Vol. 25(1994) ACTA PHYSICA POLONICA B No 1-2

SEMICLASSICAL PION RADIATION*

D. DIAKONOV*¥*

St. Petersburg Nuclear Physics Institute
Gatchina, St. Petersburg 188350, Russia

(Received September 30, 1993)

The lecture is an introduction to understanding pion production in
semiclassical terms.
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1. Introduction

Pions are the lightest hadrons and therefore they are the first to be
produced both in the decay of resonances and in high energy hadron col-
lisions. Moreover, in many circumstances a semiclassical approach to pion
production is justified parametrically. A semiclassical treatment of a prob-
lem means usually a considerable simplification which, if applicable, is not
what one should step over. In this lecture I discuss certain conceptual prob-
lems in connection with the pion radiation. To be specific, I deal with these
problems considering two important physical cases: (i) decay of the A reso-
nance into 7N and (%) multi-pion production in high energy collisions. The
first part of the paper is based on a work with Victor Petrov [1] while the
second is based on a work with Jean-Paul Blaizot [2].

2. Pion radiation by a rotating Skyrmion

In this Section we shall show that pion radiation can be treated much as
the electro-magnetic one. In particular, we shall demonstrate that, similar
to the case of electro-magnetism;
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1) Accelerated sources of isospin cannot exist; they loose energy, angular
momentum and isospin through pion radiation;

2) The Goldstone nature of pions is an analogue of gauge invariance; in
particular, the pion radiation is very similar to the “dipole” radiation in
classical electrodynamics, proportional to the square of the acceleration;

3) Classical pion radiation is in a correspondence (¢ la N. Bohr) with the
quantum theory, where comparable.

To demonstrate that V. Petrov and I {1] have considered the classical ra-
diation by a rotating chiral soliton — a Skyrmion, to be short. The concrete
dynamical realization of the soliton will be irrelevant here — a nice model to
keep in mind is the Chiral Quark Soliton Model [3-5] which proved to be
successful in explaining quantitatively most of the nucleon characteristics
(see, e.g., [6, 7] and references therein). The most successful predictions of
the chiral soliton models are however those which are independent of the
concrete dynamics but which rather rely on the symmetry of the hedgehog
pion field [8], and that is what we shall use here. From that angle the naive
Skyrme model [9, 10] suits us not worse than a much more powerful Chiral
Quark Soliton Model.

The effective pion lagrangian can be written as

F2

Leglr] = 11 Trd,U'3,U + higher derivatives, (2.1)
where U is a unitary 2 X 2 matrix composed of the pion fields:
A ; S 3
U = exp (WF: ) . (2.2)

We assume that the effective pion action admits a static hedgehog so-
lution:

Uo(r) = exp [i(n - 7)P(r)] , (2.3)

where P(r) is the so-called profile function of the soliton which starts from
x = 3.14... at the origin, has the characteristic scale of a nucleon, ry, and
decreases as A/r? at large distances.

In order to provide nucleons with quantum numbers one has to consider
an SU(2)-rotated soliton:

U(r,t) = R(t)Us(r)RI(2). (2.4)

The quantization of the rotation is similar to that of the spherical top
[10]; the hedgehog form of the static pion field (2.3) guarantees that all
rotational states have isospin T equal to spin J, and their wave functions
are given by the Wigner D-functions [5]
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eI=F(R) = V2T + 1(-1)7* D1y, 4 (R), (2.5)
with the familiar rotational spectrum
J 1
My=M+ __(_1_2_;_) (2.6)

where M is the rest mass of the soliton and I is its moment of inertia. The
T = J quantization for hedgehogs is a welcome feature since in nature this is
what we observe for nucleons (T = J = 1) and A (T = J = 3/,). However
we do not have decisive evidence of the existence of exotic resonances with
T = J = 5/,... though claims of their discovery appear from time to time.
The reason why the higher rotational states do not exist is to some extent
“accidental”: their decay width is too large to allow identification with a
resonance. Let me start by reminding how to calculate the decay rate of a
soliton rotational state.

The pion-soliton coupling in terms of the soliton spin-isospin orientation
matrix R is given by [10-12]

39NN 1 .

