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Summarization of our investigations of the stability of the three di-
mensional, classical spin field with Hopf index is presented. Example of
a variational approach to functionals with topological terms is given. A
nonnumerical method of analysis of a nonlinear evolution equations is
presented.
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1. Variational approach to functionals with topological terms

Usual way of finding a conditional minimum of a functional is by means
of Lagrange multipliers. Difficulty in applying this method to the case of
functional with topological terms lies in the invariance of such terms under
local modifications, as such invariant terms does not contribute to the final
equations because its variational derivative vanishes.

A possible alternative to the usual variational calculation has been pre-
sented in [1] and further developed in [2]. The main idea of the new method
is to find new coordinates, based on derivatives of original variables, which
leads to nonlocal variations of the considered functional. The variational
derivative of the topological term with respect to such variables does not
vanish, and consequently, it is possible to derive equations for a conditional
minimum of such a functional.

The described method was applied to the case of the two dimensional
o model and three dimensional Heisenberg model. Detailed calculations
are showed in [2], here we will show just a sketch of the Heisenberg model
calculations.

* Presented at the XXXIII Cracow School of Theoretical Physics, Zakopane,
Poland, June 1-11, 1993.
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2. Heisenberg model of the three dimensional spin field

The Heisenberg model is defined on the compactified space R3, which
is isomorphic to the three dimensional sphere §3. On this sphere we define
a spin field as a map to the two dimensional sphere $2:

S:8% §2, (1)

The homotopy group of such a map is IT3($?), which is isomorphic with the
additive group of integer numbers Z. Thus, the map (1) may be classified
using Hopf index as a class number [2-4]. Hopf index can be defined as:

g=-— / d’z A, J", (2)
R3S
where 1
JH = S—wew’\eabcs“a,s"axsc (3)
and A satisfies
JH = et*29, A4, (4)

Hamiltonian of the map (1) has the form of the following integral:

H= | (VS)3dz. (5)
!

Using the method described in the first paragraph and new variables:
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it is possible to rewrite formulas for the Hamiltonian and the Hopf index in
terms of variables o, ,:

H= / &z (aua* + BB%) (8)
—Rs

1
= _%6“”€uvkepn€ / &z 2% (2)Bx(2) / an(tz)Be(ta)tdt.  (9)
rR3 0

Finally we come [2] to the overdetermined set of equations for a configuration
expressed in terms of variables a, 3:

A
a = —3- (IX 2) X ﬁ
{ﬂ=a*;(1xz)xa ’ (19
where:
oo
I= /[a (tz) x B(tz)]tsgn(l — t)dt. (11)
0
This set of equations has only one solution:
a=8=0, (12)

with Hopf index equal to zero.
Above result means that there are no stationary configurations of spin
field with nonvanishing Hopf index.

3. The Landau-Lifshitz equation

The result presented in the preceding section means that, if there exist
configurations with nonvanishing Hopf index they must be time-dependent.
Evolution of the spin field in the Heisenberg model is governed by the
Landau-Lifshitz equation [5]. In stereographic coordinates (6) equation
takes the following form:

ow . 20* (Vw)?
E—z(Aw— 1+ww")' (13)

This is a second order, nonlinear, partial differential equation for complex
function of 3+1 variables and as such it is hardly easy to handle. There are
several approaches to this type of equation. First is, of course, analytical
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solving, which is, being the most general, very difficult. Analytical methods
have not succeeded in finding solutions of this equation so far. An alterna-
tive approach is use of numerical methods which have two main disadvan-
tages for this type of problem. First, it is difficult to preserve topological
properties (i.e. Hopf index) of the calculated solution. The other limitation
is rather technical, as the problem is inherently three dimensional, it needs
big amounts of computing power and memory to be solved numerically?!.
Yet another approach is use of perturbative methods. Perturbative methods
work fine if we have some anchoring point, this is the case for ¢ = 0, but
this is not our case. We are interested in the case of ¢ # 0 where we have
no anchoring point.

In this situation we chose to use automated analytical calculations to
find some clues to the shape of the solution.

4. Nonnumerical approach to the evolution equation [6]

The equation (13) may be rewritten, using definition of the derivative,
in the approximate form:

WitAL — W . 2w*(Vw)?
TirAr T W Ve 4
At : (Aw 1+ ww* (14)

and then converted to the recursive formula for the time evolution of the
configuration:

2wy (Vewe)” (V“")z) . (15)

Wip AL = Wt + 1At (Awt - 1+ wyw?
t

This formula may be then iterated analytically in order to get the shape of
the configuration in the analytical form. One can prove that this procedure
preserves the Hopf index of the initial configuration.
As the starting configuration we have used simple map with Hopf index
equal to one [3]:
w = at zﬂ ) (16)
¥+ 38

! One needs 128 megabytes of memory for a 256 lattice
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where
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Configurations with higher values of the Hopf index may be produced from

(16) by taking appropriate power of the (16).

We were able to calculate two first iterations of the (15). The resulting
formulas are very long and thus not suitable to quote here, instead we
have produced plots of the energy density of the configuration. To further
visualize considered field configuration we have produced ray traced “wire
frame” model of some field lines of the starting configuration (16). This
model is shown on the Fig. 1. Next five pictures show plots of energy density
in the X Z plane? for configuration after one and two steps of iteration of
the formula (15) with various values of time parameter.

(17)

v

Fig. 1. Field lines of the Hopf configuration of spin field.

2 Energy density has cylindrical symmetry.
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Fig. 2. Energy density of the Hopf configuration for ¢ = 0.
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Fig. 5. Energy density of the Hopf configuration for t = 200 in the first step.

Fig. 6. Energy density of the Hopf configuration for ¢ = 200 in the second step.
5. Conclusion

We have shown that the only possible configuration of the spin field in
the Heisenberg model must be time dependent. We have also shown the
method of nonnumerical analysis of nonlinear evolution equations. Quali-
tative results shown in this paper are similar to the solution of the similar
problem for the evolution of the electromagnetic field {7]. Configuration
from Figs 2-6 shows similar behavior to the one exhibited by “knotted so-
lution” from [7]. Both solutions have regions of high energy density which
spread in space with constant velocity. This similarity may indicate that
this behavior is generated rather by geometry of the configuration then by
the equation of motion.

Computing facilities courtesy of High Energy Physics Department of Insti-



190 P.T. JOcrYM AND K. SOKALSKI

tute of Physics, Jagellonian University.
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