¢-mixing,
cf. [3]), vo a number (or a vector of numbers; in the latter case, when 7
is multidimensional, we take one component into the first equation of (6),
T a characteristic time and [¢/7] denotes the integer part of /7. Then in
the limit 7 — 0, S, converges to a Wiener process with ¢, depending
on F and 7 (where E(S,(t)?) — o%,pt,7 — 0 and FE(.) denotes a mean
value). For a simple choice (analyzed in details by Beck [3]) F(v) = v and
Tvp_y =1-2v2_, weget o2, =1/.

Then, the Gaussian white noise with the same o, = 0%, may be
generated as a “derivative” of the Wiener process with respect to time. The
derivative must be, however, applied to a limit process v — 0, but can be
approximated by a difference of the values at times separated by T' > 7
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Lt/7]

Lyg) =772 3" (vp —vi—p) 6(t - 7t), (7
k=0

where §, =n7,and p= |T/7|;7 > 0and T — 0 withp~? — 0.

There are three different time scales in the system, the “fastest” scale 7
of the underlying chaotic process, the “slow” scale T of the “derivative”, and
the natural time scale of the process which is perturbed by the noise. The
proper white-noise limit requires a clear separation of the time scales. Such
a separation cannot be achieved in reality, and therefore it seems interesting
to investigate the properties of the system when the limits are approximate
only.

Eq. (7) can be rewritten in the “propagator” form [1]

L(t)~ T2 3 1, 6(t — ta), (8)
where t, = nT and
P
I, = p~1/2 Z Vye k- (9)
k=1

Here we substitute 7 = T /p and relate the scaling by T with the impulse
character of (8).

Statistical properties of I, can be found under the assumption of the
¢-mixing of 7, and by applying weaker versions of the Central Limit The-
orem (2, 3, 22]. “Oversampling” (p > 1) guarantees that the probability
distribution of I,, tends to a Gaussian one with mean 0 and variation d%VN
(equal !/ in the simplest case presented here) when p — oo (this prop-
erty was first discussed by Lewenstein and Tél [23]). For small p, the one-
point distribution is close to the invariant measure of the chaotic process
v = Tvg_1, as in the case p = 1 (1/ /7 z(1 — z) for the logistic map [20]),
although the variance may remain the same as it happens in the simplest
case presented here. Indeed, if we use the formula

)4
E(2)’Z E(v2) +2 Y E(vavn_k), (10)
k=1

(cf. (3]) we see that for the uncorrelated maps 7, i.e. for which E(vmvs) =
Sm,n, E(12) = E(v2) coincides with the variance for p = 1.

The p-dependence of the mean value and variance of I, was checked,
for a large range of p. As expected, both characteristics do not depend on
p, ¢f. [1, 2]. On the other hand, the probability distribution (histogram) of
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l, depends highly on p, but for p = 100 the distribution approximates well
the Gaussian one. In [1] the estimations of the third and fourth moments
(skewness and kurtosis) are given for the similar model (Ornstein-Uhlenbeck
process). Both characteristics reach the Gaussian values in the limit equiv-
alent to our p — oo. However, higher moments tend to have large errors,
and are usually not recommended as normality tests [24].

The time series resulting from the iterations of Eq. (9) (n ranging from
1 to 2000, and p ranging from 1 to 200, meaning the total number of iter-
ations of 7 from 2000 to 400000) was tested for normality of the one point
distribution, as well as for the lack of correlations (whiteness). For both
statistical test we have chosen the Kolmogorov-Smirnov test. The compar-
ison with the normal distribution is a standard one-sample test, for which
Kolmogorov—-Smirnov test is recommended [25]. On the other hand, there
are several white-noise tests. Bartlett [26, 27] suggested the comparison
of the standardized partial sums of the periodogram with the cumulative
distribution function of a uniform distribution, again by the Kolmogorov—
Smirnov test. This test looks for maximum difference in the spectrum of a
given time series from the constant spectrum (white noise).