- 9;:\4 ETr(RTT“Rag) ik;, (2.7)
where k; is the pion 3-momentum and a is its isotopic component. Sand-
wiching (2.7) between initial and final state wave functions (2.5) we get for
the J — J — 1 transition amplitude squared (averaged over the initial and
summed over final spin and isospin states):

39NN )2 2J —1k*
2 2J+1 3°

(2.8)

To get the decay width one has to multiply (2.8) by the phase space
factor. We obtain

3/2
2T 1 My [ = M ¢ apm )
Il M2 2T+ 1 My YV
(2.9)
Neglecting the pion mass m, we have at J > 1:
392 7\?
r=320 (7) - (2.10)

Numerically, if we take the experimental values g,NN = 14, M/, =
940 MeV, M3/, ~ 1240 MeV (hence 1/1 ~ 200 MeV), we get for the width
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of the A resonance I'a =~ 120MeV in good agreement with the experi-
ment. The asymptotic formula (2.10) gives a much larger width I'\*Y™P ~
600 MeV, which is not surprising since J = 3/2 can be hardly considered to be
much greater than unity; also the non-zero pion mass is essential for the real-
world numerics. For the exotic J = T = %/, state with Mj J2 = 1700 MeV
Eq. (2.9) predicts a width I's ;; ~ 760 MeV which explains why it is hard to
observe such a state. We see that this huge width is in a sense accidental,
being due to the large pion-nucleon coupling. In order to elucidate an im-
portant theoretical point, I shall proceed as if higher rotational states were
possible. My purpose is to derive Eq. (2.10) from a classical pion radiation
theory.

First of all we have to describe the rotation classically, which should
be possible for J > 1. We shall see, however, that strictly stationary
rotating solitons cannot exist: they have to loose energy through radiation
of the classical pion field. A similar theorem is well known in classical
electrodynamics.

Let us consider the far-distance tail of the rotating soliton field assuming
that the pion field is already small, so that one can linearize the equation of
motion. Then it is just the d’Alembert equation. Assuming that the soliton
rotates with the angular velocity w around the z axis meaning that the field
depends on 7, § and ¢' = ¢ — wt, the d’Alembert equation can be written
as

32
Ar® — w Wﬂ' =0. (211)
We expand solutions of this equation in the complete set of functions,
7(r,0,8") = > Rin(r)Yim(6,4'), (2.12)

im

where the radial functions satisfy the equation

1d 2d l(l+1)
rzdr dr 2

Its solutions are spherical Bessel functions jj(mwr) and y;(mwr) [13]. Their
asymptotics are ji(z) ~ sin(z — Ix/2)/z and y;(2) ~ —cos(z — In/2)/z.
Hence the rotating pion field (2.12) has to fall off as 1/r at large distances.
Such behaviour is typical for the radiation field. The energy and angular
momentum of such field diverge at » — oo:

2w2] R .(r)=0. (2.13)

2
E= % / &*r [(Bor®)? + (8:7°Y?] = oo,
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J3 = —F,% /daraow“3¢1r“ = 00. (214)
This is because we calculate here, in fact, not the energy and the angular
momentum of a soliton but rather of a soliton together with its radiation
field. The “proper” energy and angular momentum of the soliton itself can
be found by subtracting the contribution of the radiation to these quantities.
Let us show how it is done in the simplest case of a spherically-symmetric
soliton — a hedgehog given by Eq. (2.3). We shall consider slow rotations,
wrg € 1, where rg is the typical size of the hedgehog. At wrg ~ 1 the
problem looses sense: in this case the radiation is so strong that one cannot
speak of a stationary rotation.

At r > r¢ the pion field of the soliton is small, and one can use the
asymptotic form of the hedgehog (2.3) replacing the profile function P(r)
by its asymptotics, P(r) — A/r?, A = const 2. In therange rp < r < 1/w
we have for the pion field of a rotating soliton

A
i

% sin @ cos(¢ — wt),

A
7l = ﬁsinﬂsin(tﬁ - wt),
A
7 = -3 ¢os 6. (2.15)

On the other hand, at » > rg the pion field must satisfy the d’Alembert
equation, 827% = 0, to which the general non-linear equation of motion for
the soliton is reduced when the fields are small. In addition, at » — oo the
pion field must satisfy the so-called radiation condition,

or® On°

ot 5 =0 (2.16)

In principle, one could as well look for a field having the form of incom-
ing waves at infinity. That would correspond to a situation when one keeps
the rotation by pumping energy from infinity. But we are now interested in
a free soliton loosing its energy and not vice versa. Solving the d’Alembert
equation (2.11) with the boundary conditions (2.15) we get

A
7! = — sinf(cosa + wrsina),
T
2_i4_ i g(" -
7= sinf(sina wrcosa),
wszé—cosa, a=wr+¢—wt. (2.17)

r2
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At r € 1/w these equations reduce to (2.15). However, at » > 1/w
Eq. (2.17) exhibits a 1/r falloff in accordance with a general result above.

