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The equations of motion yielding the Van-der-Waarden form of the
Dirac free-field theory in complex Minkowski space are actually derived by
working out a variational principle that involves a manifestly two-spinor
Lagrangian density. We make use of this Dirac Lagrangian density to build
up a suitable defining relation for the energy-momentum tensor of the
theory which gives rise at once to a set of essentially equivalent expressions
for the tensor. In particular, it is shown that one of the structures arising
from our definition coincides with the well-known Penrose expression up
to a conventional overall sign. A set of new covariant contour integrals for
the corresponding energy momentum four-vector and angular-momentum
bivector is exhibited. We then show that the entire set of spinor formulae
affords us another method of establishing the relevant charge-conservation
statement.

PACS numbers: 11.10. Qr

1. Introduction

One of the most striking features of the conventional Dirac theory is the
fact that the wave functions entering into the field equations can be split into
pairs of opposite helicity two-component spinors carrying the same charge
and energy [1-4]. Accordingly, the two-spinor fields appear to describe
completely the left-handed and right-handed degrees of freedom of the the-
ory at each point of their domain of definition, regardless of whether their
propagation takes place in real or complex Minkowski space. For positive-
frequency wave functions, the left-handed degrees of freedom are actually
carried by the unprimed components while the right-handed modes are lo-
cally represented by the primed fields. For negative-frequency fields, this
association turns out to be the other way around. In the former case, the
fields propagate in the normal future direction, and are effectively required

(1481)
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[4-7] to have holomorphic extensions into the forward tube CM™ of complex
Minkowski space CM. In the latter case, the relevant requirement is similar
to the previous one but the fields now propagate in the past direction, the
role played by CM* being thus taken over by that involving the backward
tube CM™ of CM. In the absence of electromagnetism, the splitting of the
wave equations is accomplished in such a way that the fields occurring in
each pair behave themselves as sources for one another. Such a remarkable
feature of the theory accordingly tells us that any Dirac pair can still be
looked upon as a set of interacting spinor fields. In connection with this
situation, the rest-mass of the fields plays, in effect, the role of a coupling
constant.

In this paper, we formulate a variational principle to derive the explicit
equations of motion that yield particularly the Van-der-Waarden form of
the Dirac free-field equation for positive-frequency wave functions on a suit-
able subset of CM* (Section 2). Indeed, the method upon which our basic
prescription rests was given earlier [8] in connection with the problem of
obtaining the fundamental wave equations for positive-frequency Maxwell-
Dirac fields in CM (see also Ref. [9]). This prescription actually involves
making use of an appropriate (two-spinor) version of the usual Dirac La-
grangian density. It shall be seen that, upon carrying through the pertinent
procedures, we need not impose any commutation condition on the fields
and their variations. Our action is thus defined on a bounded open subset
of CMt whose closure is compact. All the variations involved in the dy-
namical statement supposedly vanish on the boundary of the closure. The
two-spinor Lagrangian density is particularly used for constructing an ap-
propriate defining expression for the energy-momentum tensor of the theory
(Section 3). In addition to being manifestly symmetric, this expression also
gives rise directly to an explicit tensor which appears to be divergenceless,
but not trace-free. At this stage, the structure coming about coincides with
that given by Penrose [4] up to a conventional overall sign. We utilize some
elementary spinor identities to re-express it in a form which involves four
totally symmetrized pieces. These energy-momentum-tensor structures lead
us at once to manifestly covariant contour-integral expressions for the cor-
responding energy-momentum four-vector and angular-momentum bivector
(Section 4). In Section 5, it is particularly observed that our spinor formulae
can provide us with a new method of establishing the statement associated
with the conservation of charge. The original motivation for elaborating this
work is indeed related to the belief that a two-component spinor formulation
of the theory might not only enhance in a natural way all the fundamental
aspects of the systems, but also bring about their most important features
automatically. This belief goes hand-in-hand with the need of rectifying
the situation concerning the absence of a simple prescription for deriving
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explicitly the complexified version of the field equations which control the
propagation of Dirac fields.

The natural system of units in which ¢ = A = 1 is adopted throughout
this work. All the spinor conventions and rules as given in Ref. [4] will also
be used herein. We shall briefly review the method referred to above when
elaborating Section 2.