Fig. 1, and Fig. 2 show the results of the statistical analysis of the
shape of the one point distribution for different values of p = 1, and 100,
respectively. The figures contain, respectively: Time series — the first 200
iterations of Eq. (9); Histogram — the one-point distribution (divided into
32 bins); Quantiles — a quantile-quantile plot of the distribution vs. the
normal distribution (the line represents the best fit); Distribution functions
— a plot of two Empirical Distribution Functions as being compared in the
Kolmogorov-Smirnov test, solid line representing the distribution of time
series, dashed — the normal distribution. On both of the last two plots, the
lines representing the measured and the normal distributions should coin-
cide. The Kolmogorov—-Smirnov test takes the maximum difference between
both lines to calculate the statistics.

Fig. 3 and Fig. 4 present test results for the white noise. The figures
show, respectively: Delay plot — presents the first return map (2,41 vs.
2, ); Autocorrelation — the autocorrelation function of the time series, with
the zeroth mode removed (it is always equal 1) and with an approximate
95% confidence intervals; Power spectrum — the results of spectral analysis;
and Distribution function — standardized partial sums of the periodogram
(solid line) and the cumulative distribution function of a uniform random
variable (dashed line), as required in the Bartlett’s Kolmogorov—Smirnov
test.

Fig. 5 summarizes the results. It contains the probability values calcu-
lated from the Kolmogorov-Smirnov statistics for the normality test (filled
squares) and white-noise test (crosses), as functions of p. The horizontal
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Fig. 1. Statistical analysis of the one point distribution for the chaotic (sub)system
with p = 1. For the description, see text.
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Fig: 2. The same, as before, but for p = 100.
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Fig. 3. Statistical analysis of the time series generated by the the chaotic (subsys-
tem) with p = 1. For the description, see text.
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Fig. 4. The same, as before, but for p = 100.



Stochastic vs. Chaotic Dynamics for Genetic Model — Revisited 1457

lines represent Prob = 0.01 and 0. As the tests involve relatively large
samples (2000), they are very sensitive and tend to overemphasize small
differences in the (empirical) distribution functions. Nevertheless, it is clear
that the Gaussian limit is reached for large p, and the spectrum is not
significantly different from the uniform one for (almost) any p. The auto-
correlation functions do not contain values significantly excceding the 95%
confidence intervals.

Kolmogorov-Smirnov test

0.6

probability
04
x
-

0.2
X
[ B3

0.0

log(p}

Fig. 5. Kolmogorov-Smirnov probabilities for significance tests: Gaussian (m),
white-noise {x), described in the text.

Finally, it should be noted that the delay pictures in Fig. 3 and Fig. 4
can be compared with the respective figures in the next chapter for the
genetic model.

2.5. Genetic map — simulations

The map (3) was iterated with A,, = €l,, and with ¢((T') = T/ (cp. (8)).
With the time n running, the histogram of z;} (called z below) saturates
to represent the natural measure of the discrete dynamical process given
by (3).

(F)irst we compare the results of the simulations for different p and T with
¢ fixed. Changes in p affect only the shape of the probability distribution
of the perturbation (),) and the amplitude of noise does not depend on p.
As a result, the mean value and the deviation of z are also p-independent,
but the shape of the probability distribution depends substantially on p,
especially for small p.

The situation is completely different for T. Although again the mean
value of z is independent of T (up to some fluctuations), the deviation
decreases with decreasing T linearly tending to a certain value 9. When
o, is plotted as a function of In(T'), see Fig. 6, the curve saturates below
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Fig. 6. Standard deviation for the distribution of z* vs. T. Bars represent the
minimal and maximal value of 2 among 50 runs starting from different initial
conditions. The line represents the least-square fit.
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Fig. 7. Standard deviation and the interquartile distance (interval containing 50%
of the probability, which is more robust characteristic of spread of a distribution, if
the latter is not Gaussian) of the probability distribution of ¥ vs. noise strength.
The horizontal line shows the maximal value of the standard deviation 0.5, and
the vertical line represents the thoretical transition point 2.828..., corresponding
to 0? =4 (0 — IQD, e — st. dev.).

T =~ 0.05 (for € = 1.0). This suggests that the values of T of order of 0.01
and less are sufficient to model the behaviour of the genetic model (smaller
T requires longer runs).