Let us find the intensity of the outgoing waves. Using the general ex-
pression for the stress—energy tensor,

2
Tp = 7% (T0,08,0t - 30, Tr0.U8UY),  (218)

we get for the momentum flow at large distances:

F2 A%w* sin? On;

rz

To; — anoﬂ’aaiﬂ'a — (2.19)

In a slightly different context this formula was derived some time ago
by Lorentz [14], coinciding in its angular and frequency dependence with
the intensity of the electromagnetic dipole radiation. The coincidence is
not accidental: owing to its Goldstone nature the pion field couples to the
isospin source through a gradient; the same is true for the electromagnetic
field and is due to gauge invariance. In the non-relativistic limit we are now
considering, only the lowest, dipole component of the radiation survives in
both cases.

According to the energy-momentum conservation law, 6#T,, = 0, the
energy loss owing to radiation is

dE _ g 2
= = = 7‘li’r{.lc’/dE,To,r
P! 2 42, .4
— F2A%u%9r [ dpsintg = STFRAT" 2.20
l 3
0

We notice that the coefficient A is directly related [9, 10] to the nucleon
axial constant,

8w AF?
ga=—5", (2.21)

which, in its turn, is related to the pion-nucleon coupling constant through
the Goldberger—Treiman relation,

gaM

Fy '’
where M is the nucleon mass. Using these relations, the radiation intensity
can be rewritten as

grNN = (2.22)
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— 39 YIxNN* wi
W= “axMZ (2.23)
The radiation carries away not only energy but also the angular momentum
of the soliton:

d
23 _ lim /dZ',e;,,;,z,T,k = F? /dz

dt 00

On? On° w
Fren e R XD

The proper energy and angular momentum of a rotating soliton can
be found by subtracting volume integrals of the energy density and of the
angular momentum density, respectively [14]:

EPTOP — / d”rT(‘,’g” = / d3r(Too - n;Ti),
JPTOP = / PrezjiTy; Tz = / d*re3jk(To; — niTij)er -  (2.25)
It can be seen from Eq. (2.17) that at » — oo the integrands in Eq. (2.25)

behave as follows:

F2A?
Too — niTip = T (1’2 +w sin 9)

2 A2 2
—2wsin® 4. (2.26)

€3jk(To; — niTij)zy =

As a result both quantities, EPT™P and J} °F are convergent as anticipated.
Moreover, it can be shown on general grounds that these quantities satisfy
familiar relations for slowly rotating bodies,

Tw?
EP™P = M + - T O(w?),

JPP = Jw + O(u?), (2.27)

where M is the soliton mass at rest and I it its moment of inertia. Equa-
tions (2.26) are evidently in accordance with (2.27) giving in fact the large-
distance contributions to E™*' and I. It is important that, owing to
the “dipole” nature of the pion radiation, the energy loss is ~ w?* (see
Eq. (2.23)). To this accuracy the rotation can be regarded as approxi-
mately stationary and hence the O(w?) correction to the rest mass makes
sense.
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We are now in a position to calculate the lifetime of a rotating soliton
which looses energy owing to classical pion radiation. According to the
Bohr correspondence principle, the lifetime is defined as the time ¢t during
which a highly excited state looses a portion of its energy corresponding to
a transition to the nearest lower state. In our case it is the transition from
a rotational state J to the one with J — 1. Using the expression for the
radiation intensity (2.23) and the relation w = J/I we get

r= t My—-Mjy_y  8xM2\I (2.28)

which coincides exactly with the quantum-mechanical result (2.10)! The
same result follows also from Eq. (2.24): one can determine the lifetime as
the time during which the soliton looses one unit of its angular momentum,

dt|J-(J-1) 8xM2\I) (2.29)

We leave it to the reader to check that the time during which the ro-
tating soliton looses one unit of its isospin owing to pion radiation, is also
given by the same formula.

