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QCD point-to-point correlation functions for various mesonic and
baryonic channels are calculated using the so called Random Instanton
Liquid Model. The results are compared to experimental data and the
results of recent lattice calculations. We also briefly discuss the present
status of the theory of interacting instantons.
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1. Introduction

The structure of the QCD vacuum is, in a way, the central problem of
strong interaction physics. I have wrote some reviews about it (1, 2], so let
me remind only one general point. “Elementary particles”, or hadrons, are
but collective excitations of this complicated matter. Respectively, like for
phonons in condense matter, one cannot really understand them without
first understanding the structure of matter itself.

Hadronic spectrum and excitation cross sections can be converted into
more fundamental quantities, the correlation functions, which provide more
direct information about short-range structure of matter itself. Say, neu-
tron scattering on solids and liquids have produced enough examples of the
kind. Recent review [3] compile available information on such correlator
functions, being extracted directly from experimental data. With such phe-
nomenological input, one can discuss models of the vacuum structure and
results of lattice simulations with greater confidence.

It turns out that it is extremely important to study point-to-point cor-
relation functions rather than (3d) plain-to-plain one, traditionally used by

* Presented at the XXXIII Cracow School of Theoretical Physics, Zakopane,
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lattice people. The reason is short-range forces between quarks and anti-
quarks are much more complicated than previously believed, and those can
better be studied if the distance between the points is sufficiently small. In
other words: studying virtual hadrons, the wave packets of small size, one
can learn many things which it is difficult to get out of properties of lightest
hadronic states alone’.

During the last decade it was becoming more and more clear, that
instanton-induced effects are in fact responsible for many features of light
hadrons, possibly being even more important than the confinement effects.
The present mini-review contains a report on numerical studies of the cor-
relation functions data [4] in the framework of the simplest model of the
kind, the so called Random Instanton Liquid Model (RILM). Its parame-
ters were fixed about a decade ago by global vacuum properties, the gluon
and quark condensates, so these calculations in fact had no free parameters
at all. Somewhat unexpectedly, the model is surprisingly accurate in many
cases, and can claim quantitative agreement with data. Another encourag-
ing fact is that its predictions in some cases for which experimental data
are absent (e.g. nucleon and delta correlations functions) happen to be in
good agreement with recent lattice calculations [23].

2. Introductory instanton physics and approximations

Tunneling phenomena in gauge theories were discovered in 70’s. This
one-instanton era is marked by the discovery of the instanton solution [5], its
physical interpretation as tunneling, semiclassical integration and relation
with chiral anomalies {6]. Their first applications to QCD problems [7]
based on dilute gas approzimation, attracted a lot of attention in late 70’s.
However, as no explanation for diluteness of the instanton ensemble and
to their semiclassical nature were suggested from first principles, pessimism
has prevailed and most people has left the field.

However, phenomenological studies of possible instanton effects [9, 10]
have shown, that instanton-induced effects definitely can explain many puz-
zles of the hadronic world, and should not be forgotten. The so called “in-
stanton liquid” model [10] was suggested, with two free parameters, the main
radius and distance between the instantons. In this work we essentially use
it again, demonstrating that it does work, at new and more detailed level.

Attempts to describe interacting tunneling events were initiated by
Dyakonov and Petrov [11], who have used the variational approach and have

1 One can use here analogy with nuclear physics. In 30’s, when only general

properties of nuclei were known, the NN interaction were believed to be a
simple attractive central forces. Only much later, due to precise NN scattering
experiments, its full complexity was revealed.
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qualitatively reproduced the “instanton liquid” parameters. Further numer-
ical studies of this problem [18] have allowed to get rid of many approxi-
mations and eventually included fermionic effects to all orders in ’t Hooft
effective Lagrangian [6]. We return to their discussion in Section 4.