Fig. 7 shows the dependence of the deviation o, on € as well as some
examples of histograms of z. It is not easy to determine the exact point at
which the transition occurs, as o, changes smoothly for all € (no “sharp”
transition), and the histograms are subject to fluctuations. Nevertheless,
the lower and upper bounds may be estimated, with ¢ = 2v/2 ~ 2.828...
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inside the interval (corresponding to 02> = 4) . The mean value fluctuates
around 1. p = 100, T = 0.01, and the genetic map was iterated 50000
times.

The figures Fig. 8 shows the examples of the histograms (32 bins) for
small € = 1, short before the transition (2.7), short after the transition (3.1),
and for large amplitude (5.0).

If Eq. (1.11) of [1] is used instead of Eq. (3), the probability distribution
is no longer bound by 0 and 1, cf. the figure 4 in [1], suggesting that the
interpretation of z as a population density is no longer possible. Plotting
and comparing both maps, one can easily see that the effect is caused by the
rare events in the noise realization when the actual value of the perturbation
Ap is large. With amplitude € growing, this events become more and more
important, and the trajectories “flow” out of the interval. This is no longer
true for our map — as it is not true for the original equation — and if started
in the unit interval, the trajectory will always stay there. This problem is
discussed separately [6].

3. Transition from chaos to a stochastic limit

The genetic model has been used in [1] in order to investigate the tran-
sition properties of the systems from the chaotic to stochastic regime of
dynamics. However, the results obtained there apply to the Ornstein-
—Uhlenbeck process, where the transition cannot be controlled very easily
(one parameter 7). Moreover, they were obtained by the “naive” integra-
tion, which — as it is shown in [6] — gives wrong results. As it has been
proved there, the differences between the “naive” integration and the cor-
rect method manifest only for large perturbations, and therefore the pictures
shown in [1] are basically correct (except of “tails” in Figs 10-12, above 1.0
and below 0.0).

Similar problems have been addressed in {3, 4]. In this approach the
deterministic systems generating the stochastic process approximation are
treated literally (not only as a limit case). The idea introduced by Beck and
Roepstorff [3] and developed in (1, 2, 4, 22, 28] that some of the stochas-
tic processes might have their origin in a purely deterministic, but chaotic
behaviour can also be applied here.

The transition from the deterministic motion to the stochastic (Gaus-
sian white noise) limit is realized by the change of p and T (p — oo and
T — 0). We can treat the maps (3) with (9) as chaotic maps, and an-
alyze the structures of the attractor in a delayed phase space. Below we
will concentrate on the analysis of the attractor in a 2-dimensional space,
equivalent to the map z} vs. =t

n—1°*
In order to understand better the transition, let us focus on p-dependence
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first, and go with T — oo. In this limit Eq. (3) is reduced to one equation
for 2}

4.t
z, T¥exp(—h) (11)
For small perturbations A,, z} is a linear function of An, i.e. z} ~
0.5 4+ 0.25),,. If, in addition, p = 1, the map z} wvs. ”:—1 can be written
in a closed form without A, depending on 7, c¢f. (6). For the logistic form
of T, the map is a parabola, as shown in Fig. 3. For p increasing, the
map becomes more and more complicated (higher iteratives of 7, as well
as “memory” effects become involved). As it was shown in [3], in the limit
p — 00, A\, becomes a Wiener process, and the map z: 41 VS z;} loses any
internal structure.
On the other hand, if T — 0, z; ~ :c;t_l, and
+
- n-l : (12)
z,_1(1—exp(—An)) + exp(—An)

Again, for small )\, the map for z* can be easily found

+ z

z, ~

zf ~ (14 An) 25y = An(z51)" (13)

For A, visiting the points from the certain interval (for p — oo it is
—00... + 00 ), the points of the map are lying on the momentary curves
given by (13). If the A, points are dense in the certain interval (A_, Ay ),
the map of zt fills an area between appropriate curves. The section of
the probability distribution on this area along a line 1 — z7 is a rescaled
probability distribution of A, (i.e. v2/ 8 A, +O()2)). This can be compared
with the A,-distributions obtained by Beck [3, 4, 28], see also above.

Fig. 9 presents a series of plots for different p and large T, whereas
Fig. 10 shows similar figures for small T'.