2. Dirac free-field theory

The set CM™ is defined as an open connected subset of CM, which is
explicitly given by (see, for instance, Ref. [5])

cmt = {:cAA' € (CMIIzAA’ = EAA’ - inAA', £AA' € RM and nAA’ € V+} s
(2.1)
whence CM+ 2 RM x V* and CM+ NRM = @. Here, RM stands for the real
slice of CM and V7 is the (convex) interior of the future cone of some origin
of RM. A positive-frequency Dirac system in CM is a pair {11: a(z), xAl(z)}
of independent massive charged spin-+1/2 fields which are taken to be holo-
morphic mappings throughout CM*. The charge-helicity conjugation op-
erator 7 is an antilinear mapping which locally carries the above pair into
{¥ar(z), Xx*(z)}. These conjugate fields bear reversed helicities and carry
a charge which is opposite to that carried by the fields entering into the for-
mer pair. They also carry negative energy, but possess the same rest-mass
as the former fields. When acting on a product of fields, 7 also reverses
the order of the factors. We must emphatically observe that this conjuga-
tion mapping is effectively defined so as to act only upon the field mappings
themselves without affecting their arguments at all. Additionally, it satisfies
the involutory property #2=identity.
Let 21 be a bounded open (proper) subset of CM* whose closure is
compact. We write down the free-field Dirac Lagrangian density on 27 as

1 - ]
Lp =i{3[Xa(2)V4 x () + D ar(2) VA4 Y4 (2)]
I ! ~
= 3 (VA xa(2)xar(2) + (VA4 4 (2))94(2)]
- H

- pxa(@)9(z) + da(z)x (2)]}, (2:2)
with V44’ standing for the ordinary (holomorphic) partial derivative opera-
tor 3/0z 4 o1, and m = /2 being the rest-mass of the fields. For simplicity,
we omit here as elsewhere all the arguments of Lp. Notice that (2.2) satis-
fies Lp = Lp, that is to say Lp is a “real” SL(2,C)®SL(2,C)-scalar function

on 2%. In order to introduce the relevant variational principle, we invoke
the prescription provided in [8] according to which one defines the real set

wt = {(e, ) -in") e NT} = ot (2:3)
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whose compact volume is

Vol(wt) = / dendiy, (2.4)

where d*) = —reabcdd/\a A dX® A dXC A dAS, with e,y 4 being the alternating
Minkowskian tensor for the (cova.na.nt) sta.ndard basis of CM, and X standing
for either £ or 7. The (“real”) action is thus written as follows

S[Lp] = /EDd4€Ad4ﬂ, (2-5)

whereas the relevant dynamical statement reads simply é§S[Lp] = 0. In
fact, this é-variation is here thought of as being ordinary in the sense that
it does not involve any deformation of 2. We also assume that is commutes
with the V-derivative operator which occurs in £p. Furthermore, all the
variations carried by §S[Lp] are effectively regarded as being independent
of each other. Hence, carrying out the explicit variation of £Lp and making
suitable index substitutions, after performing trivial integrations by parts,
we arrive at the expression

n{ {51/3,,.(::)'[ Lo -VAA'_‘%—P_]

0 o1(z) dVAB'Ypi(z)

. 9Lp AA,aL—D]
+ 6XA(33) I:aiA(z) avBAI -B(z)
0Lp  aa_ 9Lp ]
¥ [6¢A(z) dVBA'yp(z) 644(z)
Lp AA'_____B_EB___] ' }
* [BXA'(‘B) v aVAB'xB:(z) bxar(z) pdE Ad'y
- oLp
+ /+ [6% (z) = AB, 11) G )+6XA(3)—3VBA’XB(Q:)
Y]
__9p __9%p , ToAA _
+ avBA’¢B(z)6¢A(z) + aVAB'xB,(:c)'sx" (w)]d E44 -,