The main reason why instantons are believed to be so important in
physics of light fermions is related to the so called “zero modes”, solutions
of the Dirac equation

Dp')'pd’ﬂ(z) =0, (1)

where D is a covariant derivative containing the instanton field. Formally,
importance of small eigenvalues of D follows from the (Euclidean) definition
of the quark propagator

1

§= TiD,y, +im

(2)

at m — 0. Their existence explains chiral anomaly: while tunneling, quarks
with one chirality “dive into Dirac sea”, and with another “emerge” from it.
Also, quark condensate is known to be proportional to density of “nearly-
zero” modes.

Instead of going into discussion of all these complicated phenomena, we
now concentrate on evaluation of a quark propagator in the multi-instanton
field configuration. Trying to understand spectrum and eigenfunctions of
the Dirac operator, one can use the following analogy. “Zero modes” can
be viewed as quark bound states to instantons (a “potential wells”), and at
finite density of such wells they are collectivized (as electrons in condensed
matter) and form the so called “zero mode zone”. In simple physical lan-
guage, quarks can easily jump from one instanton to another, and thus travel
very far. If they can go infinitely far in this way, modes with infinitely small
eigenvalues appear, and chiral symmetry becomes spontaneously broken
even for massless quarks.

Significant efforts were done in the past to work out some set of ap-
proximations providing quark propagators in the “instanton vacuum”. Our
expression looks as follows:

2 +
S(z,y) = Z M + iSnzm(z, ) - (3)

)
ZMZ wm

Here the first term is the sum over all states belonging to “zero mode zone”
(ZMZ), or those being linear combinations of zero modes of individual in-
stantons. The non-zero modes (analogs of “scattering states”) are taken
into account by the last term. For single instanton and for massless quarks
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the analytic expression for fermion propagator is known from explicit solu-
tion of the Dirac equation. Generalizing it for many instantons, we use an
approximation summing all deviations for instantons and anti-instantons:

Snzm = So + ¥ (51— S0) (4)
1

valid for sufficiently dilute system. The last step is generalization of this
expression to the case of non-zero quark mass: this is needed for discussion
of effects related to strange quarks. The resulting expression is lengthy, and
we do not give it here.

A simplified instanton ensemble we are going to use as a simplest exam-
ple (RILM) is based on the following assumptions: (i) all instantons have
the same size pg; (i) they have random positions and orientations; (#ii)
instanton and anti-instanton densities are equal to ng /2.

Thus, there is one “diluteness” parameter f = (72/2)ngpj which de-
scribes the model, apart from the overall scale given e.g. by the distance
R defined by ng = 1/R*. We are going to show, that already this simple
model leads to reasonable description of many correlation functions. For
definiteness, we use below R = 1 fm (corresponding to right gluon conden-
sate) and pg = 1/3 fm, without attempting to fit them to the correlators.
For random model, results are not very sensitive to them, apart of obvious
change in overall scale.

3. Correlators in random instanton liquid

We start with showing in Fig. 1 our measurements of the quark propa-
gators?. At small z part (b) is normalized to a propagator of massless
quarks, so it starts at 1, while the part (a) is normalized so that it should
be equal to quark mass. Part (b) can be approximately represented by
a “constituent quark model” (curves), although with a surprisingly large
quark mass. The chirality-flipping part (a) does not agree with this model
at all. One may therefore doubt whether it is possible in RILM context
to explain hadronic properties based on “constituent quark” picture. In
addition, one should not forget that actually quark propagator contains
also many “hidden components”, which vanishes in average but show up in
the mesonic correlation functions, where they enter squared.

Let us now consider correlators, starting with few general remarks. One
can classify correlation functions considering quark paths, recognizing two
different types of diagrams: the one-loop ones, in which both quark and

2 We remind that those quantities are gauge dependent and shown only for

illustration.
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Fig. 1. Chirality-flipping (a) and chirality conserving (b) parts of the quark prop-
agator, normalized as indicated in the figure. Three curves correspond to “con-
stituent quark model” with masses 200,300,400 MeV (solid, dashed, long-dashed,
respectively). Squares are full propagators, stars in (b) show the contribution of
non-zero modes alone.

anti-quark travel from 0 to z, and the two-loop ones, in which they return
back to where they started. Isospin I=1 correlators (e.g. of 4d currents)
get contribution only from one-loop diagrams, and therefore most of lattice
work deal with this case. Although we also mainly deal with 7=1 mesons,
we have also performed measurements of some important two-loop diagrams
as well, see below.

