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It is argued that quarks immersed in the magnetic vacuum, though
asymptotically free, are strongly coupled to gluons and share with them
appreciable fraction of their momenta. This effect might be qualitatively
related to the known nonperturbative property of the nucleon structure
function: equal sharing of the nucleon momentum between quarks and
gluons.

PACS numbers: 12.38. Lg, 71.38. +i

1. Introduction

The magnetic vacuum (for a representative sample of references see [1],
[2}, [3]) is an interesting model of the QCD vacuum: It provides us with an
intuitive description of the asymptotic freedom [2] and, also, gets support
from calculations on a lattice [3]. It is instructive therefore to look at its
behavior when some simple systems are immersed in it.

The simplest possibility is to insert one quark into the magnetic vacuum
and see what happens. In the case of a covariant description of this system
the quark interacting with the vacuum changes its mass (and this is the
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only possible effect because relativistic covariance demands no difference
between a moving quark and a quark at rest, i.e. the quark cannot scatter
from the vacuum). The situation changes when a piece of the magnetic
vacuum is contained in a finite volume, e.g. inside of a nucleon. Then,
there exists a rest frame of this vacuum and the quark may scatter from it:
it may exchange momentum and energy with it.

In our speculations we work in the rest system of the magnetic vacuum,
hence we are dealing with a segment of the vacuum confined in space (e.g.
inside a hadron). Yet, we treat it as a very large object. This is a very drastic
simplification. In effect we adopt a “polaron scenario”: A single charged
particle moving through an ionic crystal and exciting the collective modes
of such a medium is the polaron [4]. In our case a single color-charged quark
moves through the magnetic QCD vacuum exciting the collective modes of
the vacuum.

The first, and as it turned out incomplete, calculations of this kind were
given in [5] and here we are going to follow the main steps of [5] introducing,
however, explicitly the anisotropy of scattering. Our vacuum is a charged,
massless field (bosonic and fermionic) of charge g and spin §, interacting
with a homogeneous external magnetic field pointed e.g. along the z-axis

H=¢H. (1.1)

This system has the following spectrum of modes [2]

E(ks,n, ;) = /B2 + 2gH|(n+ 1) - 20HS,n=0,1,2....  (12)

Here k, is the z-component of the momentum, n — the harmonic oscillator
quantum number, §,; — z-component of the field spin, ¢ — the coupling
constant. As in [5] we do the first order perturbation calculations of the
scattering rate of the quark interacting with the modes of the vacuum (1.2).
The interaction Hamiltonian density operator is

H = §%p 7. W ¥y, (1.3)

where W# is the gluon field operator which we expand into the modes (1.2),
¥p and ¥, are the four component spinor plane waves of the initial and
final quarks, and § is the quark-gluon coupling constant. Note that we do
not have a direct quark-quark coupling, hence, in the first approximation,
the quarks moving through the magnetic vacuum interact only with gluons
(hence S, = £1).

The transition rate is given by the Fermi Golden Rule (A = ¢ =1)

Ig=2r< lHﬁlz > b(er — ;). (1.4)
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Here ¢; and ¢; are the final and initial energies and (...) denotes averaging
over the initial and summing over the final quark states.

= Ldky Ldkz 1 m2 - ] * 3

151

. Apzky .
x6(Apo — E(ks, n, 5,)6(Apy — ky)8(Aps — k2)e T D8, (Ap,), (1.5)
where L3 is the normalization volume, and

+0c0
&.(Ap.) = / e 74Pz g (z),
-0
&, (z) being the n-th one-dimensional oscillator wave function.
In the following section we will evaluate I'; for a general configuration

of the vacuum orientation with respect to the initial and final momenta of
the quark.