(2.6a)

where we have made use also of the derivative-operator splitting V 4 4+ =

3 (-—-E%r + —%—r) In (2.6a), d"544’ is an element of seven hypersurface

area of the boundary 82% of 21 which is expressed as
dEAY = L(BPEAN N diy +idie A PnAY) (2.6b)
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with d®)g = ZreapcadAbAdACAdA? (see (2.15) below). Now taking §A4(z) =
0 and §4.(z) = 0 on 311, with A,(z) standing for either ¥ 4(2) or x 4:(2),
we obtain the equations of motion for the complete theory

Op _gaw__9p  _ OLp _gaa'__9p _,

09 ai(z) OVAB'Ypi(z) ' Oxalz) oVBA'xp(z)
(2.7)

and

0Ya(z) OVBA'Yp(z) ' Oxal(z) OVAB'ypi(z) ( )
2.8

Consequently, the free-field theory consists of the explicit field equations on
nt

! ! 7
VAL ha(z) = ux? (z), Vawx?(z)=-upa(z), (2.9)
along with their conjugates
VAY Y ai(z) = ux(2), Vaux?(z)=-pdu(z). (2.10)

It becomes clear that the terms involving the variations of the conjugate
fields in the volume integral of (2.6a) give rise to the equations of motion
for the former fields. Obviously, this relationship appears to be reversed
when we take the pieces carrying the variations of the positive-frequency
fields.

The (local) commutativity of the V’s enables one to recover either Dirac
pair in a way that appears to be somewhat different from that trivially
suggested by the field equations (2.9) and (2.10). This was indeed observed
much earlier by Feynman and Gell-Mann [10], and can be easily seen by
letting the V-operator act appropriately on both sides of any one of Eqs (2.9)
and (2.10). For the former left-handed field, for example, we have the simple
computation

2V 4 Bsz[)A(z) = 2(VA1 (AVﬁ’) ~Vu [Avg;)'l[)A(z)
= —eap(p?(z) = 24°¢p(z), O=V.V?,
(2.11)

which immediately leads to (O +m?2)y 4(z) = 0, whence we can recover the

former pair by allowing VA4’ ¢ act on any solution of this wave equation.
Evidently, we can adopt a similar procedure also for any other relevant field.
We thus have the wave equations on 27

(O 4+ mBAu(z) =0, (O+m?)d(z)=0. (2.12)
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These equations will play an important role later when we consider the
procedure for deriving one of the properties of the energy-momentum tensor
of the theory (see (3.5) below). We are now able to carry out an analytic
continuation of both field pairs into CM, thereby extending adequately the
domain whereupon the entire theory was initially written.

An important consequence of the above-exhibited field theory is that it
gives rise to the conservation of the four-vector

T4 (2) = e[§4 (2)pA(z) + ¥4(2)x? (2)] (2.13)
which is the so-called Dirac current density [4], the quantity e being the

charge of the former fields [11]. We have, in effect, VAA'JAA:(:::) =0 on
CM. Thus, the explicit charge integral for the theory is written as

-~ ol !
QIE] = e j{ (34 (@A) + 2@ (2) Poan,  (214)
X
where ¥ is a suitable three-real-dimensional compact contour lying in CM,

and d3z 4 4 is the spinor element associated with the (complex) Minkowskian
form d3z,, which is given by ‘

Az 440 = #(dzper N de§ AdeD, — dzgpr A dz, NdeR').  (2.15)

The suitability of ¥ is essentially related to the fact that the singularity
set of the integrand of (2.14) may fail to have an empty intersection with
CM* U CM~. This contour is thus specified so as to yield a useful result
whenever the integral entering into (2.14) is effectively evaluated.

It is of some interest to observe that the wave equations involving the .
fields yield the following “spin-1 field equation” for J 4 4:(z)

(O + 2m?)J 4 ar(z) =2¢[(VEE'§ 01(2)) Vs prba(z)-
! .
+ (VPP %4(2))VBBrXa/(2)] - (2-16)
It should be noticed, also, that #J 4 41(z) = J 4 4¢(2). Evidently, this state-
ment amounts to the same thing as saying that the Dirac current density is
a “real” four-vector.