To summarize: we have demonstrated that the pion radiation is similar
to the electromagnetic radiation by the accelerated charge. A weekly accel-
erated source of isospin radiates a “dipole” pion field (which is due to the
Goldstone nature of pions), and the classically computed lifetime of that
source is in correspondence with the exact quantum-mechanical calculation
of the decay rate. Of course, if the pion source is relativistic one would
expect that all “multipoles” in the pion radiation enter the game.

Before I move to the applications of these ideas to high energy collisions,
let me briefly discuss the fate of the rotating soliton, as one increases the
angular momentum J. As seen from Eq. (2.10) the condition that the
radiation width I'y remains much less than the mass of the rotating state
Myis

I =

JLN, or wrg<l1, (2.30)

where N, is the number of colours and rq is the characteristic size of the
soliton. Simultaneously, it is the condition that the form of the soliton is
not affected by the rotation. It is amusing that in the theoretical limit
N, — oo there is a window for the angular momenta, 1 € J € N, where
not only the chiral soliton is a classical object but the decay of the rotational
excitations of this object can be described by classical pion radiation theory.

At J ~ N, or, equivalently, at wrg ~ 1 the classical radiation of pions
by a spherically-symmetric soliton blows up to such extent that the widths
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become comparable to the masses. Simultaneously, the centrifugal forces
become comparable to the binding forces inside the soliton, and the soliton
expands in the direction perpendicular to the rotation axis. The angular
velocity of an expandable cigar-like soliton decreases with the growth of J
[1] — this is a well-known result for a string whose endpoints are moving
with the speed of light. As a result the lifetime of a rotating soliton becomes
stable or even slightly decreasing with J. That is the way how the chiral
soliton survives at high angular momenta. Naturally, the quantization rule
T = J is lost once the soliton looses its hedgehog form, that is at J ~ N_.

Unfortunately, the crossover region J ~ N, is too complicated to be
studied analytically; an insight of what happens there can be found in a
paper by Blaizot and Ripka {15]. A significant simplification is achieved
at J > N.. In this case a string-like analytical solution of the equation
of motion has been found {1]. Victor Petrov and I have shown that the
chiral solitons with large angular momenta lie on linear Regge trajectories.
Knowing the transverse pion field distribution inside the string we have
found the string tension or, equivalently, the Regge slope

1 -
a = 87ZF2 ~ 1.45 GeV ™2 (2.31)
being but a factor of 1.5 larger than the phenomenological value of .9 GeV 2.
The discrepancy is possibly eliminated by quantum corrections to the string
tension.
Finally, let me mention that the decay widths of highly excited states
lying on linear Regge trajectories can be also estimated from the classical
pion radiation theory [1].

3. Pion radiation in high energy collisions

In the previous section I have described classical pion radiation by a
rotating chiral soliton. There is another physical example where we could
expect that classical pion radiation is applicable — I mean multi-pion pro-
duction in high energy collisions. Indeed, high energy collisions, especially
central collisions of heavy ions, provide a strong source of the isospin cur-
rent and are thus a strong source of pion fields. Various dynamical ideas
about the classical pion field formation in proton-proton and/or heavy ion
collisions have been suggested recently [16-19]; however at this stage we
prefer to keep as far as possible from the concrete dynamical questions.

If the number of pion quanta per unit phase space volume is greater
than one the pion radiation should be described semiclassically. In simple
terms it means that there should be a dominant “antenna pattern” for
pions. However, pions carry small isospin (= 1) which is hence always a
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quantum-mechanical characteristics, even in the academic limit of infinite
pion multiplicity. Therefore, there cannot be any pattern for the observable
xt, 7~ or #° mesons. The semiclassical nature of pion production would
result only in certain correlations in the production of pions with definite
isospin components. The main point of this section is that rather peculiar
correlations are indicated by the symmetry considerations only [2] — the
role of dynamics is to guarantee that the pion radiation is so strong that
it can be treated semiclassically; testing the correlations is a way to check
that hypothesis. These correlations, quite distinct from the much studied
Bose-Einstein ones, originate from correlations between spatial and isospin
coordinates in the solution of the nonlinear field equations. As mentioned
in the Introduction, in this section I follow our recent work with Jean-Paul
Blaizot.