2. Evaluation of the transition rate

The geometry of scattering in the rest frame of the vacuum is as follows:
The initial momentum of the quark is

7= (pcosa)e, + (psinasin ¢)&, + (psina cos P)é . (2.1a)

The final momentum of the quark is

Pr = (pg cos 0)€, + (pg sin Osin ¢¢)ey + (pr sin 8 cos ¢¢)é . (2.1b)
The magnetic field is
H = He,. (2.1¢)
From (2.1) follows that

Ap, = prcosd — pcosa, Ap, = prsinf cos ¢g — psinacos ¢,

PPt
pps

= cos x = cos § cos a + sin 0 sin a cos(¢ — ) .
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From (1.4) we obtain
m2

DfoPo )

§(F(ps, E)) (2.2)

Ig =2x(|H5)?)6(es — &) = §° (1 + vgv(2 cosfcosa — cos x) —-

N (27)3 |®,(ps sin 6 cos ¢ — psin a cos @)|?
L4 2E(Ap:,n, S;)

where

E(Ap;yn, S;) = \/(pcosa — prcos6)? + 2|gH|(n + %) —29HS,,

and
F(pf)E) = sz +m2 - vplz' +m2 - E(Apzsns Sz) = 0’

because it is the argument of Dirac’s §. vy and v are the velocities of the
final and initial quark, respectively.

Expression (2.2) can be simplified through a gauge transformation which
is equivalent to a rotation of the reference frame around z-axis. Let p, a
and ¢ be fixed. Then (2.2) gives the rate of scattering to p;, § and ¢;. The

vector potential A which gives H along €, is (compare [2))
A= éyHz.

We do the following gauge transformation

A=A+ Vf:é',,ﬂz+é',(——-———_psm:°°s¢),

hence we choose the scalar function as
f = (—psinacos ¢)z.
This implies a change of phase in $,(z):
8, (c) = Ba(2)e’s! = g(z)emiePHRCS,

Thus

+oo
é! (Ap.) = / dee i®(Apstpsinacosd)g () = &, (p;sinfcosdy), (2.3)

-—0

which simplifies the argument of &, in (2.2).
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Note that we may equally well fix the final configuration and get rid of
the dependence of the argument of &,, on the final configuration and have the
transition rate to a fixed final configuration from any initial configuration.
This symmetry between the initial and final configurations follows from the
fact that the argument of #,, in (2.2) is a sum of two contributions with the
variables of these two contributions separated.

The Dirac §-function in (2.2) takes care of the energy conservation and
gives the following expression for the scattering angle 8 as a function of the
final momentum pg¢ (with a, p and n fixed):

pcosa
Pt

—-—\/(Apo)z H(n),  (24)

cosd = ¢(pg, a,p,n) =
where
Apo = Vp? + m? — 1/p‘2. +m2, H(n)=2|gH|(n+ %—) —2gHS,.

With a, p, n fixed we get from (2.2) either of the two differential rates
7(‘%557 or %%. Since F(pg, E) = 0 along the (2.4) curve, we have

oF oF
e —dpg + 3(co a)d(cosﬁ) =0,
and
d(cosf) E
dps 3Pf pi(pcosa — prcosf)’
thus
ar__ar oF___E 5)
dp; ~ d(cos @) Opg pg(pcosa — p;cosf) )
And we get (compare also [5])
dlg 2gH L3 / )
2%
=2 }
sm8 1+ 2vev(cosf — -cos
/ déeg % f ( X) P_fopo]
2
< i pf Iﬁn(pf sin d cos ¢f)l (26)

] | E(A4p:yn,S;)
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or

drI; y H
fi be 2 9
dpg / f (n+ -;)

Ps| P (ps sin 0 cos ¢y)|? (2.7)
2(pcosa — pycosf) ’

m2

PfoPo ]

[1 + 2vgv(cosf — 1 cos x) —

Note that, from (2.4),

pcosa — pgcosf = \/(Apg)'*’ — H(n).

Note also that when a = 0,cosa = 1 (the initial quark moves along the

magnetic field H = &, H ) we obtain the case considered in Ref. [5].

One can perform approximately the integrals over ¢; remembering that
we can write cos x = cos § cos a + sin # sin a cos ¢; but our main conclusions
do not depend on detailed form of these integrals.

3. Discussion and conclusions

Both differential rates (2.6) and (2.7) have singularities.
(a) The angular distribution (2.6) has a singularity at

a—F_ orvy = - H(n) cos
5o = f_(1/1 7 (Ap0)2) 0. (3.1)

We shall call this singularity the “Cherenkov” singularity, because it
defines a distinctive cone although it does not lead to an infinite rate
(compare also [5]).