Our second comment emphasizes some observations related to chiral
properties of fermionic zero modes. They have chirality, directly related to
the topological charge of the gauge field: there is only a left-handed solution
for the instantons and a right-handed one for the anti-instanton. Therefore,
the first order corrections in ’t Hooft effective interaction are: () present in
the scalar and pseudoscalar correlators, but absent in the vector and axial
ones; (ii) they have the opposite sign for the scalar and pseudoscalar chan-
nels; (ii1) and, since it has udd flavor structure, they have the opposite
sign for the isospin 1 and 0 channels. All three points are phenomenolog-
ically welcomed, and this is by itself a very strong hint, suggesting that
instanton-induced effects are crucial for short-range correlators.

The pion and kaon solid curves in Fig. 2 correspond to phenomenology
[3]: notice the scale: the ratio to free quark propagator is very large, because
pion is so light! Thus, it turns out that RILM predict properties of the pion
nearly perfectly: both the mass and the coupling. In fact, the fit gave
the pion mass extrapolated to physical quark mass the value 142412 MeV.
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Fig. 2. Pseudoscalar x, K correlators, normalized to the free quark loop. The
solid curves here and below correspond to phenomenology, as explained in the
text. Squares and triangles correspond to RILM calculations, for iid and s flavor
structure of the currents. The dash-dotted line is a fit used to extract particle
masses and coupling constants. The dashed line shows the correlator in a simplified
version of “vector dominance” approximation.

(Such exact agreement is of course accidental.)

Here and below the dashed curves stand for “vacuum dominance ap-
proximation”, by which we mean the that quark propagator is taken as free
one plus the quark condensate. One can see, that this approximation always
predict the right sign of the deviations, but not the correct magnitude.

The next pair of channels is shown in Fig. 3: those are vector and axial.
Three p, K*, ¢ solid curves in (a) and region between the two Aj, 7 curves
in (b) correspond strictly to phenomenology [3]. Actually, those correlation
functions have the smallest ambiguities because we have rather good data
for electromagnetic annihilation into hadrons and weak 7 lepton decays.
The most interesting feature of these data is “superduality” in vectors: all
three flavor channels are very close to 1 till rather large distances, about
1 fm. It is reproduced by the model, although deviation is about 20-30
percent®. Axial-vector splitting is also reproduced reasonably well.

In Fig.4 we show two examples of channels, involving two-loop (or anni-
hilation) diagrams. Splitting of 7, 7' channels is the famous Weinberg U(1)
problem. To reproduce their splitting, especially at small distances like 0.3—
0.4 fm, still remains a challenge to lattice calculations. One can see from
Fig. 4(a) that RILM strongly “overshoot” at this point, making so strong

3 Note that the first perturbative correction is (1+ a, /7), which explains about
10 percent of it.
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Fig. 3.  Vector (a) and axial (b) correlation functions. Three sets of points
correspond to iid, iis and §s (without annihilation) flavor structure of the currents.
All notations are as in Fig. 1.

splitting, that the 5’ correlator becomes negative. This cannot be true, and
demonstrate limitations of the model.

In Fig. 5 we compare our results with those obtained on the lattice [23].
The agreement is generally good. The only exception is another “repulsive”
channel, this time the I=1 scalar channel (denoted by §), where again the
RILM “overshoots” the repulsion.

Finally let us show some results for baryonic systems (Fig. 6). In this
case we do not have phenomenological input, thus we use predictions based
on QCD sum rules, [12] and [19], respectively.