Mathematically, one can write the amplitude of N pions production
with the help of the Lehmann—-Symanzik-Zimmermann formula, where the
N-point pion Green function is presented through the functional integral
over the pion fields:

A® N (ky .. .kN)= lim [ Dz® /DJ“W[J]exp (iS[vr]+i / d“w“l“)

k?& —rmg

N
<1 / dznenmn (02— m2)ron(z,). (3.1)

Here S[x] is the effective pion action and J is the source formed by
the colliding nuclei; one has to integrate over the sources with some weight
functional W[J] which summarizes the dynamics of the collision. If the
source J is in a sense “large”, the functional integral can be evaluated in
the saddle-point approximation, where the saddle-point pion field is the
solution of the equations of motion,

§S[x]

— +J%*z)=0 3.2

ey T IN@) =0, (3:2)
supplemented with the radiation condition at large distances, which at
mx — 0 reads

or® Ox°

ot + or

Let us denote the solution of these equations as 7%(r,t). In the leading
WKB approximation one replaces the pion fields everywhere in Eq. (3.1)

by this saddle-point field. In the next approximation quantum fluctuations
about the classical field #%(r, t) should be also taken into account.

=0. (3.3)
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We use two assumptions:
1) the collision is axially-symmetrical;
2) the collision is isotopically-symmetrical.

The first assumption is well justified at least for central collisions with
zero impact parameter. Without having a detailed dynamical vision of the
collision processes it is hard to foresee how far in the impact parameter can
one proceed with this assumption. The second would be an exact statement
in case of zero isospin of colliding nuclei like §+ 5. The derivation below can
be generalized to non-zero isospins of the nuclei using the projection method,
however we do not think that there should be significant departures from
our predictions for the correlations in the case of, say, Au + Au or Si + Ag
collisions.

The first assumption means that the saddle-point pion radiation field
can be sought in the axially-symmetrical “hedgehog” form:

7%(r,t) = 0% (nLiP1(p, 2,t) + Py (p, 2,8)) (3-4)

where P, | are functions of the distance p from the beam axis, of the dis-
tance z from the collision point and of time ¢; nj( | ) are unit vectors parallel

(perpendicular) to the beam axis and 0% is an arbitrary 3 x 3 orthogonal
matrix. (In principle, axial symmetry does not contradict higher harmonics
in the transverse plane with n | replaced by a unit vector with the compo-
nents (cos m¢, sinm¢) where ¢ is the azimuthal angle and m is an integer.
We shall work with m = 1, i.e. assume that n | points in the radial direction,
and introduce the arbitrariness in the choice of m only in our final results).
The type of correlations between space and isospin degrees of freedom is a
familiar feature of solutions of nonlinear field equations as illustrated for ex-
ample by the Skyrme model. The second assumption means that the saddle
point is degenerate in the global isospin rotation 0%, so that the functional
integral in Eq. (3.1) reduces to the integration over all possible orientations
of the pion field in the isospin space. The action and the source-weight
functionals are taken at the saddle-point values of J* and #® and provide
an overall normalization factor /A which may be a function of the total
4-momentum of the pions P,, but now we are not interested in this factor.

At large distances/time the isospin source J* dies out and one can also
neglect the non-linearity of the pion effective action. Therefore, Eq. (3.2)
reduces to the free Klein—-Gordon equation at large distances, and we are
guaranteed that the Fourier transform of Eq. (3.4) has a pole at kg — k2 -

k% = mZ, which cancels out in the LSZ leg amputation procedure (see

Eq. (3.1)). We have therefore:
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lim , /d“zeik”(—ag —m?)r%(z) =

k’-——»m,

0% (k_L,'F_L(kJ_, k") + k”,;F"(k_L, k”)) = OaiFi(k) ’ (3.5)

where F, ;(k,k)) are related through Fourier transformation to P, j of
Eq. (3.4). Since P, j are real the functions F;(k) are purely imaginary,
with F} (k) = F;(—k) = —F;(k).

Squaring the amplitudes, summing over the isospin a = 1,2, 3 of the
pions and multiplying by the phase space factor, one gets for the N pion
production cross-section:

N dO.d T Lol 2 2 45(4)
o = I—V—'/ 0,d0, nI=I]/(27r)421r5+(kn-mw)(27r) &P, — Zkny)

x OF'Fy(k)O3 F} (k), 64(k] —m}) = 6(k} —m3)8(ko),  (3.6)

where k,, are individual 4-momenta of the produced pions, O, are isospin
orientation of the pions in the amplitude and the conjugate amplitude, re-
spectively, P is the total 4-momentum of the produced pions; the factorial
accounts for the identical particles.