(b) The momentum distribution (2.7) has a pole at

pcosa — ppcosf = \/(Apo)z—H(n)zo. (3.2)

We shall call this singularity the “bremsstrahlung” singularity, because

for a = 0 it becomes the familiar bremsstrahlung singularity as pr — p.

(3.2) leads to an infinite rate and this fact is of primary importance, as

we shall presently see.

Indeed, let us continue — in spite of a somewhat academic quality of
such an approach — to treat the magnetic vacuum as a piece of solid matter
with a light object (quark) traversing it. The process has two distinct
regimes:
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Regime I, cosa < 1. The quark is set in motion at an angle to H.
Then, the configuration (3.2) dominates the process. Since p > pf, we
must have cos@ > cosa, hence the final momentum of the quark is being
pushed towards H. Then, immediately, the next scattering follows because
the rate is enormous, and then the next scattering, and the next ... , until
the momentum is aligned with H. Note that from this process the quark
emerges with momentum which is, virtually, parallel to H and its length is
given by the initial momentum and angle:

pcosa,
and thus the second regime of the process starts.

Regime IT, cosa’ = 1. This is the case we discussed in detail in Ref. [5].
Now, the rates are finite and the scattering angles very small. Also, only
n = 0 state of the vacuum contributes, and H(n) < 0. Should a scattering
in this regime took us to a large enough angle and shift the quark back
to the first regime — it will be immediately pushed back into the second
regime by the singularity (3.2).

What we have is indeed a process of channeling of the quark. Similar
to the channeling of charged particles traversing some crystals. The channel
is here defined by H.

One could go on and on with a detailed description based on the for-
mulae (2.4), (2.6) and (2.7) but the value of such details would be very
doubtful. These would be wild speculations indeed: detailed extrapolations
of the above formulae to a quark set into motion inside a nucleon by e.g. a
high energy lepton.

Yet, it is tempting to identify the inside of a nucleon with a piece of
magnetic vacuum which does lead to the asymptotic freedom of quarks [2]
and, moreover, its very existence is supported by calculations on a lattice
[3]. Also, a possible influence of the chromomagnetic vacuum fields on high
energy hadronic reactions has already been discussed (see e.g. {6]). What
then our calculations do suggest?

A qualitative consequence appears reasonable. It refers to the struc-
ture of the nucleon. When a quark is moved, the most probable regime
to be realized is the Regime I. Then, as we haye seen, a large fraction of
its momentum is immediately shared with the gluons. In other words, we
are dealing, on the one hand, with asymptotically free quarks which, on
the other hand, are strongly coupled to the gluons. So, the nonperturba-
tive character of the magnetic vacuum qualitatively explains sharing of
momenta between quarks and gluons observed in experiment [7]. This ef-
fect is commonly interpreted as a nonperturbative one and, as we see, can
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be accommodated by filling the interior of the nucleon with the magnetic
vacuuin.

We close with reiteration of our conclusions: Let us consider a deep
inelastic lepton—nucleon scattering. If it were not for the quark coupling to
the vacuum gluon field, the structure function would have reflected sharing
of the nucleon momentum only between quarks. In our case, when a quark
is struck by the photon and starts moving at an angle a relative to H, it im-
parts a fraction of the received energy to the vacuum gluon field. In the end
the quark will leave the chromomagnetic vacuum moving along the direction
of H. However, the energy it had lost in the process is transferred to the
nucleon remnants and is a function of a. Assuming a random distribution
of a, we get the following relation between the initial and the average final
momenta of the quark in Regime I

{(})?) = p*(cos® a) = p?0.5,

(pf) = 0.7p.

But then Regime II takes over and reduces the above input momentum,
0.7p, by another factor ~ 0.7 (compare [5]). So, finally, we obtain the
average sharing of the original quark momentum with the gluons

(pr) = 0.7(pf) = 0.5p, (3.3)

in complete agreement with experiment (compare [7]). In principle, assum-
ing such a random distribution of a, we could calculate the quark energy
loss distribution and the corresponding structure function. The reason we
do not pursue this exercise is the feeling that our approach can represent at
best the very general and qualitative outline of such a theory.
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