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Following the idea that the phenomenon of intermittency is related
to HBT correlations between identical pions, we investigate the origin of
the power law behaviour of the correlation functions. The measurements
of the higher-order correlation functions indicate that the observed inter-
mittency is an effect present in individual events rather than the result of
incoherent superposition of many events. Also uncorrelated emission from
a space-time volume of any shape does not seem to account for the data.
These results suggest a genuine fractal space-time structure of particle
production.

PACS numbers: 13.90. +i

1. Introduction

Recently, several experiments [1-3] found that the phenomenon of in-
termittency [4, 5] is dominated by very short range correlations between
momenta of identical hadrons (HBT effect [6]). As is well known, the HBT
correlations reflect the size and shape of the space-time region from which
the observed identical particles are emitted [7]. Remembering that intermit-
tency is equivalent to a power law dependence of the hadronic correlation
functions, one may conclude that a power law dependence must also be
present in the distribution of space-time shapes and/or sizes of the region
of hadron emission [8]. It was suggested recently that this observation may
indicate a critical behaviour of the system [9, 10].

In the present paper we investigate in somewhat more detail the rela-
tion between the space-time structure of the sources of particles created in
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high-energy collisions and the observed power law behaviour of the corre-
lation functions in momentum space. We show that the measurements of
the correlation functions of order higher than two is necessary to obtain a
non-trivial information on the space-time structure of the source. Compari-
son with existing preliminary data indicates that this structure may indeed
be fractal, as conjectured already in Ref. [8-10]. In the next section we
discuss the general formulae describing the HBT effect and propose a set
of measurements of higher order correlations which are most suitable for
studying intermittency. In Sections 3 and 4 two specific examples of the
physical systems are considered. In Section 3 uncorrelated emission from a
source with space-time density described by a power law is described. In
Section 4 we discuss a multicomponent model of intermittency, ¢.e., an inco-
herent superposition of non-intermittent events (chosen in such a way that
the resulting inclusive spectra are intermittent). In Section 5 the breaking
of intermittency at very small intervals is analyzed. Our conclusions are
listed in the last section.

2. Intermittency and multiparticle HBT correlations

To explain our argument, which is a generalization of the one presented
in [8-10], let us consider a totally incoherent source of identical particles
with space-time multiparticle densities d;(z), d2(z1, £2),..., where z denotes
position in space and time.

Following the standard procedure [7] and neglecting final state interac-
tions we find for multiparticle densities in momentum space

Pr(P1,- - Pk) k' /dzl dzy | Y HexP("’JPJ)I di(z15- -+, 2k),

perm j=1
(1)

where the summation extends over all permutations of the momenta
P1...Pk- The constant V can be determined from the normalization condi-
tion

/pk(pl, .o .,pk)dpl . .dpk = /dk(:cl, . .,zk)dzl . .d:ck
=(n(n-1)...(n-k+1)), (2)
where n is the total multiplicity. For k¥ = 1 we obtain from (1)

V—l = p:(p) ) (3)
(n)
A sketch of the proof of Eq. (1) is given in the Appendix.
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It is seen from (1) that the particle density in momentum space is a
linear combination of Fourier transforms of particle densities in space-time
which we shall denote by Dy:

k
Dr(q1y--qi)=VF / dzy...dz, H exp(iz;g;)de(z1,...,2¢). (4)
i=1

D, is a symmetric function with respect to exchange of any of its arguments
(because dj, is symmetric). Furthermore, ¢; +...+ ¢ = 0 for all D;’s on the
r.h.s. of Eq. (1). Finally, only the symmetric combinations D(g) + Dr(—q)
are present.

From (1) one can see that the power law behaviour of the densities in
momentum space requires a power law behaviour of the Fourier transforms
D, and thus a power law behaviour of the space-time densities. To obtain
more precise information about the mechanism(s) responsible for such a
power law we shall now discuss in more detail two different scenarios.

3. Uncorrelated emission in space-time

The sum over permutations in the r.h.s. of (1) implies that the momen-
tum distributions will exhibit correlations even if the space-time distribution
is uncorrelated, 1.e., if

dn(zl,...,zn)=d1(21)...d1(2n). (5)

In this case, using Eqgs. (1) and (4) and well-known relations between the
multiparticle distributions and correlation functions [11], one finds the gen-
eral formula

Ci(p1,-- k) = O D1(p1 — Pay)---Da(pr —pay); k22, (6)

where C}, is the correlation function and the sum extends over all (k — 1)!
combinations of different pairs (1, a1),...(k, a;) with a; # 1.