As mentioned above, p controls the probability distribution of the noisy
perturbation. The attractor does not change significantly if p is changed for
small T, although there are changes in the structure of the cross-section,
and on the boundaries, which become more spread. On the other hand,
large values of T lead to a completely deterministic picture with more and
more structure added as p becomes larger. At some value of p, depending
on T and ¢, the picture becomes indistinguishable from noise.
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Fig. 9. Plots of the attractor for the genetic map for p = 1, p = 2, p = 3, and
P = 10 with T' = 100. ¢ = 0.01 and 1000 points are plotted for each attractor.
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Fig. 10. The same as above, but for T'=0.01, and ¢ = 7.

4. Other chaotic systems

The probability distribution of the logistic map for a = 2.0 is smooth
and simple. The system at this point possesses some properties which makes
it possible to prove the limit theorem [3], e.g. complete lack of correlation
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between subsequent iterates. The conclusions of the theorem remain, how-
ever, true even if the assumptions are relaxed. As long as the correlations
in the chaotic time series are shorter than p, a good approximation of the
white noise can be generated by Eq. (7).
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Fig. 11. Statistical analysis of the probability distribution, ¢ = 1.45 and p = 1.
For the description, see text.
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Fig. 12. Statistical analysis of the time series, @ = 1.45 and p = 1. For the
description, see text. Note the change in the horizontal scale on the autocorrelation
plot. The 0.5 frequency peak (corresponding to the period 2) was removed in order
to show the rest of the spectrum.

Fig. 11 and Fig. 12 present the results of the statistical analysis of the
time series generated by Eq. (7), for 7 = 1 — az? with a = 1.45 (two-band
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chaos). The results show clearly that for this @ and p, the series is far from
white noise limit, and that there are significant time correlations.
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Fig. 13. Statistical analysis of the probability distribution, a = 1.45 and p = 100.
For the description, see text.

On the other hand, for p = 100, the distribution is Gaussian, and the
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Fig. 14. Statistical analysis of the time series, a = 1.45 and p = 100. For the
description, see text.

spectrum becomes flat, as shown in Fig. 13 and Fig. 14. There are still
some short time correlations, but they are not very significant (the most
prominent is the reminder of the negative correlation at 1 step forward
from Fig. 12). The spectrum differs from the white noise spectrum, but
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again, the differences are much less significant than on the previous plot.

As in the preceeding chapter, we can also analyze the Kolmogorov-
Smirnov probabilities as a function of both a and p. Apart from the values
of a which produce periodic (non-chaotic) solutions of the logistic map, all
other values generate a good approximation of the Gaussian white noise for
p = 100. On the other hand, for p = 1 the only one statistics significantly
different from 0 is for the white-noise test for a = 2.0.

5. Chaotic characteristics

There is a number of different characteristics of chaos which can be
analyzed here. The simplicity of the system allows us to find some of
them in an analytical way, and to discuss the transition from chaotic, low-
-dimensional regime into the noise. This may be useful in understanding
the properties of noise.

Let us first estimate the Lyapunov exponents spectrum, for the Eq. (1)
with the perturbation given by Eq. (7). The full transformation can be
written in the “memoryless” form by substitution 2z}, = z,_; fori = 1...p,
and 22 = z}.

Then zfl =7TP z;;_l, where 7P stands for the p-th iteration of 7, and
the rest of the map can be written in the form

20 L= a+ ﬂzg
- . —
T (@4 B22)(1 - exp(—y 2F_, 25)) + exp(—y TP, 25)

witha =05(1—eT),8=e"T, and y = I''/2p~1/2, The Jacobi matrix
has an upper triangular form, with

(19)

0zp 41
028
as the first element on the diagonal, and D as all other elements. D is an
operator of a derivative of 7. For 7v =1 — av? it is equal to

Dy, = (—2)PVp—_1Vn-2...Vn_p,

with v, = Tv,_1.

The form of the matrix makes it possible to reduce the problem of
finding the Lyapunov exponents to the calculation of the exponent for the
equation (14), the remaining p exponents being equal to pA each, with A
being the exponent for 7.