We conclude this section by remarking that the holomorphicity of the
positive-frequency fields can actually be stated as

Vsarde(z) =0 on CMT, (2.17)
where V 4 4 = 1/2(3/ ] id/ 317'4‘4') is the antiholomorphic covariant

derivative operator on CM. Hence, using the splitting of the fields into their
real and imaginary parts

Au(2) = Re Ao(&,m) - iIm Au (€, 1), (2.18)
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we obtain the explicit Cauchy-Riemann equations on RM x VT

£ 7

VaarRe Ao(&,1) = Vagr ImAu(€,7), (2.19a)
£ 7
VaarImA.(€,n) = — Vaa Redo(¢,7), (2.19b)

A
where Vg4 = 3/3)\‘4‘4' (see (2.4) above). Whence we can express the
corresponding harmonicity relations as

(D¢ + Oy) Re Au(€, 1) = 0 = (D¢ + Oy) Im Au (€, m), (2.20)
A A
with Oy = Va4 vAA, Moreover, making use of the operator relation
. £ 7
= 1M 4 i vy VAY, (2.21)
with @ = (¢ — (J,), we derive the real version of the first of Eqs (2.12)
(W +2m?)Re Ao(£,7) = 0 = (W + 2m?) Im A.(£,7)- (2.22)

3. The energy-momentum tensor

We shall now see how to construct an adequate defining two-spinor
expression for the Dirac energy-momentum tensor T,,(z) which fulfills the
usual requirements of symmetry and divergencelessness. The symmetry of
the tensor is effectively brought into the definition from the beginning while
each term carried by its explicit divergence ultimately involves only ordered
products between conjugate fields. We will show, also, that its trace appears
to be proportional to the mass term of Lp.

Roughly speaking, the prescription for building up the expression in
question consists in taking symmetrized products involving the derivative
pieces that enter into (2.2) and the derivatives of £Lp which are defined with
respect to these pieces, ordering the factors appropriately and then adding
the products together. We thus have the symmetric expression

ac oL
Tawpp(2) =soppo——Vaavbo(2) + WVBBWC(Z)

~ 9VBB'yo(z)
8Lp

oLp
aVAA'XCl(:B)
ILp oLp

BVBB'XC:(a:)

\v) ' - 7} —_— 4V ' ) 1 e
+ AA 1/)0 (z)avBBl‘(/JCI(Z) + BB ¢C (z)(?VAA'tﬁC:(:c)
Lp OLp

+ VAA'XC(”)W + VBB'XC(E)W

—eaBeapLp =Tgpraa(z), (3.1)

Vaarxce(z)+ Vepxc(z)
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where the e-piece is written out explicitly as

eaBea'B' LD

= -;-{ [X[A(‘B)VB] (Brx41(2) + Par(2)V sy [B¢A](“’)]
- :(V{B’ {B)ZA}(Z)) xa)(2) + (V[B [B’JA’](”)) ba(= )J

— |%B(=)V a1 jarxB7(2) + ¥15:(2)V 49 [A‘/’B](z)]

+ -(V[A[A'J’B’](z))d’B}(z)'*' (V{A'[Aial(Z))xB'}(z)]}o (3.2)

This ¢-piece actually vanishes identically but has been spelt out here because
it enhances the whole structure of the definition (3.1). It shall become clear
that (3.2) appears to be nothing else but the difference between T,;(z) and
itself. We will make one further point concerning this situation later in
Section 5. It has been convenient to split the mass term into two parts
such that Eqs (2.9) have been taken up by one part and Eqs (2.10) by the
other. At this stage, a straightforward computation shows us that the pieces
coming from the terms which involve explicitly derivatives in (3.1) are all
canceled together with those carrying V 4p and Vg 4. We are thus left
-with

Taupp () =3[$4(2)VepYa(z) - (Vepda(z))da(z)
+$p:(2)V 44¥8(2) - (Vaadp(2))¥5(2)
+ %4(2)VBpxa(z) = (Vpprxa(z))xa(z)
+ %B(2)V aaxp(z) = (Vaarxs(z))xp(z)] . (3.3)
In fact, this explicit expression for T,j(z) is identical with that given by
Penrose [4], up to a conventional overall sign. Its trace can at once be

calculated by using Egs (2.9) and (2.10). We have, in effect, the “real”
scalar function on CM

TA4 | i(2) = 2ipRa(2)9A(z) + Par(e)x? ()] (3.4)