Again, agreement between RILM and lattice results is surprisingly good.
The most interesting aspect of these curves is a qualitative difference be-
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Fig. 4. The SU(3) octet and singlet pseudoscalar correlators (a) and their mixing
(b). All notations are as in Fig. 1. The 7, 7/’ solid curves correspond to phenomenol-
ogy.
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Fig. 5. Comparison between RILM (closed triangles) and lattice calculation (open
squares) for pseudoscalar, vector, scalar and axial vector mesonic correlators.

tween the nucleon and delta case: this is due to different role of instanton-
induces forces in these two systems, see discussion of it in [14-16]. Fit to
RILM points have reproduced a surprisingly accurate value for the nucleon
mass, while delta is somewhat too heavy.

Let me also emphasize, that more detailed recent studies (including
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Fig. 6. The nucleon (a) and delta (b) correlation functions normalized to the free
quark ones. As in Fig. 4, the closed triangles correspond to RILM, while the open
squares to lattice calculation. The long-dashed and short-dashed curves correspond
to QCD sum rule predictions [12] and [19], respectively.

measurements of the so called wave functions) show that in RILM there
exist sufficiently strong attraction between “constituent quarks”, binding
them together to, say, nucleon. It is very non-trivial statement, taking
into account that both the perturbative (Coulomb-like) and confining forces
between quarks are not included in this calculation.

4. Studies of interacting instantons

Our discussion above have ignored correlation between tunneling events
(instantons). However, at least the very phenomenon studied above, namely
quark “jumping” from one instanton to another, produce strong correlation
between them. Another obvious source of interaction is non-linear gluonic
Lagrangian: a superposition of instanton field always have action different
from a sum of two independent ones. Interacting instantons can be described
by a statistical system with a partition function

Z= / IL[d9% exp(—S5)] exp(Sint) L1 v, [det(iD + img)],  (5)

where by d{2; we have denoted the measure in space of collective coor-
dinates of the i-th instanton?. The action of an individual instanton is
S; = 87%/g%(p;). The next term Sin; describes the classical (gluonic) inter-

action and the fermionic determinant describes quark-induced interactions.

% There are 12 of them in QCD, including the size p, 4-d coordinates of the
center and 7 color rotation angles (one of the SU(3) rotations does not change
the instanton configuration).
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This formulation leads to a problem similar to those traditionally stud-
ied in statistical mechanics 3. At fixed value of the collective coordinates,
evaluation of the fermionic determinant resembles a problem of quantum
chemistry: in both cases one has to determine spectrum of fermionic oper-
ator in some multi-centered background field.

Treating instantons as atoms (and quarks as electrons) one is lead to
the following natural questions: Is the instanton ensemble in solid, liquid
or gas phase? Is the chiral symmetry broken or not? The answer, obtained
in [11, 20, 17], reads as follows: for densities roughly n=0.01-64. A%, it
is liquid, which is “freezing” only at the upper end of this interval. The
instanton density in the real QCD vacuum is not known accurately, but in
any case it is in the middle of this interval n ~ IA},V. Chiral symmetry is
broken in this phase, and the obtained (1) has reasonable magnitude.

The main new element which has emerged during the last few years
is that (rather arbitrary) trial functions for gauge field configurations used
previously, are substituted by the so called streamline configurations, corre-
sponding to the bottom of the I valley. Those configurations can be found
numerically, “descending” down the valley [21], which produce the solution
to the “streamline” equation [13]. For gauge theories that was recently found
by Verbaarschot [22], using conformal symmetry of the classical Yang-Mills
theory. It was also found, that the specific ansatz proposed by Yung [13]
give very accurate description of the action of these configurations.

However, straightforward application of the “streamline-based” gluonic
and fermionic interaction has not improved the results obtained previously.
In fact, it was found that a significant fraction of the instantons and anti-
instantons form pairs with small spatial separation and, what is most im-
portant, with small total action. Such “over-correlated” liquid leads to very
small quark condensate and wrong correlators, unless the total instanton
density is strongly increased. In principle it can be motivated by the fact,
that total density of instantons was fixed without such strongly correlated
pairs.