Fig. 15 shows the values of the first component of the Lyapunov spec-
trum, i.e. the negative exponent generated by the genetic map, as a function
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Fig. 15. Estimations of Lyapunov exponents for the genetic component of the
model (lower curve), and for the logistic map (upper curve). Dotted lines show the
variations in estimations for the genetic map (Lyapunov exponent being a mean of
the time series of derivatives, and the lines here showing a variance).
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Fig. 16. The same as above, but for different pand e: —__ — p = 10, € = 3;
e.—p=100,¢e=3; — — — —p=100, e=5.

of a, and compares it with the logistic map. In this simulations T' = 0.01,
p = 100, and € = 3. The length of simulations was 50000 for the genetic
map (i.e. 500 in “natural” time units, and up to 5 x 10° for chaotic part).

With p changing, the first Lyapunov exponent for the genetic map also
changes, but the general shape remains constant, cf. Fig. 16. Changing ¢
(and T) also changes the scale rather than a shape.

Finally, we used the existing numerical method of estimating the largest
Lyapunov exponent from the time series (or, rather, expansion rates) [29],
in order to check whether the data generated by the genetic model are
indistinguishable from noise. Fig. 17 shows the results for the analysis for
the embedding dimension 6 and the length of the time series of 2000. It is
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clear that for large p the signal approaches the white noise (generated here
by a standard Splus [30] procedure), although the structural differences
generated by the genetic component can still be seen (as the levelling off of
the plot).

Lyapunov exponent estimates

distance

Fig. 17. Wilson and Rand estimates of the Lyapunov exponent (horizontal axis
represents the distance by which the initial trajectory is perturbed, on the log,,
scale, vertical axis represents the average expansion rate at this distance):

— — Logistic, ... —p=1, — — — —p=100, — - — - — — noise.
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Fig. 18. Sum of all Lyapunov exponents of the system as a function of T for
different p: c—p =1, x —p=2,0e—p=50—-p=10; ¢ = 3.0, a = 2.0. The
Kaplan-Yorke dimension is p above the zero line, and 1 below.

The discussion of the dimensions was already given in [1]. For large p
(corresponding to A close to 1 in [1]) and small T, the time series is indis-
tiguishable from the noisy one. However, for intermediate, and especially for
small p and/or large T, there is a transition in dimensionality from simple,
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one dimensional attractors pictured in Fig. 10, to apparently multidimen-
sional objects from Fig. 9. The transition can be easily understood in terms
of the Kaplan—Yorke dimension [20], which in our case is either 1, if the
sum of all Lyapunov exponents is negative (here we have only one negative
exponent for the genetic component of the map, and p equal exponents,
negative or positive), and p otherwise. As shown in Fig. 15 and Fig. 16,
the critical value is affected by all parameters of the map, t.e. p, T, and
e. Fig. 18 shows the sum of all Lyapunov exponents as a function of T for
different values of p, for a = 2.0.

6. Final remarks

The approach to an analysis of dynamical systems with time-dependent
perturbations as presented here is formed by two basic techniques, namely
by the approximation of a time-depended signal by a series of impulses, and
then by transforming the ordinary differential equation(s) into a discrete
map by applying the stroboscopic maps formalism. The chaotic random
number generator is also used in simulations of the stochastic process. The
simple deterministic system generates the signal which is in the form suit-
able for the stroboscopic maps approach and which properties can be found
analytically.

On the other hand, interesting results can be obtained even if we do not
treat the procedures described above as the approximation procedures, and
when we do no not take all the limits. This is especially true for the noise
simulation, if the different stages of the approximation are treated literally.
The series of attractors presented above and in [1] can be interpreted as
the transition route from the case when the deterministic, chaotic dynamics
being the actual source of the “noise” (as it is suggested in [3, 28]), can
be seen by the “macroscopic” system, to the case when the separation of
time scales “smears out” the chaotic motion, and the perturbation appears
as a purely noisy process (in our case the Gaussian white noise, in [1] —
the Ornstein-Uhlenbeck process). The conclusion (confirming the results
of [3, 4, 28]) is that at least some of the stochastic processes (or manifes-
tations of the processes, e.g. “noise-induced” transitions) in nature may be
generated by deterministic systems, but the time scale separation makes
them indistinguishable from the “purely” stochastic ones, if their action on
other systems, correlation functions and distributions (3, 4], dimensions and
entropies [28] are considered.

The author’s stay in Cambridge was supported by the Royal Society
(UK), the Wolfson Foundation, and the Foreign and Commonewealth Office.
The program for calculating the largest Lyapunov exponent from a time
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