Now, using once again the local commutativity of the V’s and invoking Eqs
(2.12), we obtain the identically vanishing divergence

VAAT, wppi(2) =i [$p(2)T¢a(z) - (O¥p(2))¥a(z)
+ x8(2)0Oxp(z) - (Oxs(z))xp ()], (3.5)
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or, alternatively

VAYT g wrppi(z) =5 {(0 + 2m?) g pi(z)
~ 2¢[(VAY $pi(2))V g 4B (2)
+ (VA4 18(2))V aaxs(2)]} - (3.6)

Indeed, this latter result can be immediately derived by recalling Eq. (2.16).

The symmetry of (33) can be brought about in a more transparent way
by splitting each of the derivative pieces (see (2.11)). After some elementary
manipulations, we thus obtain the structure

Taape(2) =i{da(z)V ) (a¥e)(z) — (V(BardB)(2))¥a)(2)
+ Xa(2)VByarxsn(z) — (VB (4XB)(2))x a)(2)

+ beaBewrm [Xm(2)9M(2) + dap(2)xM ()]} .
(3.7)

4. Energy-momentum and angular-momentum integrals

We are now in a position to introduce the relevant kinematical integrals.
The basic expressions with which we start are indeed the conventional co-
variant ones, but with T,;(z) being effectively expressed by either (3.3) or
(3.7). For the energy-momentum four vector, we have the formal contour
integral

panll] = fTAA'BB'(“’)dazBB’ , (4.1)
r

where I' stands for a (closed) contour which is defined in a way similar
to that of (2.14). Presumably, (4.1) remains unaffected when the contour
is continuously deformed without crossing any relevant singularity. The
above expression can be particularly used for defining the Dirac angular-
momentum bivector M,[I"]. In effect, we have

MAA'BB'{I’] =2 f z[AA:TBB:]CC':(z)d3zCC’
r

'}
= f[eA'B'I‘ABCC’("’)+5ABl-‘A'B'CC'(z)]d3”CC , (4.2)
r

with the u-angular momentum densities being symmetric in AB and A'B’,
and the square brackets that occur in the integrand of the middle structure
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denoting skew symimetrization over the index-pairs. These densities actually
appear as independent conjugate quantities, being formally given by

papcc!(z) = 24 aTh)co(2) = maByoo(2), (4.3a)

Baproo(z) = zaaThycel(®) = iasyce () - (4.3b)

Now, replacing (3.3) into (4.3a), a somewhat lengthy calculation leads us to
the explicit expression

kaBcc(z) =:2i{2 [tB’(AJJ(B'(z)V|C|c')¢3)($)
- za, (VB)(B”Z’C')(:”)) Yo(z) + wﬁ)ﬂm(-’c)VB)(B'XC')(z)
— (B DIECHEIEE (Vf(’,?,'im(w)) XE')(@‘)]
- to(azBy | (Varcsrbony(a)) #4(z) - 24 (2) Y aagarxony (o)
+remor (uleM(e) + oM @) |}

It is evident that the corresponding result for (4.3b) can be readily obtained
by letting the operator 7 act on (4.4). We thus have

Barprco(z) =%{2 [€(B|DJ€O)E2€4: (Vfé’.,%r)(w))zbm(w)
- 20uP1c(2)V By BY0)(2) + 2(a (VBry(BXG)(2)) X0 (2)
- z(BAl?z(B(z)VC)[C'|XB')(3)]
- 1A' T ) ['ZM'(z)VM'(B¢C)(z) - (VM'(BXC)(‘B))XMI(’«‘

+ uepo (M (2)xa(z) + xM(z)wM(z))] } . (4.5)

5. Concluding remarks

The two-spinor description of the Dirac systems presented here brings
out naturally all the elementary aspects of the complete theory. As far as the
theory for positive-frequency fields is concerned, this feature is particularly



Complezified Two-Spinor Theory... 1491

exhibited by the method of Section 2 which actually allows one to derive the
simplest form of the field equations on CM in a direct way. Thus, when we
restrict ourselves to writing the theory in RM, the operator character of the
fields is enhanced at every stage of the calculations yielding any result of
interest. Indeed, it is from this feature along with the structures exhibited
in Section 3 that the relevance of our work stems.