However, a problem of close instanton—anti-instanton pairs need much
closer attention. Configurations with small separation and particular rela-
tive orientation have small action, and therefore they are not semiclassical.
As it was emphasized by Yung [13], those fluctuations were already in-
cluded in the usual perturbation theory (which, by definition, includes all
small fluctuations of the fields) and they should not be included twice.

While this challenging problem still waits for its theoretical solution, one
may introduce an artificial repulsive core. If it is done, one can reproduce

5 It is somewhat more complicated than traditional atomic systems because of
fermionic determinant: however, it is still orders of magnitude simpler than
full lattice gauge theory
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the correlators. Moreover, the results obtained on this way are even better
than those shown above: in particular, large fluctuations of the topological
charge become screened and negative values 7' correlators disappear.

5. Generalization to finite temperatures
and chiral symmetry restoration

In principle, generalization of the theory under consideration to fi-
nite temperatures is straightforward: the periodic instanton solution, the
“caloron” is known, and their (much more complicated) interactions were
studied in [26]. Simulations of the interacting system is under way, but no
quantitative results are obtained. Let me therefore make only qualitative
remarks.

First of all, instantons are known to be suppressed at high T by the
one loop quantum effects, essentially by the Debye screening [27]. The
Pisarski-Yaffe [28] suppression factor describes it, but only in the limit of
high temperatures, at which the heat bath can be treated perturbatively.
The instanton density as temperatures below T, remains unknown.

Moreover, it can be that the instanton suppression is not even the main
phenomenon: another one is a strong “pairing” of instantons, leading to
formation of IT molecules. There are several reasons for that. First, as
the box size become comparable to the molecule diameter, attraction goes
both way on the Matsubara torus, so it is about doubled. Also, quarks have
problems propagating in space direction: their zero modes and propagators
obtain the famous behaviour exp(—=Tr), where =T is the lowest possible
Matsubara frequency. In time direction such factor is absent.

Now, if the whole “instanton liquid” is split into molecules, the chi-
ral symmetry is restored. The first attempt to look at chiral restoration
phase transition at this angle was made in [30]. However, that attempt
was in many respect oversimplified. In particular, the “random liquid” and
“molecular gas” were considered as two phases, and the question addressed
was where their thermodynamical potentials may become equal. However,
some pairing exist already at T = 0, and this tendency grows gradually
till T = T.. One can adopt another simple picture of instanton ensemble
at these temperatures, as a two-component mizture. The “liquid” compo-
nent should disappear at T, together with the condensate (gg), while the
“molecular” one is there for any temperature.

First exploratory studies of the correlation functions have been made
in this simple model [29]. It is easy to generate such ensemble, for various

. 2N, .
values of the “molecule fraction” f,, = —-—‘7&5}“‘“, the main parameter of

the model. In order not to introduce new parameters, we have kept total
instanton density fixed, and ignored the non-sphericity of the instantons
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at finite T. In short, the only difference between the ensemble considered
above and the one to be discussed now is in correlation between positions
of some fraction of the instantons. _

The main order parameter, (§g), depends on f,, in a way which is very
similar to its T-dependence, measured on the lattice: it changes little first,
and then rapidly vanishes at f,,, = 1. It was further found, that different
correlation functions depend on it quite differently, and some examples are
shown in Fig. 7 . One can see, that some correlators are rather insensitive
to it. For example, the vector one does not change by more than about 10
% for all compositions, from f,, = 0 — 1. Even the pion correlator shows
remarkable stability for f,, = 0 — 0.8, with subsequent rapid drop if its
coupling constant toward f,,, = 1, at which point it coincides with its scalar
“relatives” (see below). At the same time, some correlators show dramatic
sensitivity to f,, especially the scalar ones.