Writing the 4-momentum conservation restriction as

(2m) 6O - T k) = / PRexp (i(P-B) i (ke B)),  (37)
we get factorized integrals over the momenta of produced pions:

dik

(27)4

.. This tensor is further on contracted with the relative orientation matrix

0% = 081057 = (070;)9. We note that in integrating over the SO(3)

rotations one can use the Haar measure property, dO = d(CO) = d(0C),
where C is an arbitrary orthogonal matrix, so that

// d0;dO, =/ d01d013, /dO =1. (3.9)

The total cross-section being a sum of o{) over N becomes thus a
series for an exponent, and we get

2764 (k2 ~ m2)e *(* B Fy(k)F} (k) = Fij(Ro, R). (3.8)

otot =N/d012/d4Rexp [i(P-R)+}'ij(Ro,R)0j§] . (3.10)
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Let us use the frame in which the total momentum of the produced
pions is zero, P = 0, P, = E where E is the total energy of the pions.
Since both F and the function F, proportional to the probability of the
pion production, are presumably large, one can integrate over Ry, R and
O12 by the saddle-point method. Let us parametrize the relative orientation
matrix Oj2 in terms of a unit 4-vector u, (uf‘ =11, =(1, -—iT)),

0;’2 = %’I‘r(u“'r,,,r’.u,,rjrj) = (1 - 2u?)6ij + 2u;u; + 2ugupe;jr - (3.11)
We expect the saddle point to be at

1
ux=0, R=x0, Ro~—E. (3.12)

Expanding the exponent in Eq. (3.10) around this point, and using the
explicit form of F given by Eq. (3.8), it can be shown that at small Rg
the saddle-point condition is indeed satisfied. Without knowing the explicit
form of the functions F;(k) we cannot prove that there are no other saddle-
points but we shall disregard such possibilities. Note that the maximum
at u = 0 corresponds to O}, = §%, i.e. to the case when the pion isospin
orientation in the conjugate amplitude is the same as in the direct amplitude
— not an unnatural result.

We thus write the total cross-section as

ot o N / dRo exp [i( ERo) + Fii( Ro, 0)] . (3.13)

In what follows we shall use this relation to remove the unknown normal-
ization factor N.

We next turn to the 1,2,... particle inclusive cross-sections. All of
them are directly derived from Eq. (3.6) where one skips integration over
1,2,... momenta and summation over the 1,2,... isotopic subscripts. Thus,
the 1-particle inclusive cross-section is given by (we use the abbreviation

(dk) = d3k/2ko(27)3):
dol®  (4) «(a)
(dk) ~ uy

oo N-1
> G I [ (@) (F(En)012F* (k) (27) 6 (P-k= 3 k).

(3.14)

bi b5 o, >
d01d0,07'0, F,(k)Fj (k)

(4)

Here u;" ' are the isospin “polarization” vectors:
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0 1 1
u T=10], u ‘=—{t]}, ub ,  (3.15)
1/ vZ\o/, R b

to be contracted with the isospin orientation matrices Oy 3. The super-
script A refers to the isospin component of the observed pion; there is no
summation in A.

The 2-particle inclusive cross-section for production of the pion of sort
A; with momentum k; and of the pion of sort A; with momentum k, is

da(AI“h) u(Al)u*(Al) (A3) *(AZ)
(dky)(dkz) — & ¥
1

o 1. baud
X / dOldozoi"Og’Fi(kl)Fj*(k])O;’kog"Fk(kz)F,*(kz)N 3 o)
N=2 :

N-2
< 1 / (dkn) (F(kn)O12F* (k) (27) 6O (P = by — bz = 3 k),

(3.16)

and so on. Writing the 4-momentum conservation § function with the help
of an auxiliary integral as in Eq. (3.7), we again obtain the exponential
series, so that

do(A)

A I *
(dL) u( ) *(A)/doldolzoij 0? ko Fi(k)Fj (k)

x N / d*Rexp [i(P- B) - (k- R) + F5i(R)O%] , (3.17)

where we used 031" = O'l""Ofg. If the momentum of the observed pion is
negligible as compared to the total momentum P of the pions and if the
integration over 032 and R is performed about the presumably steep saddle
point given by Eq. (3.12), we obtain:

do(4)
(dk) —

u(A) *(A)/do OthbJF(k)F*(k)atot

= u{ DA 165 55 (k) F} (k)ot™ = LF(k)F} (k)o*t.
(3 18)
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We see that the inclusive cross-section is directly related to the square
of the Fourier transform of the classical pion radiation field, — a most
natural result. Also naturally, we find identical cross-sections for 7+, ==
and 7° production. The average multiplicity is obtained by integrating the

inclusive cross-section over k and summing over A = =+, 7, 7%

W) = [(@RF®F; #) = Fu(R. = 0). (3.19)

It should be kept in mind that if this integral is not convergent by itself at
large k it should be cut at least at P in accordance with the more precise
Eq. (3.17).