The power law behaviour of the correlation functions is obtained if the
Fourier transform D; of the density d; exhibits a power law dependence
and thus if the density d; itself follows a power law. Indeed, taking d;(z)
in the form

di(z) = Alz|"P, (1)

where A is a constant and D is the topological dimension of the z-space,
one obtains for the Fourier transform (4)

Di(g) = Alal™ [ explinG(@w duda. (8)
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Here 2 is the D-dimensional solid angle and G(f2) is the scalar product of
the two unit vectors in the z-space.

One sees from (8) and from (6) that the correlation function C}, follows
the power law with “intermittency exponent”

fe=Fky; k2>2. (9)

Thus in the case of uncorrelated production intermittency exponents are
simply proportional to the rank of the correlation function.

The existing data show intermittency exponents increasing with increas-
ing rank of the moments. However, there exist yet no published data on
intermittency for more than two-particle spectra of identical pions. The
preliminary results from NA22 experiment [12] gives % ~ 2 rather than
expected % If this result is confirmed it would mean that the hypothesis of
independent production must be abandoned.

4. Multicomponent model of intermittency

Consider now the situation when the power law spectrum is not present
at the level of individual events but is generated by superposition of events
characterized by uncorrelated emission from space-time volumes of varying
sizes [8]. In this case we have

(21, ..., 78) = /dRF(R)Jl(zl;R)...Jl(:ck;R), (10)

where d is a non-singular function of z confined to the region of size R.
We take the d; in the generic form
di(z; R) = h(§) 8(R) (11)

with h(u) confined to the region u < 1. The Fourier transform (4) reads

Da(as,--a0) = [ F() AR @O BP K(Ray). M), (12)
where
i(z) = / h(u) exp [i Ju] 2G(2)] [uP~du| d2 (13)

is a regular function of z. The non-integer power law at the Lh.s. of the
Eq. (12) can thus be generated if the functions F(R) and $(R) follow the
power law. Taking

F(R) = const R™7; &(R) = const R*~P (14)
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one obtains
Dy(q1,. .-, qk) = const Q"””q"""/dzf"’“*“'-‘(%‘) .-h(Z),  (15)

where we have introduced a new variable

1
a= [(@)?+...+ (@) (16)

It is seen from (15) that the obtained singularity in ¢ depends linearly on
k: the intermittency exponent is given by

fe=1-7y+EkX. (17)

At this point it is worth to note that the parameter ) is related to the
multiplicity of the different components of the model by the formula

(n(R)) = const R*, (18)

and thus for positive A (which is necessary for (17) to account for the data)
the range of the correlations in momentum space is predicted to decrease
with increasing multiplicity. This does not seem to be followed by the data
of UA1 Collaboration [13] and, therefore, we are forced to conclude that the
multicomponent models are unlikely to be realized in nature.

5. Breaking of intermittency

The exact power law implies that particle densities and correlation func-
tions must be singular (i.e. infinite) in the limit of vanishing momentum
differences. This is unphysical and thus at some point the power law must
be broken. The examples shown in Sections 3 and 4 allow to discuss this
phenomenon a little more precisely.

To this end let us observe that the formula (7) cannot be exact because,
taken literally, it implies the infinite multiplicity. It must, therefore, be cut
at some (large) |z] = L. If we take the simplest possibility t.e. d = 0
for |z| > L, we obtain for D;(q) the formula identical to (8), except that
the limits of integration in |u| are from 0 to gL rather than from 0 to
00. Consequently, the integral behaves as (¢L)!~" for small ¢(¢ < L) and
the singularity at ¢ = 0 is cancelled. The deviation from the power law
behaviour should be seen already for ¢L =~ 1 and thus observation of such
a deviation gives information on the range of the extension of the source in
space time.



1514 A. BiaLas, B. Ziaia

Similar remarks apply also for the model discussed in Section 4. In
this case the probability density F(R) must be cut above some value of R,
because otherwise the probability distribution would not be normalizable.
Again, cut-off at large R implies that the singularity at ¢ = 0 in Eq. (15)
disappears. Also here the point at which the data deviate from the power
law gives information about the maximal range of R. In Ref. [10] a simple
example of this effect is studied numerically.

This argument explains the physical interpretation of the minimal in-
terval in momentum space, where the power law still holds. This minimal
interval is determined by largest accessible space-time volume of the sys-
tem. The recent data of the UA1-MB and NA22 collaborations [1, 2] are
consistent with power law up to momentum difference 30-40 MeV. This in-
dicates presence of indeed very large volumes (6-7 fm), which are not easy
to explain by standard arguments.