Let me now point out the main physics of the phenomenon. Its one side
was repeatedly emphasized before ( see e.g. [31]): as the quark condensate
“melts down”, so does a “constituent quark mass” (whatever it means) and
hadrons in average should become lighter. However, there is another side
of the story: the instanton-induced interaction between quarks does “melt”
as well. In the channels where this interaction is attractive, such as p,r,
these two effects work in the opposite directions and can somewhat cancel
each other. However, in the channels where it is repulsive, such as the axial
vector A; or the I = 1 scalar §, they work in the same direction, and may
lead to much stronger T-dependence of the correlator.

Another aspect of this model is that it assumes rapid restoration of
not only SU(Ny) chiral symmetry, but approximate restoration of the U(1)
chiral symmetry at T, as well. Whether it is the case or not, remains so far
unknown.

New generation of instanton-based and lattice-based calculation is
needed, in order to answer this and other qualitative questions, and to pro-
vide the detailed knowledge of correlation functions at finite temperatures.

6. Conclusions and discussion

Summarizing this work, let me say that about 40 different correlation
functions were calculated, in the framework of the simplest “random in-
stanton liquid model”. It was found that these functions are very similar
to what is observed in nature. For example, the model happen to predict
correct values of pion and nucleon masses, inside the errors. What is also
important, the overall agreement in many cases is reached. The only two
channels where the model does not work well are the “repulsive” channels,
§ and 7', in which the repulsion seems to be too strong.



Correlation Functions of the QCD Vacuum and Instantons 127
SOO_IIIII&_ 6-g~_|]|||3$¢
- 9 55 4= o]
100 E T 5 ENZ oo 3
30 §8' — 4'2 = . 3
- .3 I 35 & o =
10 &= ot = '3 = 5o, o
- . 3 5 F ae -
3 0 — “3 = O
1 g—o.:o.ooooooooo? 1? :....!::.... =
N BEL ] ]|
0 s} 1 1.5 0 5 1 15
L6 —— LS 177 [T
L Ay (c) R (d)_
1—0... —] p
!!:.. 1 —
- f2.%%000, 1 reebiiig,
T KT i A H
oL 5,7, 51— .
— 6 - — —_
T ol Ll 1,
0 5 1 1.5 ") 5 1 1.5
x x ’
Fig. 7. Correlation functions in the “two-component” model [29] for pion (a),

nucleon (b), axial vector (c) and vector (d) channels. Open points correspond to
pure “random” instanton ensemble, while four closed set of points correspond to
admixter of 0.25, 0.5, 0.75 and 1. fraction of instantons united into the instanton-
antiinstanton molecules.

A crucial test of the whole instanton-based approach to the QCD vac-
uum can be provided by lattice calculations. First of all, one can compare
the correlation functions themselves, and we have already shown above that
such comparison looks encouraging by itself. However, lattice people can do
much more, comparing the configurations. In fact, the so called “cooling”
of lattice configuration is the well known method to remove all components
of the QCD vacuum, except instantons, the local minima of the action. In-
dications on the general importance of instantons were made in [24, 25].
Calculation of the correlation functions for “cooled” configurations are in
progress (J. Negele, private communications), and the first qualitative con-
clusion is that they do not differ much from those in full quantum vacuum.
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Another qualitative idea which was emphasized in this work deals with
chiral symmetry restoration at finite temperatures. The main phenomenon
driving this transition is suggested to be “pairing” tendency between instan-
tons and anti-instantons. Although present at T = 0 as well, it becomes
much stronger around the critical temperature. Simple two-component
model was suggested and studied, and remarkable correlation between the
results of this model and lattice simulations at finite T' are observed. The
main lesson from those (still preliminary) studies is that different correlation
functions are changed in this transition in a quite different way.

First of all, the reported results were obtained together with Jac Ver-
baarschot and Thomas Schaefer. I am also indebted to organizers of Za-
kopane school, especially to Maciek Nowak. The reported work was partially
supported by the US DOE grant, and the numerical work was made using
computer facilities of DOE NERSC at Livermore. Let me also acknowledge
the support by KBN (grant PB 2675/2) which made my participation in
Zakopane School possible.
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