Of course, Eqs (2.9) and (2.10) would have arisen automatically from
the basic dynamical statement if we had replaced the explicit Lagrangian
density (2.2) into §S[Lp] upon working out the variational principle. If
this procedure has been effectively adopted, we would have arrived at the
conclusion that

[ 5 a@ (A% b at2) - ¥ ()
nt

+8%4(2) (VA4 x 01 (2) — pA(2)) + (uxA(2) — VA P 41(2)) 6% a(2)
+ (194 (2) - VA4 24 (2))8x a1(2)} %€ A d¥y
+1 [ Ba@)svaz) + 2a@xa(z) - (Pa()balo)

Nt
— (6%a(2))xar(2)ld"EA4 = 0, (5.1)

which clearly yields (2.9) and (2.10), provided that all the variations involved
are taken to vanish on 0027.

As regards the statement concerning the conservation of charge, we
should observe that it is equivalent to either of the (conjugate) relations

Vaia($ (2)0p)(2) = Vaa(xay(2)x* (), (5.2a)

V apa(Pp(2)94(2)) = V 4w (X4 (2)x 41 (2)) (5.2b)
such that

Vaadh () =Vaadhy(2), Vandg(z)=Vaudgy(z). (53)

It must be pointed out that the expression (3.3) would turn out to be
entirely given by the contributions coming from the derivative terms carried
explicitly by the defining expression (3.1) in case we had first worked out
the e-piece. The replacement of the field equations (2.9) and (2.10) into
Lp “annihilates” the term ¢ g4pe 4/g'Lp identically. The fact that (3.3)
differs from Penrose’s expression [4] by an overall sign is due either to an
arbitrary choice of the (overall) i-factor entering into Lp or to a purely
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conventional re-arrangement of the terms appearing in (3.1). This former
possibility would entail a modification of the covariant derivative operator
if electromagnetism were brought into the picture, but such modification
might be compensated by an interchange involving the sign of the charge.

When the theory is set upon RM, the integrals (2.14) and (4.1) turn
out to be nothing else but the ordinary covariant integral expressions which
are taken over (suitable) simply connected three-dimensional space-like sub-
manifolds of RM. Under this circumstance, the conservation of charge and
the property V,T%%(z) = 0 entail, respectively, the formal functional state-
ments

§ &
EQ[Z] = 0 and ﬁpAAI[F] =0. (54)

It should be pointed up that the invariance of the expressions (2.14) and
(4.1) under continuous deformations of contours which do not cross any
relevant singularity constitutes another version of these conservation laws.

It is worth remarking explicitly that the angular-momentum structures
(4.4) and (4.5) can be built up from each other by applying the simultaneous
interchange rules

1/313'(¢'3.)Vcc'1/JB("’) «—— ¥B(z)Veorxp(z)
(VeBYo(2))¥c(z) «— (VepXc(2))xc(z)- (5.5)

In addition, it is clearly seen that the y-angular momentum pieces bear the
trace-free property

7
”ﬁCC’("’) =0= I‘ﬁlccl(”) s (5.6)

which obviously appears to be compatible with the trivial symmetry iden-

tities ,

e*Puspco(z) =0=¢*P pupce(z). (5.7)
Actually, the expression (3.3) suggests writing the following alternative
structure for T ()

TaaBp'(2) =i{%’V(AA'JBB')(93) - 2[(V(acar¥en(2))¥B)(2)
+(VearcaXs)(@)xs) (2)] } - (58)
Clearly, the trace obtained from (5.8) reads
TAY y p(2) =3{ V40T A4 (2) - 26 [(VaB# (2))9A(2)

+(Vaai @A @)}, (5:9)
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which really agrees with that given by Eq. (3.4). It can, therefore, be said
that, in the massless limiting case where u = 0, T,;(z) turns out to be
trace-free. In fact, when combined with (5.8), this result affords us an
independent method of establishing the divergencelessness of (2.13).

I am deeply indebted to Professor Roger Penrose for providing me with
the two-spinor techniques for relativistic fields. My warmest thanks go to
the World Laboratory for financial support.
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