6. Conclusions

We have investigated consequences of the experimentally observed rela-
tion between intermittency and HBT correlations. Our conclusions can be
summarized as follows.

(a) Measurements of two-particle correlations do not provide sufficient in-
formation for analysis of the space-time structure of the sources of par-
ticles created in high-energy collisions.

(b) Information about the statistical properties of this space-time structure
is accessible only through measurements of correlations between more
than two particles.

(c) The existing data seems incompatible with the possibility that the effect
of intermittency is a consequence of a “multicomponent” character of
the production process.

(d) It seems also unlikely that the existing data can be explained in terms
of uncorrelated production from a source whose space-time distribution
follows a power law.

(e) The points (c) and (d) make it plausible that the space-time structure
of the source of particles is actually fractal. However, the data on higher
order correlations are needed to confirm this conjecture.

(f) Confirmation of the power law behaviour of two-particle correlation
function up to very small momentum intervals [1, 2] indicates the pres-
ence of unusually large space-time structures in particle production.
As a final comment we would like to point out that we have considered

only the simplest case of the totally incoherent source of particles. We think

that it illustrates correctly the essential points of our argument. In the
real analysis of the data, however, more complicated situations are known
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to occur and the assumption of total incoherence cannot be maintained.
Although we do not expect that the main qualitative features will change, we
fully appreciate the need of such a refined analysis for a detailed comparison
with the data.

A.B. thanks R. Peschanski for a conversation which was at the origin

of this investigation and K. Zalewski for enlightening comments.

APPENDIX

A sketch of the proof of Eq. (1)

Consider a system of n identical bosons emitted at point (z1,...,2,)
and described by the wave function ¢(z3,...,2n;2), where z is a set of
additional quantum numbers characterizing this system. The corresponding
wave function in momentum space is

fn(Ph cveyPny z)
:(21’)""/2(11!)_1 / dzy...dza¥n(P1s- s PriZ1y. sy Zn)Pn(21,. .oy 205 2),
(A.1)
where
Yp = Zexp (ipl:c:ml +...+ ipnzan) , (A.2)

and the sum extends over all n! permutations of the set a;,...,a,. The
normalization in (A.2) is chosen such that, as usual,

/dpl o idpa|fa(P1s- .-y Pni z)lzdz = /da:l coodzp|dn(Z1y. ..y 203 z)]zdz.
(A.3)

Let us now introduce the condition of incoherent emission in the form

/ On(T1y- s 20y 2)00(2h, - oy 20 2)d2

=6(z1 — 2})...6(zn ~ z'n)Kn/ |pn(215- .., 2n; 2)|2dz,  (A.4)

where K, is a constant, to be determined from the normalization condition.
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Using (A.4) and (A.1) we obtain for the probability density of finding
n particles with momenta (p1,...,pn)

Pn(P:h---aPn)z/lfn(?la-"’pn;z)lzdz

=Kn/dzl...dznllﬁn(pl,...,pn;a:l,...,zn)|2Wn(:c1,...,zn),(A.5)

where Wy, (21,...,2,) is the probability of emitting n-particles at positions
(15---y2n):

Wo(z1,...,2n) = /|¢n(z1,...,zn; 2)|%dz. (A.6)
The normalization condition (A.3) substituted into (A.5) implies
o= (A7)

where V is the available volume in momentum space (the formula is valid
in the limit V — o0) given by

V7 = -

as is seen from (A.5) for n = 1 (it is seen from (A.5) that Py(p) is indepen-
dent of p).

Eqs. (A.5)-(A.7) give the probability distribution of n identical particles
in momentum space. To derive Eq. (1), it remains to translate this into
standard multiparticle inclusive densities.

To this end, let us remind the definition of the k-particle inclusive den-
sity:

(= <]

pe(P1se-PR) = Zn(n—1)...(n-k-i-1)/Pn(p1,...,pn)dpk+1...dp,,.

n=k
(A.9)
Using the identity

/ |¢n(pl: ey Py 1,000y zn)zdpk+1 . .dpn

=Vpn~k(n - k)' Z h/’k(pl’ oy Py Zaysec zaklz ) (A.IO)



Space-Time Structure of Hadron Sources and Intermittency 1517

where the sum extends over all (:) sets (ai,...,a;) which can be selected

from the set (1,...,n), we obtain from (A.5) and (A.7):

P(Pl,---vpk):Kk/dzl---dzkl'bk(l’l’---spk;zla--'zk)lz

o0

Zn(n—1)...(n——k+1)/dzk+1...da:an(:cl,...z,,), (A.11)

n=k

which is precisely formula (1).
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