In Eq. (3.17) we used the following formula for averaging over isospin
rotations:

/ d0Ob 0¥k = 1gbigh's (3.20)

To calculate the 2-particle inclusive cross-section we need a formula for
averaging over four matrices:

/doobtob Jockocl %6”6’:1(4655 6cc 65666'6' _ 56(:’6bl1:)
+ ;_oaiké'jl(_é‘bb écc + 465c6b’c’ _ 666’5b’c)

+ 31_06ik6jl(_6bb’6cc' _ gbegt'd +45bc'6b'C).
(3.21)

One can check this formula by applying various contractions and reducing
it to Eq. (3.20); an alternative method is to note that 0% is a Wigner D
function for isospin 1, and using the Clebsch—Gordan machinery.

Starting from Eq. (3.16) and repeating the same steps as above we get
for the 2-particle inclusive cross-section:

dMAT ) A A9 42
(dky)(dky) b v
x 3 [26%5° 2V — W) + (8%26¥'< + 6t 8¥e)(-V + 3W)| o**
gtot (VAW (o)
=3 {4V_2W ={ 0@ (3.22)
30 Loy 4w a(®)

where we have introduced the abbreviation:
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V = |Fi(k1)?|Fj(k2)|?, W = |Fi(k1)Fi(k2)|*. (3.23)

The upper line in Eq. (3.22) (case 1) refers to the #+x—, 7 x+,xtxt or
7~ x~ production, the second line (case 2) refers to four other combinations,
7tx0 =70 x%%F,x% —, while the last line (case 3) corresponds to the
770 production. It should be noted that, if the two observed pions are
not identical, they are distinguished by the momenta k;,k,. The three
possibilities in Eq. (3.22) reflect three possible isospin states (T = 0,1,2)
which can be formed by a pair of pions 1. Since, however, the three cross-
sections are expressed through only two functions, we get a relation:

e® 4 ¢ = 241, (3.24)

Let us now investigate Eq. (3.22). If one sums up all 9 possible combi-
nations of pion pairs, one gets

do®ll
(dky )(dk2)
which is independent of the angle between the two pions. Further on, inte-

grating Eq. (3.25) over the momenta k; 2 and recalling Eq. (3.19) for the
average multiplicity, one finds

= |Fi(k)|?|Fj(kz) %ot (3.25)

1 daall
(NN -1)) = /(dkl)(dkz)m = (N)?, (3.26)

which is the dispersion law of the Poisson distribution. It should be stressed
though that for charged or neutral pions separately there is no Poisson dis-
tribution! Also, we would expect a deviation from the Poisson distribution
at the end point of the spectrum, where the 4-momentum conservation law
from a more accurate Eq. (3.16) imposes additional correlations.

The structure denoted as W depends on the azimuthal angle between
the two pions,

W = [cos(d1 — da)kik Fo(ka)F(k2) + k'}kQFn(kl)F”(kz)]z, (3.27)

while

! T would like to thank M.Polyakov and M.Praszalowicz who helped me to check
Eq. (3.22)
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V = [(k)2F2 (k) + (B2 FF (k0)] [(k3)2F3 (R2)) + (kD)2 FF (R2)] -
(3.28)
Out of the three cross-sections mentioned in Eq. (3.22) one can construct
angle-dependent and -independent combinations:

tot
tot
24(1) + o(?) = 20’(2) + o3 = UTV(kl, k2). (3.29)

Eqs (3.22)—(3.29) summarize our result for double-inclusive pion pro-
duction. However, it might be useful to make a prediction which is inde-
pendent of the dynamics hidden in the Fourier-transformed pion fields F| .
To this end we restrict ourselves to pions with zero rapidity, i.e. to the case
k!l = kll = 0, so that W/V = cos?(¢y — ¢2). This quantity is obtained by
taking the ratio of differential double-inclusive cross-sections, say,

40(1) — 34(2)
@ TS0 = o5 (¢1 - 42). (3.30)

Another way to isolate the azimuthal angle dependence is to normalize to
the single-inclusive cross-sections. For example, we predict at I<:|1|'2 =0

+ p—
T T
otot do 9
10

a”+ do™ da"’r+ do™
(dk1)(dkz)

-1
d _ 3 .2
(dky) (dkz) | \ (dks) (dkz)) = 1g cos" (41— ¢2).
(3.31)

At this point an experimentalist may derive correlations for his own
favorite (charged or neutral) pairs of pions. Let us recall finally that the axial
symmetry does not contradict higher harmonics in the transverse plane, with
the replacement cos(¢; — ¢2) — cosm(@1 — ¢2) where m is an integer.

To conclude: we have investigated consequences of the hypothesis that
pions are produced semiclassically in high-energy heavy-ion collisions. Lit-
erally, the above results for the isospin-azimuth correlations imply central
collisions and zero isospin of the colliding nuclei. (The second requirement
is technical, and can be avoided). We have also tacitly assumed that the
source for pion production is coherent. From this angle it might be that
proton-proton collisions are more “neat”, rather than the heavy ion ones.
Without knowing the detailed dynamics of the collisions it is hard to foresee
how restrictive are these requirements.
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To check the correlations one should analyze the double differential
cross-sections of charged and/or neutral pion production at highest possible
energies, together with a trigger for central collisions — like high multi-
plicity of the events, etc. Finding experimentally (or rejecting) the above
correlations would contribute equally significantly to our understanding of
multi-pion production at high energy collisions.

I would like to thank the organizers of the Krakow School for their kind
hospitality and the participants for numerous interesting discussions.

REFERENCES

[1]) D. Diakonov, V. Petrov, Rotating Chiral Solitons Lie on Linear Regge Trajec-
tories, preprint LNPI-1394 (1988) (unpublished).
[2] 3.-P. Blaizot, D. Diakonov, Phys. Lett. B to be published.
[3] S. Kahana, G. Ripka, V. Soni, Nucl. Phys. A415, 351 (1984); S. Kahana,
G. Ripka, Nucl. Phys. A429, 962 (1984).
[4] M.S. Birse, M.K. Banarjee, Phys. Lett. 136B, 284 (1984).
{5] D. Diakonov, V. Petrov, Leit. Sov. Phys. JETP 43, 57 (1986); D. Diakonov,
V. Petrov, P. Pobylitsa, Nucl. Phys. B3086, 809 {1988).
[6] M. Praszalowicz et al., in: Leciure Notes in Physics, Quark Cluster Dynamics,
Eds K. Goeke, P. Kroll, H.-R. Petry, Springer, 1992, p.241.
[7] M. Wakamatsu, in: Lecture Notes in Physics, Quark Cluster Dynamics, Eds
K.Goeke, P.Kroll and H.-R.Petry, , Springer 1992, p.255.
[8] E. Witten, Nucl. Phys. B223, 433 (1983).
[9] T.H.R. Skyrme, Nucl. Phys. 31, 556 (1962).
[10] G. Adkins, C. Nappi, E. Witten, Nucl. Phys. B228, 552 (1983).
[11] D. Diakonov, A. Mirlin, Sov. J. Nucl. Phys. 47, 662 (1988).
[12] D. Diakonov, V. Petrov, P. Pobylitsa, Phys. Lett. 205B, (1988).
[13] Handbook of Mathematical Functions, Eds M. Abramowitz and I. Stegun,
ch. 10.
[14] H.A. Lorents, The Theory of Elecirons and its Applications to the Phenomena
of Light and Radiant Heat, Leipzig 1916.
(15] J.-P. Blaizot, G.Ripka, Phys. Rev. D38, 1556 (1988).
{16] A.A. Anselm, Phys. Lett. 217B, 169 (1988); A.A. Anselm, M. Ryskin, Phys.
Lett. 226B, 482 (1991).
[17] J.-P. Blaizot, A. Krzywicki, Phys. Rev. D46, 246 (1992).
[18] J.D. Bjorken, Acte Phys. Pol. B23, 561 (1992).
[19] K. Rajagopal, F. Wilczek, Emergence of Coherent Long Wavelength Oscilla-
tions After a Quench: Application to QCD PUPT-1389, IASSNS-HEP-93/16,
March 93.



